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ABSTRACT 

 

Transportation networks belong to the class of critical infrastructure networks since a small deterioration in 

the service provision has the potential to cause considerable negative consequences on everyday activities. 

Among the reasons for the deterioration we can mention the shutdown of a subway station, the closure of one 
or more lanes on a bridge, the operation of an airport at a much reduced capacity. In order to measure the 

vulnerability of transportation network, it is necessary to determine the maximum possible disruption by 

assuming that there is an intelligent attacker wishing to give damage to the components of the network 
including the stations/stops and linkages. Identifying the worst disruptions can be realized by using 

interdiction models that are formulated by a bilevel mathematical programming model involving two decision 

makers: leader and follower. In this paper, we develop such a model referred to as attacker-operator model, 
where the leader is a virtual attacker who wants to cause the maximum possible disruption in the 

transportation network by minimizing the amount of flow among the nodes of the network, while the follower 

is the system operator who tries to reorganize the flow in the most effective way by maximizing the flow after 
the disruption. The benefit of such a model to the system operator is to determine the most vulnerable stations 

and linkages in the transportation network on one hand, and to take precautions in preventing the negative 

effects of the disruption on the other hand. 
Keywords: Transportation network, interdiction, bilevel programming. 

 

 

1. INTRODUCTION AND BACKGROUND INFORMATION 

 

Disruptions that can arise in the operation of a network established to provide service or 

products to customers (e.g., a transportation network, electric power distribution network, supply 

chain network, telecommunication network) may lead to serious problems in daily activities. For 

example, the shutdown of a subway station for access, the closure of one or more lanes on a 

bridge, the operation of an airport at a much reduced capacity, the disruption of an electric power 

plant, a damage in the power line between the power plant and customer location have the 

potential to result in significant drop in the quality of the provided service. Networks which are 

subject to considerable disruption in product and/or service provision capability are referred to as 

critical infrastructure networks (CINs). Formally, a network is described as a CIN when some of 

its components function under full capacity due to a partial damage or become fully unusable. 
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There exist two causes for the disruption in CINs: random man-made or natural causes, and 

intentional man-made causes. Among the random man-made causes, we can mention overlooked 

issues during maintenance or unintentional wrong usage. Random natural causes can be 

earthquake, flood, avalanche, hurricane among others. The second category is intentional man-

made causes. Among these, we can name terrorist actions or other types of attacks such as cyber-

attacks caused by hackers. The attacks in this last category have the potential to cause the largest 

damage or disruption as they do not occur randomly, but are planned by an intelligent agent. For 

this reason, in order to measure the vulnerability of a CIN, it is necessary to determine the 

maximum possible disruption by assuming that there is an intelligent attacker wishing to give 

damage to the system. As a matter of fact, real terrorist attacks to CINs occurred in the past had 

severe consequences and led to considerable loss of life and property. Examples include the 

attacks to a Paris subway train in 1995 and Madrid suburban trains in 2004, the bombing of 

London bus stops and metro stations in 2005, and the suicide attacks on two different metro 

stations in Moscow in 2010. Bombings to Madrid's suburban trains in 2004 severely damaged 

Madrid's suburban railway infrastructure with 191 people losing their lives. Partial destruction 

occurred in trains where bombs were blown and 114 dwellers were destroyed. As a result, 

Madrid's regional economy suffered losses of € 212 million [1]. An interesting study carried out 

by means of network analysis indicated that the metro stations in London suicide bombings were 

not randomly selected. Indeed, the three stations selected were the ones closest to the best location 

among three million possible combinations to choose [2]. March 2016 witnessed three 

coordinated suicide bombings in Belgium: two at Brussels Airport and one at a metro station. 

Following the attack, all departure flights were suspended but the arrival flights remained 

operational for some time until they were diverted. In June 2016, Atatürk Airport in İstanbul was 

the scene to a terrorist attack with shootings and suicide bombings. Most of the İstanbul-bound 

flights were diverted to other major airports in Turkey, and Federal Aviation Administration 

suspended all flights from Turkey into United States and from United States into Turkey for about 

five hours with the exception of 10 flights that were airborne during the attack with a destination 

in United States. More recently, in April 2017, the overall subway system of St. Petersburg was 

closed for several hours as the consequence of an explosion in one of the metro stations. Note that 

St. Petersburg's subway system carries 2 million passengers per day. 

