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ABSTRACT

This review article is devoted to the developments and ideas for the analysis of multilayered composite plate
and shells. In the first part; the paper presents a through review of the literature involving the use in the
modeling of multilayered plates and shells. A second part reviews relevant key points that should be
considered for an accurate stress and strain fields, herein referred to as C° requirements (zig-zag form of the
displacement field in the thickness direction and continuity of transverse normal and shear stresses at each
layer interface). In the third part, the paper explains one of the mixed variation principles Hellinger-Reissner
(HR) in view of C° requirements. It is then shown that Reissner’s mixed variational theorem (RMVT) can be
simply constructed by adding the constraint equations (Lagrange multiplier) for the transverse stresses to
Hellinger Reissner Principle (HR). The mixed form of Hooke’s law has also been derived in this section. The
final part of the paper is devoted to giving an overview with selected results of numerical performance that
can be acquired by RMVT applications; comparison to elasticity solutions and other significant analyses,
based on classical and refined approaches are given. It is concluded that RMVT leads to a better description
than classical analysis formulated with only displacement variables.
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TABAKALI KOMPOZIT PLAK VE KABUKLARIN ANALiZIi UZERINE GENEL
DEGERLENDIRME

OZET

Bu derleme makalesi ile tabakali kompozit plak ve kabuklarin analizinin ge¢misten giiniimiize gelisimi ve
varilan sonuglarin anlatilmasi amaglanmistir. ilk béliimde; kompozit plak ve kabuklarin analizi iizerine
yapilan ¢alismalar gozden gegirilmistir. ikinci boliim; analizde dogru gerilme ve deplasman alanlarinmn
dikkate alinmasi igin gerekli anahtar noktalarin neler olduguna adanmug; C° gereksinimleri adi verilen bu
anahtar noktalarin(kalinlik dogrultusundaki deplasman alaninin zig-zag bigiminde olmasi ile enine normal ve
kayma gerilmelerinin tabaka arayiizlerinde siirekliligi) saglanmasimnin gerekleri agiklanmistir. Ugiincii boliim,
C°® gereksinimleri 15131 altinda karigik varyasyon prensiplerinden Hellinger-Reissner (HR) agiklanmasina
ayrilmistir. Sonrasinda, Reissner’mn Karigik Varyasyon Teoreminin (RMVT); HR prensibindeki kisitlarin
Lagrange carpani yontemiyle sadece kayma gerilmelerine indirgenmesiyle kolaylikla elde edilebilecegi
gosterilmistir. Ayrica; Hooke kanunun karisik varyasyon teoremine gore diizenlenisi de bu bdoliimde
verilmistir. Makalenin son boliimiinde RMVT ile diger teorilerin karsilastirmali sonuglarina yer verilmistir.
Anahtar Sézciikler: FSDT, HSDT, tabaka duyarli, tabakali kompozit, RMVT, C° gereksinimleri.
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1. INTRODUCTION

Composite materials consist of two or more materials which together produce desirable properties
such as stiffness, strength, corrosion resistance, thermal properties and fatique life that can not be
achieved with any of the constituents alone. Some of the properties that can be improved by
forming a composite material are stiffness, strength, weight reduction, corrosion resistance,
thermal properties and fatique life. Due to its enhanced properties; there has been a major effort to
develop composite material systems in all types of engineering structures. (e.g.,
aerospace,automotive as well as in bridge and building construction) in the last two decades.
Examples of multilayered, anisotropic structures are sandwich constructions and composite
structures made of orthotropic laminae. In most of the applications, these structures mostly appear
as flat (plates) or curved panels (shells). In this section; the plate and shell theories are explained
from single layer structures through multilayered ones in the literature.

First studies in the plate and shell literature are grouped as Love First Approximation
Theory (LFAT) by Kirchhoff [1] and Love [2] with an assumption that normals to the reference
surface Q remain normal in the deformed states and do not change in length.Likewise, Cauchy [3]
and Poisson [4] have studied in thin shell assumptions which can be assigned to the first grouping.

Reissner [5] and Mindlin [6] considered not only the work done by in-plane stresses but
also the work done by transverse shear stresses in their studies and they are grouped as Love
Second Approximation Theory (LSAT). Koiter [7] recommended that a refinement of Love’s first
approximation theory (LSAT) is indeed meaningless, unless the effects of transverse shear and
normal stresses are taken into account at the same time.

