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ABSTRACT

The data of real life problems generally cannot be expressed strictly. An efficient way of handling this
situation is expressing the data as intervals. Thus this paper focus on the Multi-objective Interval
Transportation Problem (MITP) whose parameters i.e. cost coefficients of the objective functions, supply and
demand quantities are expressed as intervals. This problem is transformed to a traditional Multi-objective
Transportation Problem (MOTP) with crisp parameters. First, interval supply-demand quantities are converted
into deterministic ones by means of the convex combination of left and right limits. By an order relation that
represents the decision maker’s preferences between interval costs, each objective is turned into crisp form
within the right limit and centre of the costs. Finally, using Werners’ “fuzzy and” operator, a compensatory

fuzzy approach to MITP is presented. And to our knowledge, combining compensatory ( £,,, ) operator with

MITP has not been published up to now. Our approach generates compromise solutions which are both
compensatory and Pareto-optimal. Also a numerical example is given to illustrate the presented approach.
Keywords: Multi-objective transportation problem, fuzzy mathematical programming, interval numbers,
compensatory operators.

MSC numbers/numaralari: 90C08, 90C29, 90C70, 65G30, 65640.

COK AMACLI ARALIKLI TASIMA PROBLEMINE DENGELEYiCi BiR YAKLASIM
OZET

Gergek hayat problemlerinin verileri genellikle kesin olarak ifade edilemez. Bu durumun ele alinmasinin etkili
bir yolu verileri aralik seklinde ifade etmektir. Bu makale, amag fonksiyonlarmin maliyet katsayilar1 ve arz-
talep miktarlarmm aralik seklinde ifade edildigi Cok Amagli Aralikli Tagima Problemi (MITP) iizerine
odaklannmstir. Bu problem, geleneksel cok amagli tasima problemine déniistiiriilmiistiir. Oncelikle, aralik arz-
talep miktarlari, sag ve sol limitlerinin konveks kombinezonlar1 aracilifiyla determisitik hallerine
cevirilmigtir. Aralik maliyetler arasinda karar vericinin tercihlerini ifade eden bir siralama bagmntisi
aracilifiyla, her bir amag, fiyatlarin sag limitleri ve merkezleri ile kesin hale doniistiriilmistiir. Son olarak,
Werners’in “fuzzy and” operatorii kullanilarak, MITP i¢in dengeleyici bulanik bir yaklasim sunulmustur.
Bildigimiz kadariyla, dengeleyici ( 4, ) operatorii ile MITP’yi birlestiren bir ¢alijma su ana kadar
yayimlanmamistir. Bizim yaklagimimiz hem dengeleyici hem de Pareto-optimal olan uzlasik ¢oziimler
iretmektedir. Ayrica, sunulan yaklasimin gésterilmesi i¢in sayisal bir 6rnek de verilmistir.

Anahtar Sozciikler: Cok amagl tagima problemi, bulanik matematiksel programlama, aralik yapidaki sayilar,
dengeleyici operatorler.

* Corresponding Author/Sorumlu Yazar: e-mail/e-ileti: halegk@gmail.com, tel: (212) 383 46 05
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1. INTRODUCTION

