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ABSTRACT 
 
The data of real life problems generally cannot be expressed strictly. An efficient way of handling this 
situation is expressing the data as intervals. Thus this paper focus on the Multi-objective Interval 
Transportation Problem (MITP) whose parameters i.e. cost coefficients of the objective functions, supply and 
demand quantities are expressed as intervals. This problem is transformed to a traditional Multi-objective 
Transportation Problem (MOTP) with crisp parameters. First, interval supply-demand quantities are converted 
into deterministic ones by means of the convex combination of left and right limits. By an order relation that 
represents the decision maker’s preferences between interval costs, each objective is turned into crisp form 
within the right limit and centre of the costs. Finally, using Werners’ “fuzzy and” operator, a compensatory 

fuzzy approach to MITP is presented. And to our knowledge, combining compensatory ( and ) operator with 

MITP has not been published up to now. Our approach generates compromise solutions which are both 
compensatory and Pareto-optimal. Also a numerical example is given to illustrate the presented approach. 
Keywords: Multi-objective transportation problem, fuzzy mathematical programming, interval numbers, 
compensatory operators.   
MSC numbers/numaraları: 90C08, 90C29, 90C70, 65G30, 65640. 
 
ÇOK AMAÇLI ARALIKLI TAŞIMA PROBLEMİNE DENGELEYİCİ BİR YAKLAŞIM 
 
ÖZET 
 
Gerçek hayat problemlerinin verileri genellikle kesin olarak ifade edilemez. Bu durumun ele alınmasının etkili 
bir yolu verileri aralık şeklinde ifade etmektir.  Bu makale, amaç fonksiyonlarının maliyet katsayıları ve arz-
talep miktarlarının aralık şeklinde ifade edildiği Çok Amaçlı Aralıklı Taşıma Problemi (MITP) üzerine 
odaklanmıştır. Bu problem, geleneksel çok amaçlı taşıma problemine dönüştürülmüştür. Öncelikle, aralık arz-
talep miktarları,   sağ ve sol limitlerinin konveks kombinezonları aracılığıyla determisitik hallerine 
çevirilmiştir. Aralık maliyetler arasında karar vericinin tercihlerini ifade eden bir sıralama bağıntısı 
aracılığıyla, her bir amaç, fiyatların sağ limitleri ve merkezleri ile kesin hale dönüştürülmüştür. Son olarak, 
Werners’in “fuzzy and” operatorü kullanılarak, MITP için dengeleyici bulanık bir yaklaşım sunulmuştur. 

Bildiğimiz kadarıyla, dengeleyici ( and ) operatorü ile MITP’yi birleştiren bir çalışma şu ana kadar 

yayımlanmamıştır. Bizim yaklaşımımız hem dengeleyici hem de Pareto-optimal olan uzlaşık çözümler 
üretmektedir. Ayrıca, sunulan yaklaşımın gösterilmesi için sayısal bir örnek de verilmiştir.  
Anahtar Sözcükler: Çok amaçlı taşıma problemi, bulanık matematiksel programlama, aralık yapıdaki sayılar, 
dengeleyici operatörler. 
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1. INTRODUCTION  
 
Transportation Problem has wide practical applications in logistic systems, manpower planning, 
personnel allocation, inventory control, production planning, etc. and aims to find the best way to 
fulfill the demand of n demand points using the capacities of m supply points. In many real-life 
situations, decisions are often made in the presence of multiple, conflicting, incommensurate 
objectives. Thus MOTP becomes more useful and includes objectives such as distribution cost, 
quantity of goods delivered, unfulfilled demand, average delivery time of the commodities, 
reliability of transportation, accessibility to the users, product deterioration, etc. Also in practice, 
the parameters of MOTP (supply-demand quantities and cost coefficients) are not always exactly 
known and stable. This imprecision may follow from the lack of exact information, changeable 
economic conditions, etc. A frequently used way of expressing the imprecision is to use the fuzzy 
numbers or intervals. In this paper, we assumed that all parameters of MOTP are in form of 
interval. Expressing the parameters as interval makes Decision Maker (DM) more comfortable 
and this enables us to consider tolerances for the model parameters in a more natural and direct 
way. Therefore, MITP seems to be more realistic and reliable according to crisp values. For this 
problem, Chanas et al. [1] considered that DM can define the supply and demand levels as point 
(crisp) values, interval values or fuzzy numbers. The links among them are provided, focusing on 
the case of the Fuzzy Transportation Problem, for which methods of solution are proposed and 
discussed. Ahlatcioglu and Sivri [2] assumed that the demand parameters are given as interval and 
proposed a method with two steps to interval transportation problem. By an order relation of 
intervals, Ahlatcioglu and Sivri [3] proposed a model whose demand quantities and cost 
coefficients are given as intervals. Das et al. [4] proposed a solution approach based on main idea 
of interval arithmetic. They converted interval supply-demand constraints to deterministic ones by 
doubling the numbers of these constraints. M. H. Lohgaonkar and V. H. Bajaj [5] handled the 
MOTP with interval cost by using a fuzzy programming technique. 