Extensions of Kirchoff-Love First Approximation theory to layered structures are
known as Classsical Lamination Theory.[8] Applications of LSAT theories to multilayered
structures are referred as the First Order Shear Deformation Theory (FSDT) by Whitney [9].
However, the drawback of FSDT comes from the representation of the constant transverse shear
strains through laminate thickness and this discrepancy between the actual quadratic stress state
and the constant stress state predicted by the first order theory is often corrected in computing
transverse shear force resultants by multiplying the transverse stress integrals with a shear
correction coefficient parameter.

Due to the need for shear correction coefficients used in the first order theory, higher
order theories are developed to have quadratic variation of the transverse shear strains and
transverse shear stresses through each layer by expanding the displacement field in terms of the
thickness coordinate up to any desired degree but especially third degree and this theories are
referred as higher order shear deformation theory (HOT) or third order shear deformation theory
(TSDT). [10]

Following Reddy [11] these types of theories such as CLT, FSDT or HSDT are grouped
as Equivalent Single Layer Theories (ESLM) which have a number of unknown variables that are
independent of the number of constitutive layers Ny. In addition to their inherent simplicity and
low computational cost, the ESL models often provide sufficiently accurate description of global
response for thin to moderately thick laminates, e.g., gross deflections, critical buckling loads.
However, the comparison of ESL models with 3-D elasticity exact solutions by Pagano [12,13],
Pagano and Hatfield [14], Srinivas and Rao [15,16], Noor [17,18] shows that ESL models are
often incapable of accurately describing the state of stress and strain at the ply level near
geometric and material discontinuities. It is then realized that this dicrepancy is a result of the
assumption taken in all equivalent single layer laminate theories that the displacements are
continous and differentiable (C!) functions of the thickness coordinate contrary to the actual zig-
zag form of the laminated plates. Therefore; a possible, natural manner of including the zig-zag
effect could be implemented by applying CLT, FSDT of TSDT at a layer level, that is, each layer
is seen as an independent plate which is known as layerwise theory in the literature. Relevant
examples of these types of theories are found in the articles by Srinivas [19], who applied CLT in
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each layer, and by Cho,Bert and Striz [20], who implemented the HOT by Lo,Christensen, and
Wu [21] in each layer. Generalization of layerwise theory were given by Reddy [11] who
expressed the diplacement variables in the thickness direction in terms of Lagrange polynomials
and stated that it has to be avoided the use of Hermite interpolation functions which is
kinematically incorrect for general laminates since the transverse strains are forced to be
continuous through the thickness.

Providing the displacement fields zig-zag form by choosing such as not to be
differentiable functions in the layer acrosses and the equality conditions of the inplane stresses
(T4, Tyz) between the layers are both called as C° requirements and this requirements will be
discussed in the second section of the article.

Although layerwise theory(LWT) has more computational effort than equivalent single
layer theory (ESL); results in the literature show that LWT is more aggreable with 3-D elasticity
solutions. However; neither LWT nor ESL are sufficient with providing the second C°
requirement (interlaminar stress continuity of transverse shear and normal stresses) if the
displacement field is only taken as unknowns. This situation directed the researchers studies
through the mixed layerwise methods which have interlaminar transverse shear stresses as
unknowns in addition to the displacement field variables.

The third part of the paper is devoted to explaining the Reissner’s mixed variation
theorem (RMVT) which is a special case of Hellinger-Reissner (HR) variational principle, in
view of C° requirements.

Murakami[22-23] was the first to apply RMVT to multilayered structures by assuming
two independent fields for displacement and transverse stress variables. Murakami [24-25]
showed that RMVT does not experience any particular difficulty when including transverse
normal stresses which is recommended by Koiter [7]. Carrera[37] made a full Equivalent Single
Layer Mixed (ESLM) description in which Murakami’s [23] zig-zag functions is used for
displacement field through total thickness and expressed the stress variables in terms of the
displacement variables by using a weak form of Hooke’s law. Carrera [24-25] has also used
Layerwise Mixed (LM) description which does not require any zig-zag function for the simulation
of the zig-zag effects by RMVT. Large deflection of post-buckling was also analysed by Carrera
and Kroplin [26]. Nonlinear dynamic problems were solved by Carrera and Krause [27]. Molerio
and others. [28] studied a layerwise mixed least-squares finite element model for static analysis of
multilayered composite plates.