Transportation Problem has wide practical applications in logistic systems, manpower planning,
personnel allocation, inventory control, production planning, etc. and aims to find the best way to
fulfill the demand of n demand points using the capacities of m supply points. In many real-life
situations, decisions are often made in the presence of multiple, conflicting, incommensurate
objectives. Thus MOTP becomes more useful and includes objectives such as distribution cost,
quantity of goods delivered, unfulfilled demand, average delivery time of the commodities,
reliability of transportation, accessibility to the users, product deterioration, etc. Also in practice,
the parameters of MOTP (supply-demand quantities and cost coefficients) are not always exactly
known and stable. This imprecision may follow from the lack of exact information, changeable
economic conditions, etc. A frequently used way of expressing the imprecision is to use the fuzzy
numbers or intervals. In this paper, we assumed that all parameters of MOTP are in form of
interval. Expressing the parameters as interval makes Decision Maker (DM) more comfortable
and this enables us to consider tolerances for the model parameters in a more natural and direct
way. Therefore, MITP seems to be more realistic and reliable according to crisp values. For this
problem, Chanas et al. [1] considered that DM can define the supply and demand levels as point
(crisp) values, interval values or fuzzy numbers. The links among them are provided, focusing on
the case of the Fuzzy Transportation Problem, for which methods of solution are proposed and
discussed. Ahlatcioglu and Sivri [2] assumed that the demand parameters are given as interval and
proposed a method with two steps to interval transportation problem. By an order relation of
intervals, Ahlatcioglu and Sivri [3] proposed a model whose demand quantities and cost
coefficients are given as intervals. Das et al. [4] proposed a solution approach based on main idea
of interval arithmetic. They converted interval supply-demand constraints to deterministic ones by
doubling the numbers of these constraints. M. H. Lohgaonkar and V. H. Bajaj [5] handled the
MOTP with interval cost by using a fuzzy programming technique.

In this paper, we focus on the solution procedure of MITP whose supply-demand
quantities and cost coefficients are considered as intervals. This problem is transformed to a
traditional MOTP with crisp parameters. Supply and demand quantities are converted into their
crisp forms by means of the convex combination of left and right limits. By an order relation,
each objective is turned into its crisp form within the right limit and centre of the costs. Finally,
the obtained traditional MOTP is solved with a fuzzy programming technique by using Werner’s
M, operator. Also a numerical example is given to illustrate the approach.

This paper is organized as follows. After having presented brief information about
interval arithmetic in the next section, the mathematical model of MITP and some basic
definitions about order relations is given in Section 3. Section 4 introduces the compensatory
fuzzy aggregation operators briefly. Section 5 explains our methodology using Werners’
compensatory “fuzzy and’’ operator. Section 6 gives an illustrative numerical example. Finally,
Section 7 includes some results.

2. INTERVAL ARITHMETIC

An extensive research and wide coverage on the interval arithmetic and its applications can be
found in [6].

Let IR be the set of all real numbers. An interval in IR is defined by an ordered pair
of brackets as

A=[a,,a;)={a:a,<a<az,aeR}

where d; and @ are the left and right limits of A , respectively. The interval is also denoted

by its centre and half-width as
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A:<ac,aw>:{a:ac—awSaSaC+aW,aeR}

where a. = (aR +a, )/ 2 and g, = (aR -a )/ 2 are the centre and half-width of A , respectively.

Interval operations can be defined as follows:
Addition of intervals:

A+B=[a,,a,]+[b.by]=[a, +b,,a, +,] (1.1)
or
A+B=(ac,ay)+(b.,b,)=(a. +b.,a, +by,) 1.2)

Multiplication with a real number k:

ka, ,k k>0,
ki = K[ay ] = |[F kel Jor @1
[kaR,kaL] for k<0,
or
kA = k(ac,ay ) = (kac.|k|a, ) 2.2
3. MULTI-OBJECTIVE INTERVAL TRANSPORTATION PROBLEM
The mathematical formulation of MITP can be stated as follows:
. k Sh k k
minZ (x):;;[cw,cm]xy k=12,..,K, G.1)
s.t. Zx,.j :[au,am] i=12,..,m, (3.2)
Jj=
Yox, =[byby | =12, (3.3)
i=1
;20 i=12,...m, j=12,..n. 3.4)

x; is decision variable which refers to product quantity that transported from supply
point i to demand point j. K is the number of the objective functions of MITP. The closed
interval [cf[’.,clﬁij] denotes that the unit transportation cost from i th supply point to j th demand

k

point lies between ¢,

and c,’iij for objective k. The closed interval [au,am] represent that 7 th
supply quantity lies between a,, and a,, . Similarly, the closed interval [bL./’be} represent that j

th demand quantity lies between b, and b, . Here, we denote the feasible region of (3) as §.
We note that the balance condition Z;“z :Z/bj must hold between supply and demand

quantities in (3). This equation will be constructed in Section 5.
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3.1. Order Relations Between Intervals

Here, the order relations that represent the decision maker’s preferences between interval costs are
defined for minimization problems. In this paper, we use the order relations that are defined in
[7]. Also, in the literature [3] and [4] used this order relation for MITP.

