Sigma J Eng & Nat Sci 9 (3), 2018, 341-348

Publications Prepared for the 2017 and 2018 International Conference on Applied Analysis and Mathematical Modeling Special Issue was published by reviewing extended papers

Research Article

ON SUFFICIENT CONDITIONS FOR CLOSE-TO-CONVEXITY OF ORDER 2^{-r} .

İsmet YILDIZ¹, Alaattin AKYAR², Oya MERT*³

¹Department of Mathematics, Düzce University, DÜZCE; ORCID:0000-0001-7544-4835 ²Department of Mathematics, Düzce University, DÜZCE; ORCID:0000-0003-4759-8313 ³Department of Basic Sciences, İstanbul Altınbaş University, İSTANBUL; ORCID:0000-0002-8791-3341

Received: 27.09.2018 Revised: 16.10.2018 Accepted: 21.10.2018

ABSTRACT

The main idea of the present paper is to obtain sufficient conditions for close-to-convexity of order in 2^{-r} , where r is a positive integer. Keywords: Analytic, univalent, starlike, convex and close-to-convex functions.

1. INTRODUCTION AND DEFINITIONS

Let the class A_n be the class of analytic functions in the unit disk $D = \{z : |z| < 1\}$ and normalized, by the condition f(0) = 0 and f'(0) = 1. Then, A_n consisting of functions of the form

$$f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k, \quad \left(n \in \{1, 2, 3, ...\}\right)$$
with $\mathcal{A}_z = \mathcal{A}$.
$$(1)$$

Definition 1. A domain D in the w-plane is said to be starlike with respect to a point $u_0 \in D$ if for each point $u \in D$ the line-segment $[u_u u]$ is contained in D [1].

The theory of univalent functions is dealt with functions f(z) which are analytic and univalent in the unit disk D and normalized to by the f(0) = 0 and f'(0) = 1.

Definition 2. Let be the function f(z) with f(0) = 0. We say that the function f(z) is starlike if f(z) is univalent in D and f(D) is a starlike domain with respect to origin [2].

^{*} Corresponding Author: e-mail: oya.mert@altinbas.edu.tr, tel: (212) 604 01 00 / 4116

Let by $S_n^*(2^{-r})$ denote the subclass of A_n consisting of functions which are univalent in the unit disk D. In this case, a function $f(z) \in S_n^*(2^{-r})$ is said to be starlike of order 2^{-r} if and only if it satisfies the condition:

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > 2^{-r} \ (z \in D)$$

and a function $f(z) \in \mathcal{A}_n$ is said to be close-to-convex of order 2^{-r} if and only if it satisfies the condition

$$\mathcal{Re}\left(\frac{zf'(z)}{g(z)}\right) > 2^{-r} \ (z \in D, g \in \mathcal{S}_n^*(0)).$$

We denote by $\mathcal{C}_{\mu}(2^{-r})$ the class of all such functions. We note that

$$\mathcal{S}_{n}^{*}(2^{-r}) \subset \mathcal{C}_{n}(2^{-r}) \subset \mathcal{S}_{n} \quad [9].$$

We now turn to an interesting subclass of S which contains S and has a simple geometric description. This is the class of close-to-convex functions. A function f analytic in the unit disk is said to be close-to-convex if there is a convex function g such that

$$\mathcal{Re}\left(\frac{f'(z)}{g'(z)}\right) > 0$$
, for all $z \in D$.

We shall denote by K the class of close-to-convex functions f normalized by the usual conditions f(0) = 0 and f'(0) = 1. Note that f is not required a prior to be univalent. Note also that the associated function g need not to be normalized. The additional condition that $g \in C$ defines a proper subclass of K which will be denoted by K_0 . Every convex function is obviously close-to-convex. More generally, every starlike function is close-to-convex. Indeed, each $f \in S^*$ has the form f(z) = zg'(z) for some $g \in C$, and

$$\operatorname{Re}\left\{\frac{f'(z)}{g'(z)}\right\} = \operatorname{Re}\left\{\frac{z.f'(z)}{f(z)}\right\} > 0.$$