Lekhnitskii [29] developed an approach that was originally for beams, and which
describes interlaminar continuous transverse shear stress as well as zigzag effects, was extented to
plates by Ren [30]. Di Sciuva [31] proposed a general quadrilateral multilayered plate element
formulated on the basis of a refined third order shear deformation theory and makes use of a
displacement field that fulfils a priori the geometric and stress continuity conditions at the
interfaces between the layers. Idlbi, Karama and Touratier [32] compared the accuracy of three
shear deformation laminated plate theories proposed by Reissner [33], Reddy [34] and Touratier’s
[35] sinus approach with the elasticity solution given by Pagano[12]. The interlayer continuity
conditions, given in Beakou and Touratier [36] were then introduced to Touratier’s [35] sinus
approach that was the best model among those compared.

The first discussion on the application of Reissner’s Mixed Variation Theorem to shells
was made by Reissner [38]. Toledano and Murakamasi’s [39-40] theory was extended to
cylindrical shells by Bhaskar and Varadan [41] in which a cubic term was added to the in-plane
displacement representation and the transverse shear stress field was taken to the fourth order in
each layer. Jing and Tzeng [42] proposed a mixed principle which was obtained by RMVT by
discarding the transverse normal stress (c,,) contribution which contrasts with Koiter’s [7]
recommendation. Carrera [43,44] has also proposed an extension of RMVT to shells which shows
good agreement with 3-d elasticity solutions for curved panels and shells.

178



K.A. Hasim Sigma 32, 176-188, 2014

2. C' REQUIREMENTS

As can be seen from Fig. 1; multilayered composite plates could have different mechanical
properties and fiber orientations in each layer.

Figure 1. A laminate made up of laminae with different fiber orientations

Transverse discontinuous mechanical properties cause displacement fields
u=(uy,u, uz) in the thickness direction which can exhibit a rapid change of their slopes in
correspondence to each layer interface. Fig.2 shows how the scenarios of displacement u
distributions in a laminated plate could appear in the exact solution or experiments. This
displacement distribution is known as zigzag effect in the literature. Although in-plane stresses
Gp =(Oxx Oyy, Oxy) can in general be discontinuous as a result of equilibrium reasons; transverse
stresses 6 =(Oyxz, Oy, O;) have to be continuous at each layer interface. This is often referred to
in the literature as interlaminar continuity (IC) of transverse shear and normal stresses.

z &

XY

Figure 2. Zigzag form of the displacement field in multilayered plates
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Zigzag effect and interlaminar continuity (IC) of transverse shear and normal stresses
are both called as C° requirements. Fig. 3 shows that both displacement and transverse stresses,
due to compatibiliy and equilibrium reasons, are C° continuous functions in the thickness z
direction. u and o, have discontinuous first derivatives with correspondance to each interface
where the mechanical properties change.

Q
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Figure 3. C° requirements. Displacement and stress (0p, uand 6y,) fields in the thickness plate
direction in three layered plate.

Since the zigzag effect described above can not be taken account in equivalent single
layer theory (ESL); researchers directed their studies through layerwise theory (LWT). However;
layerwise theory based on just displacements can not be sufficiently enough to describe the actual
stress and strain state in multilayered plates and shells; therefore Reissner’s mixed variational
theorem (RMVT) has been the most suitable theory which takes the transverse stresses in
multilayered plate and shell interfaces in addition to the displacement variables.

3. REISSNER’S MIXED VARIATION THEOREM (RMVT)
Since Reissner’s mixed variation theorem (RMVT) has become the most suitable one in the

recent researches in multilayered plate and shells; Hellinger-Reissner principle (HR) which is the
basis of RMVT, has to be realised.

Master

PBC:
i -l L=y u b
on S,

KE: ¢; = %(u;_,— +2;5)
in ¥V

H BE:f (C;; ;+b:)ydu; dV =0
Slave e¥ h
L]

1]

L]

<N FBC:
Master /(Gz,‘”; —fydu; dS =0
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Slave - e = Ciue O ~ ] X;\ ;J
in V

Figure 4. Tonti diagram for generalized Hellinger-Reissner (HR) principle
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As can be seen from Fig. 4; displacement field u and the stress field ¢ are
master(primary) unknowns, that could be subjected to the & process of variational calculus, in HR
principle. e" and e® are respectively strains derived from displacement and stress masters and
they are called as slaves in Tonti diagram. e" derives from its master (u) displacement field by
using the kinematic- strain-displacement equations (KE). e is derived from its master (6) stress
variable by using the constitutive-stress-strain equations (CE). Two slave fields (e" and e®) are
linked together called as weakened link since multiplied by Lagrange constraint (Scsi]-). The other
weak connections are the balance equations BE (in elasticity called as the stress equilibrium
equations), and the flux boundary conditions FBC (in elasticity called as the traction boundary
conditions) and these appear in Fig 4. as shaded lines.

