Research Article

ON SUFFICIENT CONDITIONS FOR CLOSE-TO-CONVEXITY OF ORDER 2^{-r}.

İsmet YILDIZ ${ }^{1}$, Alaattin AKYAR ${ }^{2}$, Oya MERT* ${ }^{3}$
${ }^{1}$ Department of Mathematics, Düzce University, DÜZCE; ORCID:0000-0001-7544-4835
${ }^{2}$ Department of Mathematics, Düzce University, DÜZCE; ORCID:0000-0003-4759-8313
${ }^{3}$ Department of Basic Sciences, İstanbul Altınbaş University, İSTANBUL; ORCID:0000-0002-8791-3341

Received: 27.09.2018 Revised: 16.10.2018 Accepted: 21.10.2018

Abstract

The main idea of the present paper is to obtain sufficient conditions for close-to-convexity of order in 2^{-r}, where r is a positive integer. Keywords: Analytic, univalent, starlike, convex and close-to-convex functions.

1. INTRODUCTION AND DEFINITIONS

Let the class A_{n} be the class of analytic functions in the unit disk $D=\{z:|z|<1\}$ and normalized, by the condition $f(0)=0$ and $f^{\prime}(0)=1$. Then, A_{n} consisting of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k}, \quad(n \in\{1,2,3, \ldots\}) \tag{1}
\end{equation*}
$$

with $A_{1}=A$.
Definition 1. A domain D in the w-plane is said to be starlike with respect to a point $u_{0} \in D$ if for each point $u \in D$ the line-segment $\left[u_{0} u\right]$ is contained in D [1].

The theory of univalent functions is dealt with functions $f(z)$ which are analytic and univalent in the unit disk D and normalized to by the $f(0)=0$ and $f^{\prime}(0)=1$.

Definition 2. Let be the function $f(z)$ with $f(0)=0$. We say that the function $f(z)$ is starlike if $f(z)$ is univalent in D and $f(D)$ is a starlike domain with respect to origin [2].

[^0]Let by $S_{n}^{*}\left(2^{-r}\right)$ denote the subclass of A_{n} consisting of functions which are univalent in the unit disk D. In this case, a function $f(z) \in S_{n}^{*}\left(2^{-r}\right)$ is said to be starlike of order 2^{-r} if and only if it satisfies the condition:

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>2^{-r}(z \in D)
$$

and a function $f(z) \in A_{n}$ is said to be close-to-convex of order 2^{-r} if and only if it satisfies the condition

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{g(z)}\right)>2^{-r}\left(z \in D, g \in S_{n}^{*}(0)\right) .
$$

We denote by $C_{n}\left(2^{-r}\right)$ the class of all such functions. We note that

$$
S_{n}^{*}\left(2^{-r}\right) \subset C_{n}\left(2^{-r}\right) \subset S_{n} \quad[9] .
$$

We now turn to an interesting subclass of S which contains S^{*} and has a simple geometric description. This is the class of close-to-convex functions. A function f analytic in the unit disk is said to be close-to-convex if there is a convex function g such that

$$
\operatorname{Re}\left(\frac{f^{\prime}(z)}{g^{\prime}(z)}\right)>0 \quad, \quad \text { for all } z \in D
$$

We shall denote by K the class of close-to-convex functions f normalized by the usual conditions $f(0)=0$ and $f^{\prime}(0)=1$. Note that f is not required a prior to be univalent. Note also that the associated function g need not to be normalized. The additional condition that $g \in C$ defines a proper subclass of K which will be denoted by K_{0}. Every convex function is obviously close-to-convex. More generally, every starlike function is close-to-convex. Indeed, each $f \in S^{*}$ has the form $f(z)=z g^{\prime}(z)$ for some $g \in C$, and

$$
\operatorname{Re}\left\{\frac{f^{\prime}(z)}{g^{\prime}(z)}\right\}=\operatorname{Re}\left\{\frac{z \cdot f^{\prime}(z)}{f(z)}\right\}>0 .
$$