Let the uncertain costs from two alternatives be represented by intervals 4 and B . Itis
assumed that the cost of each alternative is known only to lie in the corresponding interval.

Definition 3.1: The order relation <,, between A:[aL,aR] and B:[bL,bR] is
defined as

AL, B iff a, <b, and a, <b,,
A<, B iff A<, B and 4#B.

This order relation <,, represents the decision maker’s preference for the alternative
with lower minimum cost and lower maximum cost, that is, if 4<,, B, then 4 is preferred to

B . Next the order relation by the center and width of interval is defined in the following
definition.

Definition 3.2: The order relation <., between A=<ac,aw>and B=<bC,bW> is
defined as

A<, B iff a.<b. and a,6<b,,
A<qy, B iff A<., B and A+ B.
The order relation represents the decision maker’s preference for the alternative with the

lower expected cost and less uncertainty, thatis A<, B ,then 4 is preferred to B .

Since the center and the width of interval can be considered as the expected value and
the uncertainty of an interval respectively, this order relation represents the decision maker’s
preference for the alternative with lower expected value and less uncertainty.

Here we noted that both <;, and <., are partial orders which are transitive, reflexive

and antisymmetric. And also [7] showed that both of the order relations never conflict with each
other in the sense that there is no such pair 4 and B that 4# B, A<, Band B<_, A. See

[7] for more information about order relations between intervals.
3.2. An Order Relation for Minimization Problems

In this subsection, the reformulation of a interval transportation problem as a bi-objective problem
is explained. For this subsection, let consider the single objective case of (3) (i.e. K =1) and

denote this problem as (3') . We note that the feasible region of (3') is still denoting with S.
Since the objective function Z(X) is an interval function, it is natural that the solution set of

(3') should be defined by preference relations between intervals. Therefore using the order

relations defined in Section 3.1, which represent the decision maker’s preference between interval
profits, the solution of (3') can be defined as follows:

Definition 3.3: xe S is a solution of (3') iff there is no x'eS which satisfies

Z(xX') < Z(x) or Z(X')<gy Z(x).
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In order to simplify this definition, the order relation <,. is defined for the

minimization problem as

A<, B iff a,<b, and a. <b.,

A<y B iff A<, B and 4+ B.

It follows that
A<, B iff A<, B or A<, B, (5.1)
A<z B iff A<, B or A<., B. (5.2)

Using the order relation <,., Definition 3.3 may be simplified as follows:

Definition 3.4: xeS is a solution of (3), iff there is no x'e€S which satisfies
Z(X') <pe Z(x).

The right limit Z, (x) of the interval objective Z (X) may be calculated from (1.2) and
(2.2) as

n m_n

Z, (x) = z » CoyXy + ZZCW

i=l j=1 i=l j=1

%, (©)
where c.; is the centre and ¢, is half-width of the coefficient ¢; of the objective Z (x) . In the

case x,; 2 0, (6) can be modified as

m m_n

Zy(x)= Zicafxff + 2wy - (M

i=1 j=I i=1 j=1
And the centre of the objective function Z (x) :

m_n

Z.(x)= chﬁixi/ : ®

i=1 j=1

The solution set of (3') defined by (5.2) can be obtained as the Pareto optimal solutions
of the following bi-objective problem [7]:

min {ZR,ZC} ®

subject to the feasible region S where Z, and Z_. are as stated in (7) and (8).