Adding the weak link contribution gives;

f(e}; - e%)sﬁiidv - f(Gij,j + bi)SuidV + f(csi]-n]- - fi)ﬁuidst =0 (1)

Next, by integrating the o;;;8u; term by parts to eliminate the stress derivatives, splitting
the surface integral dS into dS,, U dS; ;

- f Gij’jSUidV = fcil-SeijdV - fci]-n]-SuidS = fci]-Sei]-dV — fci]-nl-SuidSu - fcijanUidSt (2a)
Then enforcing the boundary condition u; = G; and 6{0; = 0 over dSy;
- f Gij’jSUidV = fGi]'Sei]-dV - fcijn]-?SuidSt (2b)

Substituting Eq.(2.b) into Eq.(1) and simplification of the cancelling terms
ojin;jou;dSe; the following Hellinger-Reissner variational statement 1s obtained,
jn;0u;dS;; the following Helli Rei iational is obtained

5HHR = f[ (e}; - e‘i’j)?}ci]- + GijSe}} - biﬁui ] dv — f fi SuidSt (3)

As can be seen from Eq. (3); variation process (3) is over stresses (6ojj) and strains
(3ejj) derived from (u) displacements. The variational index of its primary variable is the highest
derivative (m) of that field that appears in the variational principle and displacement shape
functions must be C™~1 continuous between finite elements and C™ inside elements in finite
element method.

As can be seen from Eq. (4) that displacement variation index m,, = 1; since first order
derivatives appear.

ej = %(ui,j + ;) “)

The variational index m of the stresses is 0 because no stress derivatives appear in Eq.
(3). This results in choosing displacement shape functions continous and differentiable (C!) inside
elements and only continuous (C°) in the element boundaries. Similarly; stress shape functions
must be only continuous (C°) inside elements and (C™1) in the boundaries which cause jumps as
expected for inplane stresses (0, Oyy, Oxy)-

Reissner’s Mixed Variation Theorem (RMVT) [35]; is a special case of HR principle
and as can be seen from Eq.(5) and Eq.(3); the difference between RMVT and HR principle
comes from chosen Lagrange multipliers which are only out of plan stresses (dc,,) for RMVT.
6HRMVT = f[ (e}{ - eg)Scn + Gijﬁe}]l- - b18ui ] dv — ffl SuidSt (5)

Splitting o5 term into o, (in-plan) and o, (out of plan-normal) stresses and ej; term into
dep and dey; Eq. (5) becomes;
STrmyr = [ (eh — en)d0y, + opdep + oxden — bidu; 1 dV — [ £ du;dS, (6)

The transformed stress-strain relations of an orthotropic lamina in a plane state of stress
are
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Cfl C_fz % galccx 00 C1k3 yxz

Op = ny sz Czkz Ciké 53’;} +10 0 Cé‘s Vyz @)
ck ¢k ckllval o o ck]le;

where the C}} are the transformed elastic coefficients related to the (x,y,z) coordinate

system, which are related to the elastic coefficients in the material coordinates C}; In order to

reduce the number of terms which needs differentiation; by rearranging Eq.(7) using transverse
shear stresses instead of shear strains, takes the form:

Orx Ch Cl, Ci][es 00 C13 sz
k —_ —_ —_ k

Op = Giy =|C5 C5 C Eiy +t10 0 Clz(s TYZ ®
Oxy Cls Cis CéellMxy 0 0 C]3(6

Whitney and Pagano [36] gives the relation between EE in Eq.(8) and C_}j in Eq.(7)
where 6; = 0y ; 6, = Oy ; 03 = 0y ; Gg = Tyy;

oi = Cy€j G,j=1,2,3,6) 9)
For i=3 in Eq.(3) takes;

U3=C_3]€]‘=C_31€1+@62+C_33€3+C_36€5 (10)
By solving Eq.(10) for €3;

_ 03=(C31 €1+C5 €2+C36 €6)

¢ = & (1)
By substituting Eq.(11) into Eq.(9);

61 = (T =225 e + 2203 = Chey + Chos  (1=1236,0=126) (12)

is obtained.