In the operations research literature, the vulnerability of CINs is analyzed by developing 

reliability models when the factors giving rise to disruptions are random man-made or natural 

causes. On the other hand, as stated in Smith [3] analyzing the worst disruptions is dealt with 

using interdiction models that are generally formulated by a bilevel mathematical program which 

corresponds to a Stackelberg game with two decision makers. Note that classical single-level 

optimization models only involve a single decision maker. The two decision makers in a 

Stackelberg game are referred to as the leader and the follower. Each of them has control over its 

own decision variables, constraints, and objective functions. In some cases, the objective 

functions turn out to be the same, but the sense of optimization is different. Namely, one player 

wants to minimize its objective function, whereas the other maximizes exactly the same function. 

A bilevel mathematical model is formulated from the perspective of the leader, and the 

optimization problem of the follower referred to as the lower-level problem (LLP) is incorporated 

into the leader’s upper-level problem (ULP). In other words, the leader solves her own 

optimization problem by taking into account the optimal reaction of the follower to her decisions. 

There exist two streams of research within the context of interdiction problems. The first 

stream focuses on facility interdiction problems, while the second one addresses network 

interdiction problems. In the former problem, the targets of the attacker are facilities that provide 

service to customers. The first facility interdiction models in the literature are based on the work 

of Church et al. [4] where the authors are concerned with both median-type and coverage-type 

location problems, and introduce a model for each type from the perspective of the attacker. The 

r-interdiction median problem involves the maximization of the demand-weighted total distance 

by destroying r out of p facilities as a result of which, customers of the interdicted facilities need 
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to be reassigned to operating facilities to get service. The r-interdiction covering problem, on the 

other hand, consists of determining a subset of r facilities among the set of p existing ones so that 

their destruction yields the largest reduction in covered customer demand. It is worth emphasizing 

that these two problems are the opposite of the well-known p-median and maximal covering 

location problems.  

In network interdiction models, the interdicted components become the edges or arcs of the 

network. The system operator tries to find the shortest path between an origin-destination node 

pair or the maximum flow from an origin node to a destination node given that some of these arcs 

are completely or partially damaged by an attacker. The problem of the attacker is then to 

determine the arcs to interdict so as to maximize the shortest path or minimize the maximum 

flow. The network interdiction models have been investigated for a longer period in the literature. 

The first study [5] examines the minimization of the maximum possible flow between an origin-

destination pair in a network by interdicting a predetermined number of arcs and making them 

unusable. Later, Wood [6] addresses the same problem with the possibility of both complete and 

partial interdiction of arcs under a budget constraint for the attacks. Cormican et al. [7] consider a 

variant of this problem where the attacks bring about disruption with a certain probability. In that 

study, the objective function of the attacker is minimization of the maximum flow under the 

restriction that arcs of the network are destroyed with probability 1 p  according to a Bernoulli 

process. The shortest path network interdiction problem in which the lengths of the arcs are 

increased as a result of attacks is presented in the literature for the first time by Fulkerson and 

Harding [8]. Later on, Israeli and Wood [9] study the same problem under the assumption that 

arcs are completely destructed by the attacker. Lim and Smith [10] apply the same idea to a multi-

commodity network flow problem where the capacity of each arc is partially or completely 

reduced. 

In this paper, a bilevel attacker-operator model is developed for a transportation network 

where the leader is an intelligent virtual attacker who wants to cause the largest disruption in the 

flow amount of passengers traveling among the nodes of the network by damaging the stations 

and/or linkages. The follower, on the other hand, is the system operator who tries to reorganize 

the flow on the network in the most effective way so as to maximize the passenger flow after the 

disruptions caused by the attacker. Recall that the virtual attacker is just a proxy for determining 

the most significant stations and linkages in terms of the vulnerability of the transportation 

network. If this intelligent virtual attacker were not considered as a decision maker, then it could 

not be possible to determine the most vulnerable components of the transportation network. 