4. COMPENSATORY OPERATORS

There are several fuzzy aggregation operators. The detailed information about them exists in
Zimmermann [8] and Tiryaki [9]. The most important aspect in the fuzzy approach is the
compensatory or non-compensatory nature of the aggregation operator. Several investigators
[8,10,11,12] have discussed this aspect.

Using the linear membership function, Zimmermann [13] proposed the “min” operator
model to the Multi-objective linear problem (MOLP). It is usually used due to its easy
computation. Although the “min” operator method has been proven to have several nice
properties ([11]), the solution generated by min operator does not guarantee compensatory and
Pareto-optimality [14,15,16]. The biggest disadvantage of the aggregation operator “min” is that it
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is non-compensatory. In other words, the results obtained by the “min” operator represent the
worst situation and cannot be compensated by other members which may be very good. On the
other hand, the decision modeled with average operator is called fully compensatory in the sense
that it maximizes the arithmetic mean value of all membership functions.

Zimmermann and Zysno [17] show that most of the decisions taken in the real world are
neither non-compensatory (min operator) nor fully compensatory and suggested a class of hybrid
compensatory operators with ) compensation parameter.

Basing on the ¥ -operator, Werners [18] introduced the compensatory “fuzzy and”
operator which is the convex combinations of min and arithmetical mean:

Hana =7 miin(#,)+w(2#,-j, (10)

m i

where 0<y <1, i=1,...,m, and the magnitude of y€[0,1] represent the grade of

compensation.
Although this operator is not inductive and associative, this is commutative, idempotent,
strictly monotonic increasing in each component, continuous and compensatory. Obviously, when

y =1, this equation reduces to g, =min (non-compensatory) operator. In literature, it is

showed that the solution generated by Werners’ compensatory “fuzzy and” operator does
guarantee compensatory and Pareto-optimality for MOLP [9,11,12,16,17,18]. Thus this operator
is also suitable for our MITP. Therefore, due to its advantages, in this paper, we used Werners’
compensatory “fuzzy and” operator.

5. A COMPENSATORY APPROACH TO MITP
To apply our compensatory approach, MITP is transformed to a traditional Multi-objective

Transportation Problem (MOTP). First, interval supply and demand quantities are converted into
deterministic ones by means of the convex combination of left and right limits.

[aL[,aRiJ = a,.=a[a,‘,.+(1—a,.)am=aR,.—(aR[—a”)a‘. (i=12,...,m).
[bysby | = b= B, +(1= B )by =by —(by —by) B, (j=12....n).

where a,.,,[)"/. 6[0,1] .

In the literature, [4] assumed that

m n m n
24 =2, and Yay =2 by
i=1 = i=1 =

This assumption is very restrictive for real life problems and it is almost impossible to
collect the data satisfying these equations from DMs who determine the supply-demand
quantities. So in this paper, we handle the balance condition as follows:

iai = ibj = ialﬁ _(aRi _au)a,‘ :iij _(ij _bLj)ﬂj
7 K i J
= i(ij _bLj)ﬂj _i(am _aLi)ai = iij _iam
j i j 7

This balance condition provides selection of the best supply-demand quantities for
MITP.
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Using (9), the objective function (3.1) can be converted to
min Z* (x) = min{Z’,; (x),2¢ (x)} = min {Zm:ic,@x‘j ,Zm:Zn:cé‘y xl.j,} (k=12,...,K).
i=1 j=1 i=1 j=I

Thus (3) is converted to the following traditional MOTP:

k
mmZ ZZCRU x; | k= ,2,....K .

i=1 j=I

m_n

k
mmZ ZZCC.. X, k= ,2,...,K .