These remarks are summarized by the chain of proper inclusions

$$
C \subset S^{*} \subset K_{0} \subset K
$$

A set $E \subset C$ is said to be starlike with respect to a point $w_{0} \in E$ if the linear segment joining w_{0} to every other point $w \in E$ lies entirely in E. In more picturesque language, the requirement is that every point of E be visible from w_{0}. The set E is said to be convex if it is starlike with respect to each of its points; that is, if the linear segment joining any two points of E lies entirely in E. A convex function is one which maps the unit disk conformally onto a convex domain. A starlike function is a conformal mapping of the unit disk onto a domain starlike with respect to the origin. The subclass of S consisting of the convex functions is denoted by C
and S^{*} denotes the subclass of starlike functions. Thus, it is written as $C \subset S^{*} \subset S$. Closely related to the classes C and S^{*} is the class P of all functions φ analytic and having positive real part in D, with $\varphi(0)=1$. Every $\varphi \in P$ can be represented as a Poisson-Stieltjes integral

$$
\varphi(z)=\int_{0}^{2 \pi} \frac{e^{i t}+z}{e^{i t}-z} d \mu(t)
$$

here $d \mu(t) \geq 0$ and $\int d \mu(t)=1$. The following lemma is often useful:
Lemma 1. If $\varphi \in P$ and

$$
\varphi(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}
$$

Then $\left|c_{n}\right| \leq 2, n=1,2,3, \ldots$. This inequality is sharp for each n [3].
Proof. Since

$$
\frac{e^{i t}+z}{e^{i t}-z}=1+2 \sum_{n=1}^{\infty} e^{-\mathrm{int}} z^{n},
$$

the representation lemma gives

$$
c_{n}=2 \int_{0}^{2 \pi} e^{-\mathrm{int}} d \mu(t), \quad n=1,2,3, \ldots
$$

Thus $\left|c_{n}\right| \leq 2$ with equality if and only if $e^{- \text {int }}$ has a constant signum on the support of the measure $d \mu$. In particular, equality holds for all n for the function

$$
\varphi(z)=\frac{e^{i t}+z}{e^{i t}-z}=1+2 \sum_{n=1}^{\infty} z^{n} .
$$

The following theorem gives an analytic description of starlike functions:
Theorem 1. Let f be analytic in D, with $f(0)=0$ and $f^{\prime}(0)=1$. Then $f \in S^{*}$ if and only if $z f^{\prime}(z) / f(z) \in P$ [3].

Proof. Suppose that $f \in S^{*}$. Then we claim that f maps each subdisk $|z|<\rho<1$ onto a starlike domain. An equivalent assertion is that $g(z)=f(\rho z)$ is starlike in D. In other words, we must show that for each fixed $t(0<t<1)$ and for each $z \in D$, the point $\operatorname{tg}(z)$ is in the range of g. But since $f \in S^{*}$, an application of the lemma gives $t f(z)=f(w(\rho z))$ for some function w analytic in D and satisfying $|w(z)|<|z|$.

Thus

$$
\operatorname{tg}(z)=t f(\rho z)=f(w(\rho z))=g\left(w_{1}(z)\right)
$$

where

$$
w_{1}(z)=w(\rho z) / \rho \text { and }\left|w_{1}(z)\right| \leq|z|
$$

Theorem 2. Let f be analytic in D, with $f(0)=0$ and $f^{\prime}(0)=1$. Then $f \in C$ if and only if $\left[1+z f^{\prime \prime}(z) / f^{\prime}(z)\right] \in P[3]$.

Proof. Suppose that $f \in C$. Then, we claim that f must map each subdisk $|z|<r$ onto a convex domain. To show this, choose points z_{1} and z_{2} with $\left|z_{1}\right| \leq\left|z_{2}\right|<r$. Let $w_{1}=f\left(z_{1}\right)$ and $w_{2}=f\left(z_{2}\right)$.