An important distinction between the attacker-operator models in the literature and the one 

proposed in this study is that both nodes and arcs may be attacked. Note that a node in the 

transportation network corresponds to a station/stop, whereas an arc corresponds to a linkage 

between two stations. The attacks on stations as well as linkages can be carried out in such a way 

that partial disruption is possible. If a component is completely interdicted, then it becomes 

unusable and cannot provide any service. However, a component that is partially interdicted 

continues to provide service at a reduced capacity. A complete interdiction assumption that is 

frequently used in the literature makes the mathematical programming formulation easy to solve, 

but it does not reveal potential situations that can be encountered in real life. In many cases, both 

nodes and arcs continue to serve at a reduced capacity rather than being fully inoperable. An 

example for this would be the drop in the number of vehicles serving between two stations due to 

the reduction of the linkage capacity after an attack. Such a case cannot be handled correctly with 

a model taking into account only complete interdictions. The model developed in this paper is 

flexible enough to incorporate both a partial interdiction and a complete interdiction. We develop 

the model for the former case, and but it is straightforward to change it for the latter case. 

The remainder of the paper is organized as follows. Section 2 presents the bilevel 

mathematical model that is developed.  Section 3 includes the solution method with all the 
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necessary details. Experimental results are given in Section 4, while the paper is concluded in 

Section 5. 

 

2. BILEVEL MATHEMATICAL MODEL 
 

As mentioned earlier, interdiction models are represented as bilevel mathematical programs 

which correspond to a Stackelberg game studied in game theory [11]. Such a game involves two 

players: the leader and the follower. These players make their decisions sequentially, namely the 

leader moves first and makes a decision that is observed by the follower who reacts to the leader 

by making her own decision. Two important assumptions are also made frequently: (i) both 

players are rational decision makers meaning that they want to make the best decision available to 

them, (ii) the follower’s optimization problem, i.e., the LLP is known to the leader. As a 

consequence, we can interpret a Stackelberg game from the perspective of the leader as follows: 

the LLP of the follower is incorporated into the constraints of the leader so that the leader takes 

the LLP into account while determining the optimal solution of her own problem.  A bilevel 

mathematical model can generally be represented as follows: 
 

min ( , )

subject to ( , ) 0

min ( , )

subject to ( , ) 0

i

i

F

G

f

g





x

y

x y

x y

x y

x y

 

 

In this formulation, x and y stand for the leader’s and follower’s decision variables, 

respectively. ( , )F x y  represents the objective function in the ULP (i.e., leader’s objective 

function), while ( , )f x y  is the objective function in the LLP (i.e., follower’s objective function). 

Similarly, ( , ) 0iG x y  and ( , ) 0ig x y  indicate the ith constraint of the leader and the follower, 

respectively. In general, bilevel programs are more difficult to solve than traditional single-level 

programs. The easiest bilevel programs are the ones where both the ULP and LLP are linear 

programs. It was shown by Jeroslow [12] that even these problems are NP-hard. The difficulty 

level and the choice of the solution method of bilevel programs depend on the existence of integer 

decision variables in the LLP. If there exist only continuous decision variables in the LLP, and the 

LLP is a convex minimization or concave maximization problem, then it becomes possible to 

reduce the bilevel formulation into a single-level one by writing the Karush-Kuhn-Tucker (KKT) 

optimality conditions for the LLP and adding them into the ULP. However, the resulting 

equivalent single-level formulation is nonlinear due to the complementary slackness constraints 

obtained as a consequence of KKT optimality conditions of the LLP. Therefore, the exact solution 

of the single-level formulation requires in general the application of global optimization 

techniques. However, as can be seen in the sequel, these nonlinear constraints can be converted to 

linear ones by means of appropriate linearization techniques [13]. 

The problem considered in this paper is referred to as the Attacker-Operator Problem with 

Partial Interdiction (AOP-PI). Recall that the motivation of this study is to determine the most 

vulnerable components in a transportation network which helps the system authorities to find 

answer to the following question: which stations and linkages are critical in the sense that the 

passenger flow in the network is affected the most when there is a disruption of the service due to 

an attack to these stations and linkages? Below, we first provide the index sets, parameters, and 

decision variables that are used in the definition of the AOP-PI, and then we give the bilevel 

programming formulation of the considered problem. 
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Index sets:  
 

i ∈ N  : stations in the network 

b ∈ BN : stations in the network at which passenger flow begins (origins) 

s ∈ SN : stations in the network at which passenger flow ends (destinations) 