In this paper, we focus on the solution procedure of MITP whose supply-demand 
quantities and cost coefficients are considered as intervals. This problem is transformed to a 
traditional MOTP with crisp parameters. Supply and demand quantities are converted into their 
crisp forms by means of the convex combination of left and right limits. By an order relation, 
each objective is turned into its crisp form within the right limit and centre of the costs. Finally, 
the obtained traditional MOTP is solved with a fuzzy programming technique by using Werner’s 

and  operator. Also a numerical example is given to illustrate the approach. 

This paper is organized as follows. After having presented brief information about 
interval arithmetic in the next section, the mathematical model of MITP and some basic 
definitions about order relations is given in Section 3. Section 4 introduces the compensatory 
fuzzy aggregation operators briefly. Section 5 explains our methodology using Werners’ 
compensatory “fuzzy and’’ operator. Section 6 gives an illustrative numerical example. Finally, 
Section 7 includes some results.  
 
2. INTERVAL ARITHMETIC 
 
An extensive research and wide coverage on the interval arithmetic and its applications can be 
found in [6].  

Let    be the set of all real numbers. An interval in   is defined by an ordered pair 
of brackets as 

 

   , : ,L R L RA a a a a a a a      
 

where La  and Ra  are the left and right limits of A , respectively. The interval is also denoted 

by its centre and half-width as  
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 , : ,C W C W C WA a a a a a a a a a        
  

where   2C R La a a   and   2W R La a a   are the centre and half-width of A , respectively.  

Interval operations can be defined as follows: 
Addition of intervals:  

 

     , , ,L R L R L L R RA B a a b b a b a b                                             (1.1) 

 

or 
 

, , ,C W C W C C W WA B a a b b a b a b                                                (1.2) 
 
 

Multiplication with  a real number k: 
 
 

   
 

, 0,
,

, 0,
L R

L R
R L

ka ka for k
kA k a a

ka ka for k

    
                            (2.1) 

 

or 
 

, ,C W C WkA k a a ka k a                              (2.2) 

 
3. MULTI-OBJECTIVE INTERVAL TRANSPORTATION PROBLEM 
 
The mathematical formulation of MITP can be stated as follows:  
 

 
1 1

min ,
m n

k k k
Lij Rij ij

i j

Z c c x
 

   x 1,2, , ,k K                                            (3.1) 

 

s.t.  
1

,
n

ij Li Ri
j

x a a


      1,2, , ,i m               (3.2) 

 

1

,
m

ij Lj Rj
i

x b b


        1,2, , ,j n               (3.3) 

 

0ijx     1,2, , ,i m     1,2, ,j n  .              (3.4) 
 

ijx  is decision variable which refers to product quantity that transported from supply 

point i to demand point j. K  is the number of the objective functions of MITP. The closed 

interval ,k k
Lij Rijc c    denotes that the unit transportation cost from i th supply point to j th demand 

point lies between k
Lijc  and k

Rijc  for objective k. The closed interval ,Li Ria a    represent that i th 

supply quantity lies between Lia  and Ria . Similarly, the closed interval ,Lj Rjb b    represent that j 

th demand quantity lies between Ljb  and Rjb . Here, we denote the feasible region of (3) as S . 

We note that the balance condition i ji j
a b    must hold between supply and demand 

quantities in (3). This equation will be constructed in Section 5. 
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3.1. Order Relations Between Intervals 
 
Here, the order relations that represent the decision maker’s preferences between interval costs are 
defined for minimization problems. In this paper, we use the order relations that are defined in 
[7]. Also, in the literature [3] and [4] used this order relation for MITP.  