i=1 j=1

st Z (aRt Li)ai =dg i=1,2,...,m,
ixzj’+(bli’j’_bLj)ﬂ,:ij , J=12,...n,
i=1

30,118, - Slon-a.) =S, S,

J

x, 20 i=12,....m, j=12,...,n,

i
a,p,€[0.]] ,i=12,..m, j=12,.,n. an

Here we denote the feasible region of (11) as S’. Now, the membership functions of
objectives will be defined to apply our compensatory approach. Let L}, U}, Lf and U} be the

lower and upper bounds of the objective function Zi(x) and Zg(x) (k=12,...K),

respectively. These bounds can be determined as follows: solve the MOLP as a single objective
linear programming problem using each time only one objective and ignoring all others.
Determine the corresponding values for every objective at each solution derived. And find the
best and the worst values corresponding to the set of solutions.

Alternatively, by solving 4K single-objective linear programming problems, the lower
and upper bounds can also be determined for each objective as follows:

L, :Igian,ﬁ(x), U :1}‘15%;2,’;()() , Lt :1;111SnZé(x) , Uk :1”1‘15'%);22(3(), (12)

For the sake of simplicity, we used the linear membership functions. The right limit
objective’s membership function fzp, (Zﬁ) foreach £=1,2,....K

1 JZh < Ik,
Uk _Zk
H (22 (X)) =\ i L <Zy <U;, (13)
R R
0 ,ZE > UL,

Here, L,=#Ul, k=1,2,..,K and in the case of L,=U} ,uRk(Z,ﬁ'(x)):l. The

membership function fz,, (Zﬁ) is linear and strictly monotone decreasing for Z,’;(x) in the
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interval [Lk U ‘]. And the center objective’s membership function i, (Zé(x)) can be

constructed similarly:

1 JZh < I,
e (2 (0) = o T < ZE <UL (14)
0 ,ZE > UE.
Using Zimmermann’s minimum operator ([13]), (11) can be written as:
max min | 1, (Z5 (). iy (Z (%)) (15)
s.t. xeS'.

By introducing an auxiliary variable i, (15) can be transformed into the following
equivalent conventional LP problem:

max A
st Uy (Zrx))2z A, k=1..,K
U (ZENZ A, k=1,..,K
xeS'
/16[0,1]. (16)

It is pointed out that Zimmermann’s min operator model doesn’t always yield a Pareto-
optimal solution [14,15,16]. By using Werners’ 1, operator, (16) is converted to as follows:

TapR Y

max,ua"d:/1+

s.t.: Z (% Li)ai:am , i=12,...,m,
Yoy +(by=by) B =by . j=12.....m,
i=l1

30,118, - Slon-a.) =S, S,

j
U ZRhXNZ A+ Ay, k=1,..,K
U (ZE) 2 A+ A, k=1,..,K
A+ Ay <1, k=12,..,K
A+2g <1, k=1,2,...K

Vs Ay Agis Ak e[O,l] ,k=12,....K

a,B,€[01] ,i=12,...,m, j=12,..n.
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x, 20, i=12,...om; j=12,...,n 17

So, our compensatory model generates compensatory compromise Pareto-optimal
solutions for MITP.
We shall give this assertion in the following theorem.

Theorem: If (x,)»") is an optimal solution of problem (17), then x is a Pareto-optimal

solution for MITP, where A" = (A%, A3, Ao s Aits A s A50).

If required, the proof of the theorem can be found in [19]. Also, Pareto-optimality test
([19]) can be applied to the solutions of (17) and it could be seen that these solutions are Pareto-
optimal for MITP.
6. ANUMERICAL EXAMPLE

Consider the following MITP:

man Zz , man chuxy

i=1 j=1 i=1 j=1

4 4 4
st Dox,=[5.9], Dox, =[17.21] , D x;, =[16,18] ,
j=1 j=1 j=1
3 3 3 3
Dox, =[1012] , Y x, =[2,10] , D x, =[13,18] , > x, =[15,17]
i=1 i=1 i=1 i=1

x,20 =123 j=1234.