These remarks are summarized by the chain of proper inclusions

$$C \subset S^* \subset K_0 \subset K$$

A set $E \subset C$ is said to be starlike with respect to a point $w_0 \in E$ if the linear segment joining w_0 to every other point $w \in E$ lies entirely in E. In more picturesque language, the requirement is that every point of E be visible from w_0 . The set E is said to be convex if it is starlike with respect to each of its points; that is, if the linear segment joining any two points of E lies entirely in E. A convex function is one which maps the unit disk conformally onto a convex domain. A starlike function is a conformal mapping of the unit disk onto a domain starlike with respect to the origin. The subclass of S consisting of the convex functions is denoted by C and S^* denotes the subclass of starlike functions. Thus, it is written as $C \subset S^* \subset S$. Closely related to the classes C and S^* is the class P of all functions φ analytic and having positive real part in D, with $\varphi(0) = 1$. Every $\varphi \in P$ can be represented as a Poisson-Stieltjes integral

$$\varphi(z) = \int_{0}^{2\pi} \frac{e^{it} + z}{e^{it} - z} d\mu(t),$$

here $d\mu(t) \ge 0$ and $\int d\mu(t) = 1$. The following lemma is often useful: Lemma 1. If $\varphi \in P$ and

$$\varphi(z) = 1 + \sum_{n=1}^{\infty} c_n z^n$$

Then $|c_n| \le 2$, n = 1, 2, 3, ... This inequality is sharp for each n [3]. **Proof.** Since

$$\frac{e^{it} + z}{e^{it} - z} = 1 + 2\sum_{n=1}^{\infty} e^{-int} z^n,$$

the representation lemma gives

$$c_n = 2 \int_{0}^{2\pi} e^{-int} d\mu(t) , \quad n = 1, 2, 3, \dots$$

Thus $|c_n| \le 2$ with equality if and only if e^{-int} has a constant signum on the support of the measure $d\mu$. In particular, equality holds for all *n* for the function

$$\varphi(z) = \frac{e^{it} + z}{e^{it} - z} = 1 + 2\sum_{n=1}^{\infty} z^n .$$

The following theorem gives an analytic description of starlike functions:

Theorem 1. Let f be analytic in D, with f(0) = 0 and f'(0) = 1. Then $f \in S^*$ if and only if $zf'(z) / f(z) \in P$ [3].

Proof. Suppose that $f \in S^*$. Then we claim that f maps each subdisk $|z| < \rho < 1$ onto a starlike domain. An equivalent assertion is that $g(z) = f(\rho z)$ is starlike in D. In other words, we must show that for each fixed t(0 < t < 1) and for each $z \in D$, the point tg(z) is in the range of g. But since $f \in S^*$, an application of the lemma gives $tf(z) = f(w(\rho z))$ for some function w analytic in D and satisfying |w(z)| < |z|.

Thus

$$tg(z) = tf(\rho z) = f(w(\rho z)) = g(w_1(z))$$

where

$$w_{\mu}(z) = w(\rho z) / \rho \text{ and } |w_{\mu}(z)| \leq |z|$$

Theorem 2. Let f be analytic in D, with f(0) = 0 and f'(0) = 1. Then $f \in C$ if and only if $[1 + zf''(z) / f'(z)] \in P[3].$

Proof. Suppose that $f \in C$. Then, we claim that f must map each subdisk |z| < r onto a convex domain. To show this, choose points z_1 and z_2 with $|z_1| \le |z_2| < r$. Let $w_1 = f(z_1)$ and $w_2 = f\left(z_2\right).$

Let

$$w_0 = tw + (1-t)w_2, \quad 0 < t < 1$$

Then, since f is a convex mapping, there is a unique point $z_0 \in D$ for which $f(z_0) = w_0$. We have to show that $|z_0| < r$. But the function

$$g(z) = tf(zz_1 / z_2) + (1 - t)f(z)$$

is analytic in D, with g(0) = 0 and $g(z_2) = w_0$. Because $f \in C$, the function $h(z) = f^{-1}(g(z))$ is well defined. Since h(0) = 0 and $|h(z)| \le 1$ thus it tells us that $|h(z)| \le |z|$. Thus

$$|z_0| = |h(z_2)| \le |z_2| < r$$
,

which was to be shown. Hence f maps each circle |z| = r < 1 onto curve C which bounds a convex domain. The convexity implies that the slope of the tangent to C is nondecreasing as the curve is traversed in the positive direction. Analytically, this condition is

$$\frac{\partial}{\partial \theta} \left(\arg \left\{ \frac{\partial}{\partial \theta} f(re^{i\theta}) \right\} \right) \ge 0,$$

or

$$\operatorname{Im}\left\{\frac{\partial}{\partial\theta}\log\left[ire^{i\theta}f'(re^{i\theta})\right]\right\}\geq 0,$$

which reduces to the condition

$$\operatorname{Re}\left\{1+\frac{zf''(z)}{f'(z)}\right\} \ge 0, \qquad \left|z\right|=r.$$

By the maximum principle for harmonic functions

$$\left[1+zf''(z)/f'(z)\right] \in P.$$

Conversely, suppose f is a normalized analytic function with

$$\left[1+zf''(z)/f'(z)\right] \in P.$$

The above calculation shows that the slope of the tangent to the curve C_r increases monotonically. But as a point makes a complete circuit of C_r , the argument of the tangent vector has a net change