(b,s) ∈ T : station pairs between which there is a passenger flow (origin-destination pairs) 

j ∈ A  : linkages in the network 

k ∈ Kbs  : admissible paths that connect origin station b to destination station s 
 

Parameters: 
 

fbs  : number of passengers willing to travel from origin b to destination s 

di  : the maximum throughput of passengers at station i  

ej  : the maximum throughput of passengers at linkage j 

oi  : amount of resource required for complete interdiction of station i 

pj  : amount of resource required for complete interdiction of linkage j 

r  : the amount of resource available to the attacker for interdiction 
ki

bs  : indicator parameter taking value 1 if admissible path k from origin station b to 

destination station s includes station i, 0 otherwise 
kj

bs   : indicator parameter taking value 1 if admissible path k from origin station b to 

destination station s includes linkage j, 0 otherwise 
 

Decision variables: 
 

0 ≤ Xi ≤ 1 : Interdiction level at station i 

0 ≤ Yj ≤ 1 : Interdiction level at linkage j  

bskZ   : Number of passengers who can commute between origin b and destination s on 

admissible path k  after the disruption 
 

,
min
X Y

 
( , ) bs

bsk

b s T k K

Z
 

                                                                                                                     (1) 

 

subject to i i j j

i N j N

o X p Y r
 

                                                                                              (2) 

 

                                0 1iX   i N                                                                                           (3) 
 

                                0 1jY   j N                                                                                           (4) 
 

                                max
Z

 
( , ) bs

bsk

b s T k K

Z
 

                                                                                 (5) 

 

                                 subject to 
( , )

(1 )
bs

ki

bs bsk i i

b s T k K

Z d X
 

     i N                                         (6) 

 

                                
( , )

(1 )
bs

kj

bs bsk j j

b s T k K

Z e Y
 

      j A                                                            (7) 

 

                                
bs

bsk bs

k K

Z f


  ,b B s S                                                                         (8) 

 

                                0bskZ   , , bsb B s S k K                                                                    (9) 
 

In this model, (1)‒(4) represent the ULP while (5)‒(9) indicate the LLP. Expression (1) 

denotes the objective function of the ULP which is to be minimized by the virtual attacker. This 

function counts the number of passengers who can travel among all origin-destination pairs over 

all admissible paths after the disruption. Note that the system planner, who is the follower in the 

bilevel program, tries to maximize the same objective function with expression (5). Here, an 
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admissible path Kbs designates a path on which the duration of travel from origin b to destination s 

takes less than a threshold value. In other words, if traveling time from b to s on path Kbs after the 

disruption takes longer than a certain amount acceptable by the passengers, then that path is not 

used anymore for commuting purposes. Constraint set (2) ensures that the total amount of 

resource used by the attacker for interdicting stations and linkages does not exceed the available 

amount r. Constraints (3) and (4) show the values of the attacker’s decision variables. Notice that 

an upper limit of one corresponds to the case of complete interdiction, whereas a fractional value 

less than one indicates partial interdiction. 

The constraints of the LLP, which is the optimization problem of the system planner, are 

given by expressions (6)‒(9). Specifically, constraint set (6) ensures that the total passenger flow 

through station i does not exceed its capacity after the interdiction. In a similar fashion, constraint 

set (7) guarantees that the total passenger flow through linkage j is limited by the capacity of that 

linkage following the interdiction. Constraints (8) set an upper limit for the total number of 

passengers traveling over all admissible paths connecting origin-destination pairs. Finally, 

constraint set (9) are the nonnegativity restrictions on number of passengers who can commute 

between origin b and destination s on admissible path k after the disruption.  