Let the uncertain costs from two alternatives be represented by intervals A  and B . It is 
assumed that the cost of each alternative is known only to lie in the corresponding interval.  

Definition 3.1: The order relation LR   between  ,L RA a a  and  ,L RB b b  is 

defined as  
 

LRA B    iff L La b  and R Ra b , 
 

LRA B   iff LRA B  and A B . 
 

This order relation LR  represents the decision maker’s preference for the alternative 

with lower minimum cost and lower maximum cost, that is, if LRA B , then A  is preferred to  

B . Next the order relation by the center and width of interval is defined in the following 
definition. 

Definition 3.2: The order relation CW  between ,C WA a a and ,C WB b b  is 

defined as  
 

CWA B  iff  C Ca b  and w Wa b , 
 

CWA B  iff CWA B  and A B . 
 

The order relation represents the decision maker’s preference for the alternative with the 
lower expected cost and less uncertainty, that is CWA B , then A  is preferred to B .  

Since the center and the width of interval can be considered as the expected value and 
the uncertainty of an interval respectively, this order relation represents the decision maker’s 
preference for the alternative with lower expected value and less uncertainty.  

Here we noted that both LR  and CW are partial orders which are transitive, reflexive 

and antisymmetric. And also [7] showed that both of the order relations never conflict with each 
other in the sense that there is no such pair A  and B  that A B , LRA B and CWB A . See 

[7] for more information about order relations between intervals.  
 

3.2. An Order Relation for Minimization Problems 
 
In this subsection, the reformulation of a interval transportation problem as a bi-objective problem 
is explained. For this subsection, let consider the single objective case of (3) (i.e. 1K  ) and 

denote this problem as  3 . We note that the feasible region of  3  is still denoting with S . 

Since the objective function  Z x  is an interval function, it is natural that the solution set of 

 3  should be defined by preference relations between intervals. Therefore using the order 

relations defined in Section 3.1, which represent the decision maker’s preference between interval 

profits, the solution of  3  can be defined as follows: 

Definition 3.3: Sx  is a solution of  3  iff there is no Sx  which satisfies 

   LRZ Z x x  or    CWZ Z x x . 
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In order to simplify this definition, the order relation RC  is defined for the 

minimization problem as  
 

RCA B  iff  R Ra b  and C Ca b , 
 

RCA B  iff RCA B  and A B . 
 

It follows that  
 

RCA B  iff  LRA B  or CWA B ,                 (5.1) 
 

RCA B  iff  LRA B  or CWA B .                  (5.2) 
 

Using the order relation RC , Definition 3.3 may be simplified as follows: 

Definition 3.4: Sx  is a solution of (3), iff there is no Sx  which satisfies

   RCZ Z x x . 

The right limit  RZ x  of the interval objective  Z x
 
may be calculated from (1.2) and 

(2.2) as  
 

 
1 1 1 1

m n m n

R Cij ij Wij ij
i j i j

Z c x c x
   

  x                                (6) 

 

where Cijc  is the centre and Wijc  is half-width of the coefficient ijc  of the objective  Z x . In the 

case 0ijx  , (6) can be modified as  
 

 
1 1 1 1

m n m n

R Cij ij Wij ij
i j i j

Z c x c x
   

  x .                               (7) 

 

And the centre of the objective function  Z x : 
 

 
1 1

m n

C Cij ij
i j

Z c x
 

x .                  (8) 

 

The solution set of  3  defined by (5.2) can be obtained as the Pareto optimal solutions 

of the following bi-objective problem [7]: 
 

 min ,R CZ Z                    (9) 
 

subject to the feasible region S  where RZ  and CZ   are as stated in (7) and (8).  

 
4. COMPENSATORY OPERATORS 
 
There are several fuzzy aggregation operators. The detailed information about them exists in 
Zimmermann [8] and Tiryaki [9]. The most important aspect in the fuzzy approach is the 
compensatory or non-compensatory nature of the aggregation operator. Several investigators 
[8,10,11,12] have discussed this aspect.  

Using the linear membership function, Zimmermann [13] proposed the “min” operator 
model to the Multi-objective linear problem (MOLP). It is usually used due to its easy 
computation. Although the “min” operator method has been proven to have several nice 
properties ([11]), the solution generated by min operator does not guarantee compensatory and 
Pareto-optimality [14,15,16]. The biggest disadvantage of the aggregation operator “min” is that it 
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is non-compensatory. In other words, the results obtained by the “min” operator represent the 
worst situation and cannot be compensated by other members which may be very good. On the 
other hand, the decision modeled with average operator is called fully compensatory in the sense 
that it maximizes the arithmetic mean value of all membership functions.   