On Sufficient Conditions for Close-to-Convexity of ... / Sigma J Eng & Nat Sci 9 (3), 341-348, 2018

$$\int_{0}^{2\pi} \frac{\partial}{\partial \theta} \left(\arg \left\{ \frac{\partial}{\partial \theta} f(re^{i\theta}) \right\} \right) d\theta = \int_{0}^{2\pi} \operatorname{Re} \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} d\theta$$
$$= \operatorname{Re} \left\{ \int_{|z|=r} \left[1 + \frac{zf''(z)}{f'(z)} \right] \frac{dz}{iz} \right\} = 2\pi, \quad z = re^{i\theta}.$$

This shows that C_r is a simple closed curve bounding a convex domain. This for arbitrary r < 1 implies that f is a univalent function with convex range. Every close-to-convex function is univalent. This can be inferred from the following simple but important criterion for univalence. **Theorem 3.** If f is analytic in a convex domain D and $\operatorname{Re} \{f'(z)\} > 0$ there, then f is univalent in D [3].

Proof. Let z_1 and z_2 be distinct points in *D*. Then *f* is defined on the linear segment joining z_1 to z_2 , and

$$f(z_{2}) - f(z_{1}) = \int_{z_{1}}^{z_{2}} f'(z)dz$$
$$f(z_{2}) - f(z_{1}) = (z_{2} - z_{1})\int_{0}^{1} f'[tz_{2} + (1 - t)z_{1}]dt \neq 0 ,$$

since $\operatorname{Re}\left\{f'(z)\right\} > 0$.

Theorem 4. Every close-to-convex functions is univalent [3].

Proof. If *f* is close-to-convex, then $\operatorname{Re}[f'(z)/g'(z)] > 0$ for some convex function *g*. Let *D* be the range of *g* and consider the function

$$h(w) = f\left(g^{-1}\left(w\right)\right), w \in D.$$

Then

$$h'(w) = \frac{f'(g'(w))}{g'(g^{-1}(w))} = \frac{f'(z)}{g'(z)}$$

so $\operatorname{Re} \{h'(w)\} > 0$ in D. Thus h is univalent, and so f is univalent.

2. ORDER OF CLOSE-TO-CONVEXITY

The object has been investigated and introduced by many scientists until this time[5],[6],[7],[8]. The following lemmas will be required for our main idea:

Lemma 2. Let the function f(z) defined by (1) be in the class $S_{\alpha}(\alpha)$. Then

$$\operatorname{Re}\left(\frac{f(z)}{z}\right)^{\lambda} > \frac{n}{2\lambda(1-\alpha)+n}, \ (z \in D)$$

where

$$0 < \lambda \leq \frac{n}{2(1-\alpha)}$$
 and $0 \leq \alpha < 1$ [9].

Main Theorem. If the function $f(z) \in A_n$ satisfies the inequality the condition

$$\operatorname{Re}\left(1+\frac{zf''(z)}{f'(z)}\right) > 2^{-r} - \lambda \qquad (z \in D)$$

for $\alpha = 2^{-r}$ (r is a positive integer), $0 < \lambda \le \frac{n(1+\lambda)}{\left[2(1+\lambda)-2^{1-r}\right]}$ and, $\mu = \frac{2^{-r}}{1+\lambda}$ the f(z)

belongs to the class $C_n(v)$, where $v = \frac{n(1+\lambda)}{(1+\lambda)(n+2\lambda) - 2^{1-r}\lambda}$.

Thus, f(z) is close-to-convex of order v in D. The proof will require by defining a function g(z) by

$$f'(z) = \left(\frac{g(z)}{z}\right)^{1+\lambda} (z \in D)$$

or

$$\frac{zf'(z)}{g(z)} = \left(\frac{g(z)}{z}\right)^{\lambda} (z \in D).$$

Therefore,

$$\frac{zf''(z)}{f'(z)} = \frac{z\left[\left(1+\lambda\right)\left(\frac{g(z)}{z}\right)^{\lambda}\left(\frac{g'(z)z-g(z)}{z^{2}}\right)\right]}{\left(\frac{g(z)}{z}\right)^{1+\lambda}}$$
$$= \frac{z\left[\left(1+\lambda\right)\left(\frac{g'(z)z-g(z)}{z^{2}}\right)\right]}{\left(\frac{g(z)}{z}\right)}$$
$$= (1+\lambda)\left(\frac{zg'(z)}{g(z)}-1\right).$$

That is,

$$(1+\lambda)\left(\frac{zg'(z)}{g(z)}-1\right) = \frac{zf''(z)}{f'(z)} \Rightarrow \frac{zg'(z)}{g(z)}-1 = \frac{1}{(1+\lambda)} \cdot \frac{zf''(z)}{f'(z)}$$
$$= 1+\frac{1}{(1+\lambda)} \cdot \frac{zf''(z)}{f'(z)}$$
$$= \frac{1}{(1+\lambda)} \left(1+\lambda + \frac{zf''(z)}{f'(z)}\right).$$