[1L5] [L7] [5.10] [4.6] [3.8] [28] [2.7] [L8]
where ¢; =| [15] [7.12] [2.4] [3.10]]|, ¢; =|[4.10] [7.12] [7.13] [9.15]].
[7.14] [6.7] [3.8] [5.10] [4.6] [L5] [3.8] [L4]

Here, the total supply quantity is in the interval g, € [38,48] and total demand quantity

is in the interval b, = [40,57] . Thus Zij - ZGR,. =9 . We also note that
J i

m n m n
Zau * Zbu and Zakl. ¢Zij .
i=1 = i=1 j=1

Using (11), problem can be converted to the following MOTP with crisp parameters:

3 4 4

3
1
min Z,, ( Z CRU i, min Z. Z Cc,, U

i=l j=1 i=l j=1

3 4 3 4
minZ; (x) =Y cp.x, min Z;, ZZC X,
"y )
=1

i=l j=1 i=l j

4 4 4
s.t. Dox, +ha =9, Yox, +day, =21, Y x +20, =18,
J=1

= =

3 3 3 3
D +2B=12, D x,+88,=10, D x +54,=18 , D x,+28,=17,
i=l1 i=1 i=1 i=1
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Zﬂl +8ﬁz +5ﬂ3 +2ﬂ4 —40(1 —40{2 —20!3 =9
x,20 =123 j=1234,

a,B,€[01] ,i=123 j=1234.
5 7 10 6
where ¢, =5 12 4 10|, ey =
14 7 8 10
8 8 7 8
Cy=[10 12 13 15/, oy =
6 5 8 4

3 4
3 95
1105 6.5
(55 5
7 95
|5 3

75 5
3 65
55 175

45 45
10 12
55 25

s

Sigma 31, 20-33, 2013

Using (12), the lower and upper bounds of the objectives are determined to construct the

membership functions as follows:

Table 1. Bound values of objectives.

Zy | zZL | Z} | Z
L | 262|192 | 303 | 2105
U, | 536 | 391 | 518 | 390.5

Table 1 implies that, under the assumption of having only the objective Z', the
objective value lies in the interval Z' e [122,262] and similarly Z° € [118,303] .

Using (17), the compensatory model is constructed as follows:

(-7
4

max f,,, = A+ [/'im + Agy + Ay + /1C2]

4 4 4
s.t.: Dox, +ha =9, Yox, +da, =21, Y x +20, =18,
J=1

=

=

3 3 3 3
Dox 428 =12, Dx,+88,=10, D x;+58,=18 , > x,+28,=17,
i=1 i=1 i=1 i=1

2B, +8p, +55, +23, —4a, —4a, — 20, =9

Zy(X)+274( A+ 2, ) 536, Zi(X)+215( A+ Ay,) <518

Ze(x)+199(A+ A0, ) <391, ZZ(x)+180(4 + A, ) <390.5

A+ <1, k=12 A+,

Vs Ay Agis Ak e[O,l] k=12

x, 20 ,a.B,€[01], i=1,23, j=1234.

29
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By solving (18), the results for different 11 values of the compensation parameter
with 0.1 increment are obtained and given in Table 2. The results are: the values of objective
functions Z; and Z) (k = 1,2) , the satisfactory levels of the objectives corresponding to solution
X , (i.e. the values of membership functions) 4, and g, (k = 1,2) ; the most basic satisfactory
level A ;the compensation satisfactory level ,,, , respectively.

So, our compensatory model generates the following compensatory compromise Pareto-
optimal solutions X'*, X*" and X" for our MITP.