As can be seen from Eq.(12) or in matrix form Eq.(8); in plan stresses (o) are written
in terms of in plan strains and out of plan shear stresses and this change reduces the differentiation
needs compared with Eq.(7) which has transverse shear strains.

Similarly; Whitney and Pagano [36] writes e], matrix in Eq.(6) in terms of inplane
strains (gp) and transverse stresses as;

N —
sz Sﬁx Css Cis sz
sz - gyy| +|cks  ck, Tyz (13)
C13 C§3 C36 Yk K
xy 0 0 C3;
where
P R e
Ck==; Ck=— 5 A=C&CE—Cls 5 Lji#) =45 (14)
K 1
Cl; = = (15)

en and ey are respectively out of plane and in plane strains in Eq.(6), which are derived
from displacement field (u) and obtained bys;
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auk | awk) [
V;{z 0z Bx | ox |
Bv owk | avk [
eh = |ne| =|5; '1'3—y gyy = & | (16)
6;(2 l M ny {auk+ kJ|
0z dy

4. COMPARISONS OF MULTILAYERED THEORIES IN THE LITERATURE

Carrera’s [34] research could be seen as the most detailed one which compares Ren [30], Di
Sciuva [31], Idlbi, Karama and Touratier [32] and Pagano’s [12] 3-D exact solution with his own
studies obtained by LWM-m (Layerwise Model Mixed Analysis), ESLM-m (Equivalent Single
Layer Model Mixed Analysis), LWM-d (Layerwise Model Displacement Analysis) and ESLM-d
(Equivalent Single Layer Model Displacement Analysis).

Ren [30] extended Lekhnitskii [29]’s approach that was originally for beams, and which
describes interlaminar continuous transverse shear stress as well as zigzag effects, to plates. Ren
[30] expressed continuous transverse shear stresses between layers (15,1 = tX,) and (rk 1= ryz)
as;

= &, (x, y)a"(2) + 1, (x,y)c"(2) (17.a)
1y, = &, (X Y)b(@) +n,(x,»)g"(2) (17.b)

where detailed derivation of coeefficients ak(z), b*(z), cX(z) and gK(z) in Eqs. (17.a-

17.b) could be obtained in Ren [30].

Di Sciuva [31] proposed a discrete-layer plate model based on the piecewise cubic
approximation of the in-plane displacement across the plate thickness;

Uy, =u, —zd,w+f,(2)g, ;oandt=12 (18.2)
G=w (18.b)

where u,, and w are the displacements in the x,, and z directions respectively; g, are the
transverse shear rotations for z=0. d,, (.) represents the partial derivative d(.)/ da . The functions
f,:(2) specify the distribution of the transverse shear strains along the thickness as;

fue(2) = 85 f(z) + TRIT g (Z — 210 Yic (19.2)
with a cubic function f(z);
f(z) = z(aF —ST#ZZ) (19.b)

where &, is the Kronecker delta (§; = 1if o = 1; 8; = 0 if o # 1); a,. are parameters
to be determined; z are the coordinates of the k th layer; Yy is the heaviside unit function (it has
the value 0 for z < zy and 1 for z > z; ). The tracers o and &t identify the contributions through
classical plate theory — CLT (8 = &1 = 0) ; FSDT (6 = 1,8, = 0); HSDT (8f = 81 = 1);
RHSDT (8 = 1,81 = 0) plate models.

Di Sciuvia [31] determined a, parameters in Eq. (19.a) by satisfying the interlaminar
continous transverse shear stresses (t5; = 1%;) and (T]}fz = ‘cyz)

Another study, Carrera[34] compared the results with, belongs to Idlbi, Karama and
Touratier [32] that compared the accuracy of three shear deformation laminated plate theories
proposed by Reissner [33], Reddy [34] and Touratier’s [35] sinus approach with the elasticity
solution given by Pagano[12].

Just similar as Eq.(18.a); the kinematics suitable for shear bending is written in Idlbi,
Karama and Touratier [32] as;

U, = —zw,,+f(2)y0 a=1,2 (20.a)
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U;=w (20.b)
where yg are the transverse shear strains at the mid plane of the plate.