Let

$$
w_{0}=t w+(1-t) w_{2}, \quad 0<t<1
$$

Then, since f is a convex mapping, there is a unique point $z_{0} \in D$ for which $f\left(z_{0}\right)=w_{0}$. We have to show that $\left|z_{0}\right|<r$. But the function

$$
g(z)=t f\left(z z_{1} / z_{2}\right)+(1-t) f(z)
$$

is analytic in D, with $g(0)=0$ and $g\left(z_{2}\right)=w_{0}$. Because $f \in C$, the function $h(z)=f^{-1}(g(z))$ is well defined. Since $h(0)=0$ and $|h(z)| \leq 1$ thus it tells us that $|h(z)| \leq|z|$.

Thus

$$
\left|z_{0}\right|=\left|h\left(z_{2}\right)\right| \leq\left|z_{2}\right|<r,
$$

which was to be shown. Hence f maps each circle $|z|=r<1$ onto curve C which bounds a convex domain. The convexity implies that the slope of the tangent to C is nondecreasing as the curve is traversed in the positive direction. Analytically, this condition is

$$
\frac{\partial}{\partial \theta}\left(\arg \left\{\frac{\partial}{\partial \theta} f\left(r e^{i \theta}\right)\right\}\right) \geq 0,
$$

or

$$
\operatorname{Im}\left\{\frac{\partial}{\partial \theta} \log \left[i r e^{i \theta} f^{\prime}\left(r e^{i \theta}\right)\right]\right\} \geq 0,
$$

which reduces to the condition

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\} \geq 0, \quad|z|=r .
$$

By the maximum principle for harmonic functions

$$
\left[1+z f^{\prime \prime}(z) / f^{\prime}(z)\right] \in P .
$$

Conversely, suppose f is a normalized analytic function with

$$
\left[1+z f^{\prime \prime}(z) / f^{\prime}(z)\right] \in P .
$$

The above calculation shows that the slope of the tangent to the curve C_{r} increases monotonically. But as a point makes a complete circuit of \mathcal{C}_{r}, the argument of the tangent vector has a net change

$$
\begin{gathered}
\int_{0}^{2 \pi} \frac{\partial}{\partial \theta}\left(\arg \left\{\frac{\partial}{\partial \theta} f\left(r e^{i \prime \prime}\right)\right\}\right) d \theta=\int_{0}^{2 \pi} \operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\} d \theta \\
\quad=\operatorname{Re}\left\{\int_{k \mid=r}\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right] \frac{d z}{i z}\right\}=2 \pi, \quad z=r e^{i \theta} .
\end{gathered}
$$

This shows that C_{r} is a simple closed curve bounding a convex domain. This for arbitrary $r<1$ implies that f is a univalent function with convex range. Every close-to-convex function is univalent. This can be inferred from the following simple but important criterion for univalence. Theorem 3. If f is analytic in a convex domain D and $\operatorname{Re}\left\{f^{\prime}(z)\right\}>0$ there, then f is univalent in D [3].
Proof. Let z_{1} and z_{2} be distinct points in D. Then f is defined on the linear segment joining z_{1} to z_{2}, and

$$
\begin{gathered}
f\left(z_{2}\right)-f\left(z_{1}\right)=\int_{z_{1}}^{z_{1}} f^{\prime}(z) d z \\
f\left(z_{2}\right)-f\left(z_{1}\right)=\left(z_{2}-z_{1}\right) \int_{0}^{1} f^{\prime}\left[t z_{2}+(1-t) z_{1}\right] d t \neq 0,
\end{gathered}
$$

since $\operatorname{Re}\left\{f^{\prime}(z)\right\}>0$.
Theorem 4. Every close-to-convex functions is univalent [3].
Proof. If f is close-to-convex, then $\operatorname{Re}\left[f^{\prime}(z) / g^{\prime}(z)\right]>0$ for some convex function g. Let D be the range of g and consider the function

$$
h(w)=f\left(g^{-1}(w)\right), w \in D .
$$

Then

$$
h^{\prime}(w)=\frac{f^{\prime}\left(g^{\prime}(w)\right)}{g^{\prime}\left(g^{-1}(w)\right)}=\frac{f^{\prime}(z)}{g^{\prime}(z)}
$$

so $\operatorname{Re}\left\{h^{\prime}(w)\right\}>0$ in D. Thus h is univalent, and so f is univalent.