Zimmermann and Zysno [17] show that most of the decisions taken in the real world are 
neither non-compensatory (min operator) nor fully compensatory and suggested a class of hybrid 
compensatory operators with   compensation parameter.  

Basing on the  -operator, Werners [18] introduced the compensatory “fuzzy and” 

operator which is the convex combinations of min and arithmetical mean: 
 

   1
minand i ii

im


   

  
   

 
 ,                              (10) 

 

where 0 1, 1, ,i i m    , and the magnitude of [0,1]   represent the grade of 

compensation.   
Although this operator is not inductive and associative, this is commutative, idempotent, 

strictly monotonic increasing in each component, continuous and compensatory. Obviously, when 
1  , this equation reduces to minand   (non-compensatory) operator. In literature, it is 

showed that the solution generated by Werners’ compensatory “fuzzy and” operator does 
guarantee compensatory and Pareto-optimality for MOLP [9,11,12,16,17,18]. Thus this operator 
is also suitable for our MITP. Therefore, due to its advantages, in this paper, we used Werners’ 
compensatory “fuzzy and” operator. 

 
5. A COMPENSATORY APPROACH TO MITP 
 
To apply our compensatory approach, MITP is transformed to a traditional Multi-objective 
Transportation Problem (MOTP). First, interval supply and demand quantities are converted into 
deterministic ones by means of the convex combination of left and right limits. 
 

   , 1Li Ri i i Li i Ri Ri Ri Li ia a a a a a a a                1,2, ,i m  . 
 

   , 1Lj Rj j j Lj j Rj Rj Rj Lj jb b b b b b b b                 1,2, ,j n  .              
 

where  , 0,1i j   .  

In the literature, [4] assumed that  
 

1 1

m n

Li Lj
i j

a b
 

   and 
1 1

m n

Ri Rj
i j

a b
 

  . 

 

This assumption is very restrictive for real life problems and it is almost impossible to 
collect the data satisfying these equations from DMs who determine the supply-demand 
quantities. So in this paper, we handle the balance condition as follows:  
 

m n

i j
i j

a b      
m n

Ri Ri Li i Rj Rj Lj j
i j

a a a b b b         

 

   
n m n m

Rj Lj j Ri Li i Rj Ri
j i j i

b b a a b a           

 

This balance condition provides selection of the best supply-demand quantities for 
MITP. 
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Using (9), the objective function (3.1) can be converted to  

      
1 1 1 1

min min , min , ,
m n m n

k k k k k
R C Rij ij Cij ij

i j i j

Z Z Z c x c x
   

     
  
 x x x  1,2, ,k K  .      

 

Thus (3) is converted to the following traditional MOTP:  
 

 
1 1

min
m n

k k
R Rij ij

i j

Z c x
 

 x

 

,  1,2, ,k K  . 

 

 
1 1

min
m n

k k
C Cij ij

i j

Z c x
 

x  ,  1,2, ,k K  . 

 

s.t.  
1

n

ij Ri Li i Ri
j

x a a a


      ,  1,2, , ,i m        

 

 
1

m

ij Rj Lj j Rj
i

x b b b


     ,  1,2, , ,j n    

 

   
n m n m

Rj Lj j Ri Li i Rj Ri
j i j i

b b a a b a             

  

0ijx     1,2, , ,i m     1,2, , ,j n                
 

 , 0,1i j     , 1,2, , ,i m  1,2, ,j n  ..                            (11) 
 

Here we denote the feasible region of (11) as S  . Now, the membership functions of 

objectives will be defined to apply our compensatory approach. Let k
RL , k

RU , k
CL  and k

CU   be the 

lower and upper bounds of the objective function  k
RZ x  and  k

CZ x   1,2, ,k K  , 

respectively. These bounds can be determined as follows: solve the MOLP as a single objective 
linear programming problem using each time only one objective and ignoring all others.  
Determine the corresponding values for every objective at each solution derived. And find the 
best and the worst values corresponding to the set of solutions. 