Idlbi, Karama and Touratier [32] compared the three shear deformation laminated plate
theories by choosing f(z)=z for Reissner [33]; f(z)=z(1-4z%/3h%) for Reddy [34] and
f(z):% Sin(%z) for Touratier’s [35] sinus approach.

The interlayer continuity conditions, given in Beakou and Touratier [36] were then
introduced to Touratier’s [35] sinus approach that was the best model among those compared, in
[32].

The three dimensional elasticity solutions of Pagano [12] for a simply supported,
symmetric three ply (0/90/0) rectangular plate (b=3a) under sinusoidal loading are used to assess
the theories of Ren [30], Di Sciuva [31], Idlbi, Karama and Touratier [32]. The layer material
coefficients used in Pagano [12] are; E;, = 25x10°psi (172 GPa), Er = 10°psi (7GPa), Gt =
0.5x10°psi (3.4 GPa), p;; = w, = 0.25, Gy = 0.2x10°psi (1.4 GPa) where L signifies the
direction parallel to the fibres, T the transverse direction and p is the Poisson’s ratio.

Carrera[37] made a full Equivalent Single Layer Mixed (ESLM) description in which
Murakami’s [23] zig-zag functions is used for displacement field through total thickness as;

u=ug+ (—l)kfgkuZ +z'v, ,r=12,..,N (21)

where subscript Z refers to the introduced zig-zag term in z power expansion whrere
linear and higher order distributions in the z-direction are introduced by the r-polynomials and
x = 2 7/ hy is a non dimensioned layer coordinate in which zy is the physical coordinate of the

k-layer whose thickness is hy. The exponent k in (—1)¥ changes the sign of the zig-zag term in
each layer which permits the discontinuity of the first derivative of the displacement variables in
the z-direction. As can be seen from Eq.(21) that the unknown variables ugy, u, and u, are layer
(k) independent.

Carrera[37] expressed the stress variables in terms of the displacement variables in
ESLM description by using a weak form of Hooke’s law which can also be seen as the first
integrand in Eq.(6) as;

[ (el —e%)dc,dv =0 (22)

By substituting Eq.(16) for ep and Eq.(13) for e in Eq.(22); it leads to a relation
between transverse stress and displacement variables and the stress variables could be easily
expressed in terms of displacement unknowns.

Carrera [24-25] has also used Layerwise Mixed (LM) description by RMVT which does
not require any zig-zag function for the simulation of the zig-zag effects.

Carrera [34] compared his studies with exact solution of Pagano [12] and the other
available analyses of Ren [30], Di Sciuva [31], Idlbi, Karama and Touratier [32], which is given
in Table 1. The problem considered in Table 1. is a three layered (0/90/0) rectangular (b=3a)
simply supported plate bent by a transverse bisinusoidal distribution of normal pressure (p) just
as the same case in Pagano[12] mentioned above.

Acronyms have been introduced to denote the different analysis of Carrera[34] in Table
1. Three characters have been used to build up these acronyms. The first character can be L or E
which states Layerwise or Equivalent Single Layer Analysis and the second one can be M or D
which states Mixed or classical analysis on the basis of Displacement formulation. The third
character can assume the numbers 1,2,3 or 4 which state the order N of the stress and
displacement fields. For instance, LM3 means Layer-wise Mixed analysis with cubic stress and
displacement field in each layer. A suffix has been added to the acronyms for the transverse
stress results as —A, -H and —I which denote stresses obtained by the assumed model, by Hooke’s
law and by integration of the 3-D indefinite equilibrium equations, respectively.
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Erh3

pa*
. E— a . .« . .

normalized shear stresses Ty, = Ty,/ (%) where Et is transverse elasticity modulus; h is the total

and

Calculations are performed for normalized central deflection w=w x 100

thickness of the plate; a is the width of the plate and p is the normal pressure applied.