For the value of y =0:
%, =0,x,=0,x;=0,x,=5
X" ={x,, =10,x,=0,x,, =7,%, =0 ,
X, =0,x;,=2,x,=6,x, =10
Z,(X")=268, 7, (X")=197, Z;(X")=329, Z2(X")=2265
For the value of y=0.1—y=0.7:
x,=1.9163,x, =0, x,, =1.8943,x,, =1.1893
X =1 x,, =8.0837,x,, =0, x,, =8.9163,x,, = 0
Xy, =0, %, =2, x,, =2.1893,x,, =13.8107
Z,(X*")=279.3654 , Z!.(X*")=205.5241, Z;(X*")=317.611, Z2(X*")=222.7327
For the value of y =0.8—y=1.0:
x, =1.8117, x,, = 0.2506, x,, = 1.8795,x,, =1.0582
X" ={ x,=8.1883,x,=0x,=88117,x,,=0
X, =0, x;, =1.7494, x,, = 2.3088,x,, =13.9418
Z,(X")=280.53, Z.(X*")=205.4578, Z;(X*")=317.5402, Z2(X")=222.6732.
These solutions imply following interval objective values for our MITP:

Z'(X")=[126,268]

Z'(X*")=[131.6828 , 279.3654]

") =[130.3856, 280.53]
ZZ

Z*(X*")=[127.8544 ,317.611]

vAlb. Gl

(
(x*)=
Z/(x")=
(X")=[124,329]
(x*)=
(x7)=

[127.8062, 317.5402]

All  of these solutions pointed out that for all possible values of
05 (i=123;;7=123,4;k=12), the certainly transported amounts are:
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{x22 =0,x,, =0, x;, =0} .
And also, the least transported amount are:

x,, >1.0582, x,, >8.0837,
Xy 2 7,x,, 217494,
Xy, 22.1893,x,, 210

For y=0, pu,, -equals to average (full-compensatory) operator that is
.1 . . .
Hoa = mlnz(ym + tpy + Moy + /ucz) =0.9358 and gives the solution X" .

For y=1, u,, -equals to min (non-compensatory) operator that is
Mg = mkln( Hpges ,uCk) =0.9324 and gives the solution X**. This solution remains the same for
y=[0.8,1].

These solutions and the values of all membership functions are offered to DM. If DM is
not satisfied with the proposed solution then he/she could assign the weights w,,

2
(wk >0, Zwk = 1) on his/her objectives Z*, k =1,2. In this case, the weights W, are inserted

k=1

to the compensatory model as the following manner [9]:

Hpi (le;)

W

2A+ Ay , Vk=12

wk(/1+/1Rk)Sl, Vk=12.
instead of the constraints

U (Ze(XN 2 A+ Ay, Y =1,2
A+4

Rk

<1, Vk=12.

Similar inequalities could be formed for ., (5, k=12.

We note here that our model has the capability of handling the MITP with unbalanced
interval supply-demand quantities unlike [4]. In addition, while the fuzzy models given in [1] and
[4] use Zimmermann’s “min” operator, by means of using Werners’ “fuzzy and” operator, the
results of our model contains the results of “min” operator.

7. CONCLUSION

In this paper, we deal with MITP whose costs and supply-demand quantities are given as
intervals. The interval supply-demand quantities are handled by means of the convex combination
of left and right limits. And for interval costs, MITP is reduced to the question of determining
Pareto-optimal solutions of a bi-criteria linear programming problem for each objective in the
following way: the minimization problem with the interval objective function is converted into a
traditional MOLP whose objectives are to minimize the right limit and the center of the interval
objective function. These two objectives can be considered as the minimization of the worst case
and the average case. After obtaining the traditional MOLP, Werners’ “fuzzy and” operator is
used to aggregate the objectives. Our compensatory approach generates compromise solution

9o ¢c

which is both compensatory and Pareto-optimal. It is known that Zimmerman’s “min” operator is
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not compensatory and also does not guarantee to generate the Pareto-optimal solutions. Werners’
M.« operator is useful about computational efficiency and always generates Pareto-optimal

solutions. And to our knowledge, combining compensatory ( 4, ) operator with MITP has not

been published up to now.
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