Proof of Main Theorem. Applying Lemma 2 to g(z) we obtain

$$\mathcal{R}e\left(1+\frac{zf'(z)}{g(z)}\right) = \mathcal{R}e\left(\frac{g(z)}{z}\right)^{\lambda} > \frac{n}{2\lambda\left(1-\frac{2^{-r}}{(1+\lambda)}\right) + n}$$
$$= \frac{n}{2\lambda\left(\frac{1+\lambda-2^{-r}}{(1+\lambda)}\right) + n}$$
$$= \frac{n}{\frac{2\lambda+2\lambda^2-\lambda 2^{-r}+n+n\lambda}{(1+\lambda)}}$$
$$= \frac{n(1+\lambda)}{(1+\lambda)(n+2\lambda)-2^{1-r}\lambda}.$$

This completes the proof of main theorem. Letting r = 1 in the main theorem, we obtain **Corollary 1** If the functions f(z) and g(z) in \mathcal{A}_n satisfy the condition

If the functions f(z) and g(z) in \mathcal{A}_{p} satisfies the condition

$$\mathcal{Re}\left(1+\frac{zf''(z)}{f'(z)}\right) > \frac{1}{2} - \lambda \quad (z \in D)$$

for $0 < \lambda \le n(1+\lambda)/[2(1+\lambda)-2^{1-r}]$ and , $\mu = 2^{-r}/(1+\lambda)$ then f(z) belongs to the class $C_{-}(v)$, where

$$\upsilon = \frac{n(1+\lambda)}{n(1+\lambda)+\lambda(1+2\lambda)}$$

Thus, f(z) is close-to- convex of order v in D. Form corollary 1 we obtain

$$\mathcal{Re}\left(\frac{1}{2}+\frac{zf''(z)}{f'(z)}\right) > -\lambda \quad (z \in D).$$

By setting r = 1, $\lambda = \frac{1}{2}$ and $\mu = 1$ in main theorem, we also find that

Corollary 2 If the function $f(z) \in A_x$ satisfies the condition

$$\mathcal{Re}\left(1+\frac{zf''(z)}{f'(z)}\right)>0\quad (z\in D),$$

then f(z) belongs to the class $C_1(\frac{3}{5})$. Therefore, if f(z) is convex in D, then f(z) is close-to-convex of order $\frac{3}{5}$ in D.

Proof. Taking r = 1 and n = 1 in main theorem, we obtain

İ. Yıldız, A. Akyar, O. Mert / Sigma J Eng & Nat Sci 9 (3), 341-348, 2018

$$\nu = \frac{(1+\lambda)}{(1+\lambda)(1+2\lambda)-\lambda}$$
$$= \frac{1+\lambda}{1+2\lambda+2\lambda^2}.$$

Now, setting $\lambda = \frac{1}{2}$

$$\upsilon = \frac{1 + \frac{1}{2}}{1 + 2\left(\frac{1}{2}\right) + 2\left(\frac{1}{2}\right)^2} = \frac{3}{5}.$$

It is easy see that $f(z) \in \mathcal{C}_{a}(v)$, where $0 < \lambda \le 2^{-1}$ and since $v \ge \frac{3}{5}$. That is close-to- convex of order $\frac{3}{5}$ in D.

REFERENCES

- T. Shell-Small, Starlike Univalent Functions, Proceeding of the London Mathematical Society, Volume s3-21, Issue 4, Version of Record Online: 23 Dec 2016.
- [2] P.T. Mocanu, T. Bulboaca, G.S. Salagean, Teoria Geometrica a Functiilor Analitice, Casa Cartii de Știnta, Cluj-Napoca, 1999.
- [3] P.L. Duren, Univalent Functions, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo.
- [4] K. Cerebiez-Tarabicka, J. Godula and E. Zlotkiewicz, On a class of Bazilevic functions, Ann. Uni. Mariae Curie-Sklodowska 33 (1977), 45-47.
- [5] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J.1(1952), 169-185.
- [6] M. Obradavic and S. Owa, An application of Miller and Mocanu's result, Tamkang J. Math. 18 (1987), 75-79.
- [7] S. Ozaki, On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika Daigaku A2 (1983), 167-188.
- [8] J. A. Pfaltzgraff, M. O. Reade, and T. Umezawa, Sufficient conditions for univalence, Ann. Fac. Sci. Kinshasa Zare Sect. Math.-Phys, 2 (1976),94-101.
- [9] S. Owa, The order of close-to-convexity for certain univalent functions, Journal of Mathematical Analysis and Applications 138, 393-396 (1989).