2. ORDER OF CLOSE-TO-CONVEXITY

The object has been investigated and introduced by many scientists until this time[5],[6],[7],[8]. The following lemmas will be required for our main idea:
Lemma 2. Let the function $f(z)$ defined by (1) be in the class $S_{n}^{*}(\alpha)$. Then

$$
\operatorname{Re}\left(\frac{f(z)}{z}\right)^{\lambda}>\frac{n}{2 \lambda(1-\alpha)+n}, \quad(z \in D)
$$

where

$$
0<\lambda \leq \frac{n}{2(1-\alpha)} \text { and } 0 \leq \alpha<1 \text { [9]. }
$$

Main Theorem. If the function $f(z) \in A_{n}$ satisfies the inequality the condition

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>2^{-r}-\lambda \quad(z \in D),
$$

for $\alpha=2^{-r}(r$ is a positive integer $), 0<\lambda \leq \frac{n(1+\lambda)}{\left[2(1+\lambda)-2^{1-r}\right]}$ and, $\mu=\frac{2^{-r}}{1+\lambda}$ the $f(z)$ belongs to the class $C_{n}(v)$, where $v=\frac{n(1+\lambda)}{(1+\lambda)(n+2 \lambda)-2^{1-r} \lambda}$.

Thus, $f(z)$ is close-to-convex of order v in D.The proof will require by defining a function $g(z)$ by

$$
f^{\prime}(z)=\left(\frac{g(z)}{z}\right)^{1+\lambda} \quad(z \in D)
$$

or

$$
\frac{z f^{\prime}(z)}{g(z)}=\left(\frac{g(z)}{z}\right)^{\lambda}(z \in D)
$$

Therefore,

$$
\begin{gathered}
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{z\left[(1+\lambda)\left(\frac{g(z)}{z}\right)^{\lambda}\left(\frac{g^{\prime}(z) z-g(z)}{z^{2}}\right)\right]}{\left(\frac{g(z)}{z}\right)^{1+\lambda}} \\
=\frac{z\left[(1+\lambda)\left(\frac{g^{\prime}(z) z-g(z)}{z^{2}}\right)\right]}{\left(\frac{g(z)}{z}\right)} \\
=(1+\lambda)\left(\frac{z g^{\prime}(z)}{g(z)}-1\right) .
\end{gathered}
$$

That is,

$$
\begin{aligned}
(1+\lambda)\left(\frac{z g^{\prime}(z)}{g(z)}-1\right) & =\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \Rightarrow \frac{z g^{\prime}(z)}{g(z)}-1=\frac{1}{(1+\lambda)} \cdot \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \\
& =1+\frac{1}{(1+\lambda)} \cdot \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \\
& =\frac{1}{(1+\lambda)}\left(1+\lambda+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) .
\end{aligned}
$$

Proof of Main Theorem. Applying Lemma 2 to $g(z)$ we obtain

$$
\begin{aligned}
\operatorname{Re}\left(1+\frac{z f^{\prime}(z)}{g(z)}\right) & =\operatorname{Re}\left(\frac{g(z)}{z}\right)^{\lambda}>\frac{n}{2 \lambda\left(1-\frac{2^{-r}}{(1+\lambda)}\right)+n} \\
& =\frac{n}{2 \lambda\left(\frac{1+\lambda-2^{-r}}{(1+\lambda)}\right)+n} \\
& =\frac{n}{\frac{2 \lambda+2 \lambda^{2}-\lambda 2^{-r}+n+n \lambda}{(1+\lambda)}} \\
& =\frac{n(1+\lambda)}{(1+\lambda)(n+2 \lambda)-2^{1-r} \lambda} .
\end{aligned}
$$