Alternatively, by solving 4K  single-objective linear programming problems, the lower 
and upper bounds can also be determined for each objective as follows: 

 

 mink k
R R

S
L Z




x
x ,  maxk k

R R
S

U Z



x

x ,  mink k
C C

S
L Z




x
x ,    maxk k

C C
S

U Z



x

x ,                               (12)             
 

For the sake of simplicity, we used the linear membership functions. The right limit 

objective’s membership function  k
RRk Z

 
for each 1,2, ,k K  : 

 

  
.

1 , ,

, ,

0 ,

k
R

k
k k kR
R R Rk k

R R

k
R

k
R

k
kR
RRk

k
R

Z

Z L

U Z
L Z U

U L

Z U













  




x                                        (13) 

 

Here, k k
R RL U , 1,2,...,k K  and in the case of k k

R RL U ,    1k
RRk Z x . The 

membership function  k
RRk Z

 
is linear and strictly monotone decreasing for  k

RZ x  in the 
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interval ,k k
R RL U   . And the center objective’s membership function   k

CCk Z x  can be 

constructed similarly: 
 

  
.

1 , ,

, ,

0 ,

k
C

k
k k kC
C C Ck k

C C

k
C

k
C

k
kC
CCk

k
C

Z

Z L

U Z
L Z U

U L

Z U













  




x

                                                                                

(14)

 
 

Using Zimmermann’s minimum operator ([13]), (11) can be written as:  
 

 
,

max min ( ( )), ( ( ))k k
R CRk Ckx Rk CkZ Z x x                                                   (15)  

 

s.t.  S x . 
 

By introducing an auxiliary variable  , (15) can be transformed into the following 
equivalent conventional LP problem: 

 

max   
 

s.t.  ( ( ))k
RRk Z x , 1,...,k K  

 

 ( ( ))k
CCk Z x ,  1,...,k K      

 

S x    
 

0,1   .                 (16) 
 

It is pointed out that Zimmermann’s min operator model doesn’t always yield a Pareto-
optimal solution [14,15,16]. By using Werners’ and  operator, (16) is converted to as follows:  
 

1 1

(1 )
max

2

K K

Rk Ck
k k

and K

   
 

  
   

 
   

 

s.t.:   
1

n

ij Ri Li i Ri
j

x a a a


      ,  1,2, , ,i m       

  

 
1

m

ij Rj Lj j Rj
i

x b b b


     ,  1,2, , ,j n    

 

   
n m n m

Rj Lj j Ri Li i Rj Ri
j i j i

b b a a b a           

 

( ( ))k
R RkRk Z   x , 1,...,k K

 
 

( ( ))k
C CkCk Z   x ,  1,...,k K  

 

1Rk   , 1,2, ,k K    
 

1Ck   , 1,2, ,k K    
 

 , , , 0,1Rk Ck    
 
, 1,2, ,k K   

 

 , 0,1i j     , 1,2, , ,i m  1,2, ,j n  .   
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0, 1,2, , ; 1,2, , .ijx i m j n                                                                                               (17) 
 

So, our compensatory model generates compensatory compromise Pareto-optimal 
solutions for MITP.  

We shall give this assertion in the following theorem.  

Theorem: If  , xx λ  is an optimal solution of problem (17), then x  is a Pareto-optimal 

solution for MITP, where 1 2 1 2( , , , , , , , , ).R R RK C C CKλ λ λ λ λ λx x x x x x x xλ     

If required, the proof of the theorem can be found in [19]. Also, Pareto-optimality test 
([19]) can be applied to the solutions of (17) and it could be seen that these solutions are Pareto-
optimal for MITP. 

 
6. A NUMERICAL EXAMPLE 
 
Consider the following MITP: 
 

 1 1

1 1

min
m n

ij ij
i j

Z c x
 

x ,  2 2

1 1

min
m n

ij ij
i j

Z c x
 

 x
    

 

s.t.   
4

1
1

5,9j
j

x



 

,   
4

2
1

17,21j
j

x



 

,   
4

3
1

16,18j
j

x


  ,   

 

 
3

1
1

10,12i
i

x


  ,   
3

2
1

2,10i
i

x



 

,   
3

3
1

13,18i
i

x



 

,   
3

4
1

15,17i
i

x


  ,   

 

0ijx     1,2,3i     1,2,3,4j  .       
 

where  
       
       
       

1

1,5 1,7 5,10 4,6

1,5 7,12 2,4 3,10

7,14 6,7 3,8 5,10
ijc

 
   
  

, 
       
       
       

2

3,8 2,8 2,7 1,8

4,10 7,12 7,13 9,15

4,6 1,5 3,8 1,4
ijc

 
   
  

. 