 

3. SOLUTION METHOD 

 

In the bilevel AOP-PI, the LLP of the follower is a linear program. As alluded to earlier, since 

the LLP contains only continuous decision variables (i.e., Zbsk), it is possible to write the KKT 

optimality conditions of the LLP and incorporate them to the ULP of the leader so as to obtain a 

single-level nonlinear program. The KKT conditions require to define KKT multipliers for the 

constraints (6)‒(9) in the LLP. By introducing i  for constraints (6), j  for constraints (7), bs  

for constraints (8), and bsk  for constraints (9), and converting constraints (6)‒(9) to equalities by 

defining slack variables Δ1i, Δ2j, Δ3bs, and Δ4bsk, the following KKT conditions can be written: 
 

Primal feasibility constraints:  
 

1 (1 )
bs

ki

bs bsk i i i

b N s N k K

Z d X
  

     i N                                                                                  ( 6' ) 

 

2 (1 )
bs

kj

bs bsk j j j

b N s N k K

Z e Y
  

     j A                                                                                  ( 7 ' ) 

 

3

bs

bsk bs bs

k K

Z f


   ,b B s S                                                                                         ( 8' ) 

 

4 0bsk bskZ    , , bsb B s S k K                                                                                    ( 9' ) 
 

Dual feasibility constraints: 
 

0i   i N                                                                                                                               (10) 
 

0j   j A                                                                                                                               (11) 
 

0bs   ,b B s S                                                                                                                   (12) 
 

0bsk   , , bsb B s S k K                                                                                                  (13) 
 

Complementary slackness constraints:  
 

1 0i i    i N                                                                                                                         (14) 
 

2 0j j    j A                                                                                                                         (15) 
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3 0bs bs    ,b B s S                                                                                                             (16) 
 

4 0bsk bsk    , , bsb B s S k K                                                                                           (17) 
 

Stationarity constraint: 1 0ki kj

i bs j bs bs bski j
             , , bsb B s S k K               (18) 

 

Notice that constraints (14)‒(17) are nonlinear since they involve the multiplication of two 

decision variables, namely KKT multipliers and slack variables. Fortunately, these nonlinear 

constraints can be linearized by defining for each constraint binary variables 
1iU , 

2 jU , 
3bsU , and 

4bskU  and using parameter M that constitutes an upper bound on the slack variables. As a result, 

the following linear constraints can be written: 
 

1 0i iMU                                                                                                                               (14' ) 
 

1 1(1 ) 0i iM U                                                                                                                  (14" ) 
 

2 0j jMU                                                                                                                               (15' ) 
 

2 2(1 ) 0j jM U                                                                                                                   (15" ) 
 

3 0bs bsMU                                                                                                                         (16' ) 
 

3 3(1 ) 0bs bsM U                                                                                                                  (16" ) 
 

4 0bsk bskMU                                                                                                                         (17' ) 
 

4 4(1 ) 0bsk bskM U                                                                                                            (17" ) 
 

Finally, a single-level mixed-integer linear programming model is obtained which has the 

objective of minimizing 
( , ) bs

bskb s T k K
Z

    subject to constraints (2)‒(4), ( 6' )‒( 9' ), (10)‒(13), 

(14' )‒(18). 

 

4. EXPERIMENTAL RESULTS 

 

In this section, the resulting single-level model for the AOP-PI is solved on a simplified 

transportation network displayed in Figure 1 that is obtained by sampling from the Metropolitan 

City of İstanbul.  The transport linkages are metro, metrobus, tram, and funicular line segments. 

The model is solved by means of Cplex 12.7.1 available within GAMS platform v24.9.  

 

 

Determining the Most Vulnerable Components in a  …    /   Sigma J Eng & Nat Sci 9 (4), 371-382, 2018 



378 

 

 
Figure 1. Simplified Transportation Network 

 

Six stations pairs have been selected randomly as origin-destination pairs in the sample 

network. These are Topkapı-Kozyatağı, Kozyatağı-Topkapı (stations shown by a circle), Taksim-

Uzunçayır, Uzunçayır-Taksim (stations shown by a square), Gayrettepe-Aksaray and Aksaray-

Gayrettepe (stations shown by a triangle) stations. The admissible paths connecting these station 

pairs are given in Table 1. As can be seen, a single admissible path can be used by passengers 

between pairs (6,10), (10,6), (1,9), and (9,1), whereas two paths are available for pairs (3,5) and 

(5,3). Note that some of the paths existing between origin-destination pairs are ignored because 

they do not turn out to be admissible due to the fact that the commuting time on the path takes 

longer than a threshold duration acceptable by the passengers. For example, the paths 6-5-8-11-9-