Table 1. Comparisons of multilayered plate analyses with exact solution [12]

t W=w x 100 EpT'f T = Tu/ (‘L—a)
a/h 4 10 20 4 10 20
Exact [12] 2.820 0.919 0.610 0.387 0.420 0.434
[32] 2.729 0.918 0.609 0.378 0.441 0.451
[31]-linear | 2.717 0.881 0.599 0.366 0419 | -
[31]-cubic 2.757 0.919 0.610 0.329 0420 | -
[30] 2.800 0920 | - 0.317 0415 | -
Layerwise Model Mixed Analysis (LM)
LM4 2.821 0919 0.610 A 0.386 0.420 0.434
H 0.386 0.420 0.434
LM3 2.822 0.919 0.610 A 0.387 0.420 0.434
H 0.473 0.426 0.439
I 0.387 0.420 0.434
LM2 2.825 0.919 0.610 A 0.394 0.422 0.435
H 0.396 0.421 0.434
I 0.391 0.420 0.434
LMI 2.730 0.910 0.608 A 0.347 0.417 0.433
H 0.365 0.458 0.479
I 0.396 0.418 0.434
Layerwise Model Displacement Analysis (LD)
LD4 2.821 0.919 0.610 H 0.386 0.420 0.434
I 0.387 0.421 0.434
LD3 2.821 0.919 0.610 H 0.390 0.420 0.434
I 0.386 0.420 0.434
LD2 2.798 0.918 0.610 H 0.459 0.419 0.434
I 0.389 0.420 0.434
LDI1 2.721 0.899 0.604 H 0.356 0.420 0.434
I 0.395 0.421 0.435
Equivalent Single Layer Model Mixed Analysis (EM)
EM3 2.815 0.919 0.610 A 0.422 0.427 0.441
H 0.442 0.426 0.440
EM2 2.767 0.906 0.606 A 0.365 0.429 0.444
H 0.355 0.424 0.438
EMI 2.839 0.915 0.606 A 0.399 0.459 0.476
H 0.368 0.435 0.450
Equivalent Single Layer Model Displacement Analysis (ED)-Not included Zig-zag Effect
ED4 2.625 0.867 0.595 H 0.612 0.307 0.312
I 0.378 0.427 0.596
ED3 2.627 0.867 0.595 H 0.613 0.307 0.312
I 0.378 0.427 0.436
ED2 2.035 0.752 0.566 H 0.399 0.158 0.158
I 0.437 0.439 0.439
EDI 2.051 0.750 0.563 H 0.414 0.158 0.158
I 0.437 0.439 0.439

TEL/ET = 25, GLT/ET = GLZ/ET = 050, GTT/ET = O.ZO,ULT =V = VU = 0.25
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5.8

The

UMMARY AND CONCLUDING REMARKS

following points could be obtained as a result of the review of multilayered structure

literature as;

. Although layerwise theories (LD and LM) suffer from major computational drawback
due to the heavy algebra; they lead to excellent aggreement with respect to three dimensional
exact solutions.

. Mixed models either ESLM-mixed ( Equivalent Single Layer Model — mixed ) or
LWM-mixed ( Layerwise Model — mixed ) show better performance than classical
displacement models. (LWM-displacement and ESLM-displacement)

. Since ESLM - displacement type analysis does not describe zig-zag effects; are not in
sufficient aggrement to the exact solution and needs a posteriori procedure for computing
transverse shear stresses. The accuracy of ESLM analysis is also very much subordinate to
laminate lay-outs and to the mechanical properties of the lamina.

In conclusion; Layerwise Mixed Model by Reissner’s Mixed Variational Theorem

(RMVT) that is, post processing procedures are not required for interlaminar transverse shear
stresses, leads to better three dimensional description of stress and strain fields of multilayered
structures than classical analysis formulated with only displacement variables.

LIST OF SYMBOLS AND ACRONYMS

Symbols

a,b,h  :Plate/ shell geometrical parameters ( length, width and thickness )

N, : Number of constituent layers of multilayered structures

k : Sub/super-script used to denote parameters related to the k-layer
Op : In-plane stresses

On : Normal (transverse) stresses

e! : Strain matrix derived from displacements (u)

e° : Strain matrix derived from stresses (o)

EL : Longitudinal elasticity modulus

Et : Transverse elasticity modulus

Gt : Shear modulus in the longitudinal-transverse plane

Acronyms

RMVT : Reissner’s Mixed Variation Theorem
LWT : Layerwise Theory

ESLT : Equivalent Single Layer Theory

FSDT  : First Order Shear Deformation Theory
HSDT : Higher Order Shear Deformation Theory
CLT : Classical Lamination Theory

IC
V4
KE

: Interlaminar Continuity
: Zig-Zag Effect
: Kinematic Equations

PBC : Primary Boundary Conditions

CE

: Constitutive Equations

FBC : Flux Boundary Conditions
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