This completes the proof of main theorem. Letting $r=1$ in the main theorem, we obtain
Corollary 1 If the functions $f(z)$ and $g(z)$ in A_{n} satisfy the condition
If the functions $f(z)$ and $g(z)$ in \mathcal{A}_{n} satisfies the condition

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\frac{1}{2}-\lambda \quad(z \in D)
$$

for $0<\lambda \leq n(1+\lambda) /\left[2(1+\lambda)-2^{1-r}\right]$ and,$\mu=2^{-r} /(1+\lambda)$ then $f(z)$ belongs to the class $C_{n}(v)$, where

$$
v=\frac{n(1+\lambda)}{n(1+\lambda)+\lambda(1+2 \lambda)} .
$$

Thus, $f(z)$ is close-to- convex of order v in D.
Form corollary 1 we obtain

$$
\operatorname{Re}\left(\frac{1}{2}+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>-\lambda \quad(z \in D) .
$$

By setting $r=1, \lambda=\frac{1}{2}$ and $n=1$ in main theorem, we also find that
Corollary 2 If the function $f(z) \in A_{z}$ satisfies the condition

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0 \quad(z \in D),
$$

then $f(z)$ belongs to the class $C_{1}\left(\frac{3}{5}\right)$.Therefore, if $f(z)$ is convex in D, then $f(z)$ is close-toconvex of order $\frac{3}{5}$ in D.
Proof. Taking $r=1$ and $n=1$ in main theorem, we obtain

$$
\begin{aligned}
v & =\frac{(1+\lambda)}{(1+\lambda)(1+2 \lambda)-\lambda} \\
& =\frac{1+\lambda}{1+2 \lambda+2 \lambda^{2}} .
\end{aligned}
$$

Now, setting $\lambda=\frac{1}{2}$

$$
v=\frac{1+\frac{1}{2}}{1+2\left(\frac{1}{2}\right)+2\left(\frac{1}{2}\right)^{2}}=\frac{3}{5} .
$$

It is easy see that $f(z) \in \mathcal{C}_{n}(v)$, where $0<\lambda \leq 2^{-1}$ and since $v \geq \frac{3}{5}$. That is close-to- convex of order $\frac{3}{5}$ in D.

REFERENCES

[1] T. Shell-Small, Starlike Univalent Functions, Proceeding of the London Mathematical Society, Volume s3-21, Issue 4, Version of Record Online: 23 Dec 2016.
[2] P.T. Mocanu, T. Bulboaca, G.S. Salagean, Teoria Geometrica a Functiilor Analitice, Casa Cartii de Ştinta, Cluj-Napoca, 1999.
[3] P.L. Duren, Univalent Functions, Springer-Verlag, New York, Berlin, Heidelberg,Tokyo.
[4] K. Cerebiez-Tarabicka, J. Godula and E. Zlotkiewicz, On a class of Bazilevic functions, Ann. Uni. Mariae Curie-Sklodowska 33 (1977), 45-47.
[5] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J.1(1952), 169-185.
[6] M. Obradavic and S. Owa, An application of Miller and Mocanu's result, Tamkang J. Math. 18 (1987), 75-79.
[7] S. Ozaki, On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika Daigaku A2 (1983), 167-188.
[8] J. A. Pfaltzgraff, M. O. Reade, and T. Umezawa, Sufficient conditions for univalence, Ann. Fac. Sci. Kinshasa Zare Sect. Math.-Phys, 2 (1976),94-101.
[9] S. Owa, The order of close-to-convexity for certain univalent functions, Journal of Mathematical Analysis and Applications 138, 393-396 (1989).

[^0]: * Corresponding Author: e-mail: oya.mert@altinbas.edu.tr, tel: (212) 6040100 / 4116

