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ABSTRACT  
 
This review article is devoted to the developments and  ideas for the analysis of multilayered composite plate 
and shells. In the first part; the paper presents a through review of the literature involving the use in the 
modeling of multilayered plates and shells. A second part reviews relevant key points that should be 
considered for an accurate stress and strain fields, herein referred to as C଴ requirements (zig-zag form of the 
displacement field in the thickness direction and continuity of transverse normal and shear stresses at each 
layer interface). In the third part, the paper explains one of the mixed variation principles Hellinger-Reissner 
(HR) in view of C଴ requirements. It is then shown that Reissner’s mixed variational theorem  (RMVT) can be 
simply constructed by adding the constraint equations (Lagrange multiplier) for the transverse stresses to 
Hellinger Reissner Principle (HR). The mixed form of Hooke’s law has also been derived in this section. The 
final part of the paper is devoted to giving an overview with selected results of numerical performance that 
can be acquired by RMVT applications; comparison to elasticity solutions and other significant analyses, 
based on classical and refined approaches are given. It is concluded that RMVT leads to a better description 
than classical analysis formulated with only displacement variables. 
Keywords: FSDT, HSDT, layerwise, laminated composite, RMVT, C0 requirements. 
  
 
TABAKALI KOMPOZİT PLAK VE KABUKLARIN ANALİZİ ÜZERİNE GENEL 
DEĞERLENDİRME 
 
ÖZET 
 
Bu derleme makalesi ile tabakalı kompozit plak ve kabukların analizinin geçmişten günümüze gelişimi ve 
varılan sonuçların anlatılması amaçlanmıştır. İlk bölümde; kompozit plak ve kabukların analizi üzerine 
yapılan çalışmalar gözden geçirilmiştir. İkinci bölüm; analizde doğru gerilme ve deplasman alanlarının 
dikkate alınması için gerekli anahtar noktaların neler olduğuna adanmış; C଴ gereksinimleri adı verilen bu 
anahtar noktaların(kalınlık doğrultusundaki deplasman alanının zig-zag biçiminde olması ile enine normal ve 
kayma gerilmelerinin tabaka arayüzlerinde sürekliliği) sağlanmasının gerekleri açıklanmıştır. Üçüncü bölüm, 
C଴ gereksinimleri ışığı altında karışık varyasyon prensiplerinden Hellinger-Reissner (HR) açıklanmasına 
ayrılmıştır. Sonrasında, Reissner’ın Karışık Varyasyon Teoreminin (RMVT); HR prensibindeki kısıtların 
Lagrange çarpanı yöntemiyle sadece kayma gerilmelerine indirgenmesiyle kolaylıkla elde edilebileceği 
gösterilmiştir. Ayrıca; Hooke kanunun karışık varyasyon teoremine göre düzenlenişi de bu bölümde 
verilmiştir. Makalenin son bölümünde RMVT ile diğer teorilerin karşılaştırmalı sonuçlarına yer verilmiştir.  
Anahtar Sözcükler: FSDT, HSDT, tabaka duyarlı, tabakalı kompozit, RMVT, C0 gereksinimleri. 
 
 

                                                 
* e-mail/e-ileti: hasim@itu.edu.tr, tel: (212) 559 64 63 

Journal of Engineering and Natural Sciences 
Mühendislik ve Fen Bilimleri Dergisi 

Sigma 32, 
176-188,    

2014 



177 
 

1. INTRODUCTION 
 
Composite materials consist of two or more materials which together produce desirable properties 
such as stiffness, strength, corrosion resistance, thermal properties and fatique life that can not be 
achieved with any of the constituents alone. Some of the properties that can be improved by 
forming a composite material are stiffness, strength, weight reduction, corrosion resistance, 
thermal properties and fatique life. Due to its enhanced properties; there has been a major effort to 
develop composite material systems in all types of engineering structures. (e.g., 
aerospace,automotive as well as in bridge and building construction) in the last two decades. 
Examples of multilayered, anisotropic structures are sandwich constructions and composite 
structures made of orthotropic laminae. In most of the applications, these structures mostly appear 
as flat (plates) or curved panels (shells). In this section; the plate and shell theories are explained 
from single layer structures through multilayered ones in the literature. 

First studies in the plate and shell literature are grouped as Love First Approximation 
Theory (LFAT) by Kirchhoff [1] and Love [2] with an assumption that normals to the reference 
surface Ω remain normal in the deformed states and do not change in length.Likewise, Cauchy [3] 
and Poisson [4] have studied in thin shell assumptions which can be assigned to the first grouping.  

Reissner [5] and Mindlin [6] considered not only the work done by in-plane stresses but 
also the work done by transverse shear stresses in their studies and they are grouped as Love 
Second Approximation Theory (LSAT). Koiter [7] recommended that a refinement of Love’s first 
approximation theory (LSAT) is indeed meaningless, unless the effects of transverse shear and 
normal stresses are taken into account at the same time. 

Extensions of Kirchoff-Love First Approximation theory to layered structures are 
known as Classsical Lamination Theory.[8] Applications of LSAT theories to multilayered 
structures are referred as the First Order Shear Deformation Theory (FSDT) by Whitney [9]. 
However, the drawback of FSDT comes from the representation of the constant transverse shear 
strains through laminate thickness and this discrepancy between the actual quadratic stress state 
and the constant stress state predicted by the first order theory is often corrected in computing 
transverse shear force resultants by multiplying the transverse stress integrals with a shear 
correction coefficient parameter. 