 

Here, the total supply quantity is in the interval  38,48ia   and total demand quantity 

is in the interval  40,57jb  . Thus 9
n m

Rj Ri
j i

b a   . We also note that  

 

1 1

m n

Li Lj
i j

a b
 

   and 
1 1

m n

Ri Rj
i j

a b
 

  . 

 

  Using (11), problem can be converted to the following MOTP with crisp parameters: 
 

 
3 4

1 1

1 1

min R Rij ij
i j

Z c x
 

x ,  
3 4

1 1

1 1

min C Cij ij
i j

Z c x
 

x

  

 
3 4

2 2

1 1

min R Rij ij
i j

Z c x
 

x ,  
3 4

2 2

1 1

min C Cij ij
i j

Z c x
 

x

  

s.t.  
4

1 1
1

4 9j
j

x 


 
 

,  
4

2 2
1

4 21j
j

x 


 
 

,  
4

3 3
1

2 18j
j

x 


   ,   

 

3

1 1
1

2 12i
i

x 


   ,  
3

2 2
1

8 10i
i

x 


 
 

,  
3

3 3
1

5 18i
i

x 


 
 

,  
3

4 4
1

2 17i
i

x 


   ,   
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1 2 3 4 1 2 32 8 5 2 4 4 2 9              
 

0ijx     1,2,3i     1,2,3,4j  , 
 

 , 0,1i j     , 1,2,3i     1,2,3,4j  . 
 

where  1

5 7 10 6

5 12 4 10

14 7 8 10
Rijc

 
   
  

,  1

3 4 7.5 5

3 9.5 3 6.5

10.5 6.5 5.5 7.5
Cijc

 
   
  

,  

 

          2

8 8 7 8

10 12 13 15

6 5 8 4
Rijc

 
   
  

, 2

5.5 5 4.5 4.5

7 9.5 10 12

5 3 5.5 2.5
Cijc

 
   
  

. 

 

Using (12), the lower and upper bounds of the objectives are determined to construct the 
membership functions as follows:  
 

Table 1. Bound values of objectives. 
 

 1
RZ  1

CZ  2
RZ  2

CZ  

kL  262 192 303 210.5 

kU  536 391 518 390.5 

 
Table 1 implies that, under the assumption of having only the objective 1Z , the 

objective value lies in the interval  1 122,262Z   and similarly  2 118,303Z  . 

Using (17), the compensatory model is constructed as follows: 
 

 1 2 1 2

(1 )
max

4 R R C Cand
     

    

       
 

s.t.: 
4

1 1
1

4 9j
j

x 


 
 

,  
4

2 2
1

4 21j
j

x 


 
 

,  
4

3 3
1

2 18j
j

x 


   ,   

 
3

1 1
1

2 12i
i

x 


   ,  
3

2 2
1

8 10i
i

x 


 
 

,  
3

3 3
1

5 18i
i

x 


 
 

,  
3

4 4
1

2 17i
i

x 


   ,   

 

1 2 3 4 1 2 32 8 5 2 4 4 2 9              
 

 1
1( ) 274 536R RZ    x ,  2

2( ) 215 518R RZ    x  
 

 1
1( ) 199 391C CZ    x ,  2

2( ) 180 390.5C CZ    x  
 

1Rk   , 1,2k     
1Ck   , 1,2k    

 

 , , , 0,1Rk Ck    
 
, 1,2k   

 

0ijx   ,  , 0,1i j    ,   1,2,3i   ,  1,2,3,4j  .                                      (18) 
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By solving (18), the results for different 11 values of the compensation parameter   

with 0.1  increment are obtained and given in Table 2. The results are: the values of objective 

functions k
RZ  and k

CZ  1,2k  , the satisfactory levels of the objectives corresponding to solution 

x , (i.e. the values of membership functions) Rk  and
 Ck  1,2k  ; the most basic satisfactory 

level  ; the compensation satisfactory level and , respectively.  

So, our compensatory model generates the following compensatory compromise Pareto-
optimal solutions 1*X , 

2*X  and 3*X  for our MITP. 