10 and 1-7-8-11-9 for origin-destination pairs (6,10) and (1,9), respectively are not admissible, 

and therefore are not shown in Table 1. The number of passengers willing to travel between the 

station pairs are as follows: f6,10=200, f10,6=300, f1,9=150, f9,1=200, f3,5=350, f5,3=150. We can see 

that the total number of passengers willing to travel in the network is equal to 1350. The 

maximum throughput of passengers at station i and linkage j are set to di = 1350 and ej = 1350 so 

that all transport demand is satisfied in the network when there is no interdiction. The resource 

requirement for the complete interdiction of tram and metrobus stations and linkages is 

determined as oi = 1 and pj = 1. The same quantity for complete interdiction of funicular and 

metro stations and linkages is set to oi = 2 and pj = 2. The amount of resource available to the 

attacker for interdiction is taken as r = 2 initially, but it will be changed in further experiments. 

 

Table 1. Admissible Paths for Station Pairs 
 

Station pair Path 1 Path 2 

(6,10) 6-2-3-9-10 ‒ 

(10,6) 10-9-3-2-6 ‒ 

(1,9) 1-2-3-9 ‒ 

(9,1) 9-3-2-1 ‒ 

(3,5) 3-2-6-5 3-2-1-4-5 

(5,3) 5-6-2-3 5-4-1-2-3 
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When the problem is solved, it is seen that the best alternative for the attacker is to interdict 

the third station (Gayrettepe station). When the attacker uses its total available resource r=2 to 

completely destroy this station, the number of passengers traveling in the network drops to zero. 

Indeed, a close inspection of Figure 1 explains this outcome: Gayrettepe station lies on all 

admissible paths connecting the origin-destination pairs. When the available resource of the 

attacker is reduced to r=1, the best option becomes to completely destroy station 9 (Uzunçayır 

station), which brings the number of passengers down to 500 from the value of 1350. We would 

like to remind that the cost of complete interdiction of Uzunçayır station is o9=1. Results obtained 

for other r values are shown in Table 2. The notation (3,5)1 and (3,5)2 in this table indicates the 

admissible path that is used between these two stations. When the results are scrutinized closely, 

two important observations can be made. First, the interdiction resource is consumed fully by the 

attacker, and second the only interdicted components of the network are stations. 

 

Table 2. Results obtained for different values of the available resource for interdiction 
 

Available resource for the 

attack  
Attack level on the stations Passenger Flow 

2 X3=1 Total=0 

1.5 X3=0.75 
(5,3)

1
=150; (6,10)=187.5 

Total=337.5 

1 X9=1 
(3,5)

1
=350; (5,3)

1
=150 

Total=500 

0.8 X9=0.8 

(1,9)=150; (3,5)
2
=350; (5,3)

2
=150; 

(6,10)=120 

Total=770 

0.5 X3=0.25 

(1,9)=150; (9,1)=200;(3,5)
1
=12.5 

(5,3)
1
=150; (6,10)=200; (10,6)=300 

Total=1012.5 

 

In order to investigate the effect of the number of admissible paths between origin-destination 

station pairs, we introduce another admissible path to station pairs (6,10) and (10,6) so that these 

two pairs have two admissible paths just as station pairs (3,5) and (5,3) do. Specifically, we add 

path (6-5-8-11-9-10) for pair (6,10) and path (10-9-11-8-5-6) for pair (10,6). The results obtained 

for the network after the addition of these paths are presented in Table 3. As can be seen, there is 

a change in the results compared with those provided in Table 2. Namely, the observation that the 

interdiction resource is consumed fully by the attacker is violated this time for the case with 

r=1.5. Note that only one unit of interdiction resource is used by the attacker to interdict station 9 

with 0.5 units of resource left over. At this point, a question may arise as to why this amount is 

not used for the interdiction of the linkages on the first admissible path between station pairs (3,5) 

and (5,3). The reason lies in the fact that the amount of resource required for the complete 

interdiction of these linkages is pj=1 and with the remaining resource of 0.5 units the amount of 

passenger flow can be reduced to 0.5 1350 675   as the original throughput capacity of 

passenger flow is ej=1350. Since the current passenger flow is 350 on the first admissible path 

between pair (3,5), and 150 on the first admissible path between pair (5,3), and these values are 

already lower than 675, it is obvious that an attack to the linkages will not decrease the amount of 

passenger flow further. 
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Table 3. Results obtained when a second admissible path is added for station pairs (6,10) and 