For the value of 0  : 
 

11 12 13 14

1*
21 22 23 24

31 32 33 34

0, 0, 0, 5

10, 0, 7, 0

0, 2, 6, 10

x x x x

x x x x

x x x x

    
      
     

X  ,   

 

 1 1* 268RZ X ,  1 1* 197CZ X ,  2 1* 329RZ X ,  2 1* 226.5CZ X  
 

For the value of 0.1  — 0.7  : 
 

11 12 13 14

2*
21 22 23 24

31 32 33 34

1.9163, 0, 1.8943, 1.1893

8.0837, 0, 8.9163, 0

0, 2, 2.1893, 13.8107

x x x x

x x x x

x x x x

    
      
     

X  ,   

 

 1 2* 279.3654RZ X ,  1 2* 205.5241CZ X ,  2 2* 317.611RZ X ,  2 2* 222.7327CZ X  
 

For the value of 0.8  — 1.0  : 
 

11 12 13 14

3*
21 22 23 24

31 32 33 34

1.8117, 0.2506, 1.8795, 1.0582

8.1883, 0, 8.8117, 0

0, 1.7494, 2.3088, 13.9418

x x x x

x x x x

x x x x

    
      
     

X  ,  

 

 1 3* 280.53RZ X ,  1 3* 205.4578CZ X ,  2 3* 317.5402RZ X ,  2 3* 222.6732CZ X . 
 

These solutions imply following interval objective values for our MITP:  
 

   1 1* 126,268Z X
 

 

   1 2* 131.6828 , 279.3654Z X
 

 

   1 3* 130.3856 , 280.53Z X
 

 

   2 1* 124,329Z X  
 

   2 2* 127.8544 , 317.611Z X  

 

   2 3* 127.8062 , 317.5402Z X  
 

All of these solutions pointed out that for all possible values of 

( 1,2,3 ; 1,2,3,4 ; 1,2)k
ijc i j k   , the certainly transported amounts are: 
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 22 24 310, 0, 0x x x   .  
 

And also, the least transported amount are: 
 

14 21

23 32

33 34

1.0582, 8.0837,

7, 1.7494,

2.1893, 10

x x

x x

x x

  
   
   

 .

  

For 0  , and  equals to average (full-compensatory) operator that is 

 1 2 1 2
1

min 0.9358
4and R R C C          and gives the solution 1*X . 

For 1  , and  equals to min  (non-compensatory) operator that is 

 min , 0.9324and k Rk Ck     and gives the solution 3*X . This solution remains the same for 

 0.8,1  .  

These solutions and the values of all membership functions are offered to DM. If DM is 
not satisfied with the proposed solution then he/she could assign the weights kw , 

2

1

0, 1k k
k

w w


 
  

 
   on his/her objectives , 1,2kZ k  . In this case, the weights kw  are inserted 

to the compensatory model as the following manner [9]:  
 

 k
Rk R

Rk
k

Z

w


   ,   1,2k   

 

  1, 1,2.k Rkw k       
 

instead of the constraints 
 

( ( ))k
R RkRk Z   x , 1,2k   

 

1, 1,2.Rk k      
 

Similar inequalities could be formed for  ( )k
CCk Z ,  1,2k  . 

We note here that our model has the capability of handling the MITP with unbalanced 
interval supply-demand quantities unlike [4]. In addition, while the fuzzy models given in [1] and 
[4] use Zimmermann’s “min” operator, by means of using Werners’ “fuzzy and” operator, the 
results of our model contains the results of “min” operator. 

 
7. CONCLUSION 
 
In this paper, we deal with MITP whose costs and supply-demand quantities are given as 
intervals. The interval supply-demand quantities are handled by means of the convex combination 
of left and right limits. And for interval costs, MITP is reduced to the question of determining 
Pareto-optimal solutions of a bi-criteria linear programming problem for each objective in the 
following way: the minimization problem with the interval objective function is converted into a 
traditional MOLP whose objectives are to minimize the right limit and the center of the interval 
objective function. These two objectives can be considered as the minimization of the worst case 
and the average case. After obtaining the traditional MOLP, Werners’ “fuzzy and” operator is 
used to aggregate the objectives. Our compensatory approach generates compromise solution 
which is both compensatory and Pareto-optimal. It is known that Zimmerman’s “min” operator is 
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not compensatory and also does not guarantee to generate the Pareto-optimal solutions. Werners’ 

and  operator is useful about computational efficiency and always generates Pareto-optimal 

solutions. And to our knowledge, combining compensatory ( and ) operator with MITP has not 

been published up to now.   
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