(10,6) 
 

Available resource for the 

attack 
Attack level on the stations Passenger Flow 

2 X5=1, X9=1 Total=0 

1.5 X9=1 
(3,5)

1
=350; (5,3)

1
=150 

Total=500 

1 X9=1 
(3,5)

1
=350; (5,3)

1
=150 

Total=500 

0.8 X9=0.8 

(1,9)=70; (3,5)
2
=350; (5,3)

2
=150; 

(6,10)=200 

Total=770 

0.5 X9=0.5 

(1,9)=150; (9,1)=200;(3,5)
1
=350 

(5,3)
1
=150; (6,10)

2
=25; (10,6)

2
=300 

Total=1175 

 

In order to identify situations in which linkages in the network are also attacked, we make a 

modification in one of the model parameters. The resource amount for the complete interdiction 

of the linkage (3,2) connecting station 3 to station 2 is set to p=0.66. Recall that its original value 

was equal to one. Now, the model is solved again for the case with r=1.5, and the result presented 

in Table 4 is obtained. 

 

Table 4. Result obtained when the resource amount for complete interdiction of linkage (3,2) is 

set to p=0.66 
 

Available resource for the 

attack 
Attack level on the stations Passenger Flow 

1.5 X9=0.84,Y(3,2)=1 
(1,9)=16, (5,3)

1
=150, (6,10)

1
=200 

Total=366 

 

We would like to point out that the required computation time of solving the model depends 

on several factors. They can be listed as the size of the transportation network in terms of the 

number of existing stations and linkages in the network, the number of admissible paths between 

each origin-destination station pair, and the number of nodes and linkages found on admissible 

paths. In order to see the effect of these factors we performed additional experiments, and 

observed that although an increase in each of these quantities results in an increase in the solution 

time, Cplex can still find the optimal solution within minutes. For example, we could find an 

optimal solution for instances that have a network size of 50 nodes, 5‒10 origin-destination 

station pairs, and several admissible paths between each origin-destination pair. 

 

5. CONCLUSIONS 

 

In this paper, we address the problem of determining the most vulnerable components of a 

transportation network by using a bilevel modelling framework. This framework allows us to 

formulate the problem as a Stackelberg game between two players: an intelligent virtual attacker 

who is the leader of the game and a system operator who is the follower. The assumption of an 

intelligent attacker helps to find the largest disruption and hence the vulnerabilities in the 

transportation network. In order to incorporate the disruption of the network components as 

realistically as possible, a partial interdiction model is developed where a station or a linkage is 

not rendered necessarily out of service when interdicted, but their throughput capacity is reduced 

to a certain extent depending on the effort of the attacker. With the aim of exactly solving the 

resulting bilevel program, it is converted to a single-level model by writing the Karush-Kuhn-
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Tucker conditions of the lower level problem, adding them to the upper level problem, and 

linearizing the nonlinear constraints arising from the complementary slackness constraints of 

Karush-Kuhn-Tucker conditions. The mixed-integer linear model is solved using Cplex 12.7.1 

that is a state-of-the-art solver available within GAMS v24.9 modeling platform. 

Future research possibilities include the following directions. First, the same bilevel model 

can be employed for the case complete interdiction of the network components with a small 

change of the definition of decicion variables X and Y. Namely, instead of representing the 

interdiction level at stations and linkages, they can be re-defined so that that they denote whether 

the stations and linkages are destroyed or not. This implies that a station or linkage is damaged 

completely when attacked. A comparison of the results obtained by partial interdiction and 

complete interdiction models may provide further insight on the nature of the network 

vulnerability. Second, another level can be added to the problem to include the protection 

decision of the system planner, which gives rise to a trilevel operator-attacker-operator problem. 

The solution of this model can yield hints with regard to the actions to increase the resilience of 

the transportation network. Lastly, the interdiction decision of the attacker in the attacker-operator 

model considered in this paper and the protection decision of the operator in the aforementioned 

trilevel model can be given in a dynamic fashion within a planning horizon, which necessitates a 

multi-period models. 
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