Due to the need for shear correction coefficients used in the first order theory, higher 
order theories are developed to have quadratic variation of the transverse shear strains and 
transverse shear stresses through each layer by expanding the displacement field in terms of the 
thickness coordinate up to any desired degree but especially third degree and this theories are 
referred as higher order shear deformation theory (HOT) or third order shear deformation theory 
(TSDT). [10] 

Following Reddy [11] these types of theories such as CLT, FSDT or HSDT are grouped 
as Equivalent Single Layer Theories (ESLM) which have a number of unknown variables that are 
independent of the number of constitutive layers NL. In addition to their inherent simplicity and 
low computational cost, the ESL models often provide sufficiently accurate description of global 
response for thin to moderately thick laminates, e.g., gross deflections, critical buckling loads. 
However, the comparison of ESL models with 3-D elasticity exact solutions by Pagano [12,13], 
Pagano and Hatfield [14], Srinivas and Rao [15,16], Noor [17,18] shows that ESL models  are 
often incapable of accurately describing the state of stress and strain at the ply level near 
geometric and material discontinuities. It is then realized that this dicrepancy is a result of the 
assumption taken in all equivalent single layer laminate theories that the displacements are 
continous and differentiable (Cଵሻ functions of the thickness coordinate contrary to the actual zig-
zag form of the laminated plates. Therefore; a possible, natural manner of including the zig-zag 
effect could be implemented by applying CLT, FSDT of TSDT at a layer level, that is, each layer 
is seen as an independent plate which is known as layerwise theory in the literature. Relevant 
examples of these types of theories are found in the articles by Srinivas [19], who applied CLT in 

K.A. Haşim                                                                                 Sigma 32, 176-188, 2014 



178 
 

each layer, and by Cho,Bert and Striz [20], who implemented the HOT by Lo,Christensen, and 
Wu [21] in each layer. Generalization of layerwise theory were given by Reddy [11] who 
expressed the diplacement variables in the thickness direction in terms of Lagrange polynomials 
and stated that it has to be avoided the use of Hermite interpolation functions which is 
kinematically incorrect for general laminates since the transverse strains are forced to be 
continuous through the thickness.  

Providing the displacement fields zig-zag form by choosing such as not to be 
differentiable functions in the layer acrosses and the equality conditions of the inplane stresses 
ሺτ୶୸, τ୷୸ሻ  between the layers are both called as  C଴ requirements and this requirements will be 
discussed in the second section of the article.  

Although layerwise theory(LWT) has more computational effort than equivalent single 
layer theory (ESL); results in the literature show that LWT is more aggreable with 3-D elasticity 
solutions. However; neither LWT nor ESL are sufficient with providing the second C଴ 
requirement (interlaminar stress continuity of transverse shear and normal stresses) if the 
displacement field is only taken as unknowns. This situation directed the researchers studies 
through the mixed layerwise methods which have interlaminar transverse shear stresses as 
unknowns in addition to the displacement field variables. 

The third part of the paper is devoted to explaining the Reissner’s mixed variation 
theorem (RMVT) which is a special case of Hellinger-Reissner (HR) variational principle,  in 
view of C଴ requirements. 

Murakami[22-23] was the first to apply RMVT to multilayered structures by assuming 
two independent fields for displacement and transverse stress variables. Murakami [24-25] 
showed that RMVT does not experience any particular difficulty when including transverse 
normal stresses which is recommended by Koiter [7]. Carrera[37] made a full Equivalent Single 
Layer Mixed (ESLM) description in which Murakami’s [23] zig-zag functions is used for 
displacement field through total thickness and expressed the stress variables in terms of the 
displacement variables by using a weak form of Hooke’s law. Carrera [24-25] has also used 
Layerwise Mixed (LM) description which does not require any zig-zag function for the simulation 
of the zig-zag effects by RMVT. Large deflection of post-buckling was also analysed by Carrera 
and Kröplin [26]. Nonlinear dynamic problems were solved by Carrera and Krause [27]. Molerio 
and others. [28] studied a layerwise mixed least-squares finite element model for static analysis of 
multilayered composite plates. 

Lekhnitskii [29] developed an approach that was originally for beams, and which 
describes interlaminar continuous transverse shear stress as well as zigzag effects, was extented to 
plates by Ren [30]. Di Sciuva [31] proposed a general quadrilateral multilayered plate element 
formulated on the basis of a refined third order shear deformation theory and makes use of a 
displacement field that fulfils a priori the geometric and stress continuity conditions at the 
interfaces between the layers. Idlbi, Karama and Touratier [32] compared the accuracy of three 
shear deformation laminated plate theories proposed by Reissner [33], Reddy [34] and Touratier’s 
[35] sinus approach with the elasticity solution given by Pagano[12]. The interlayer continuity 
conditions, given in Beakou and Touratier [36] were then introduced to Touratier’s [35] sinus 
approach that was the best model among those compared. 

The first discussion on the application of Reissner’s Mixed Variation Theorem to shells 
was made by Reissner [38]. Toledano and Murakamasi’s [39-40] theory was extended to 
cylindrical shells by Bhaskar and Varadan [41] in which a cubic term was added to the in-plane 
displacement representation and the transverse shear stress field was taken to the fourth order in 
each layer. Jing and Tzeng [42] proposed a mixed principle which was obtained by RMVT by 
discarding the transverse normal stress (σ୸୸ሻ contribution which contrasts with Koiter’s [7] 
recommendation. Carrera [43,44] has also proposed an extension of RMVT to shells which shows 
good agreement with 3-d elasticity solutions for curved panels and shells. 
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2. C0 REQUIREMENTS 
 
As can be seen from Fig. 1; multilayered composite plates could have different mechanical 
properties and fiber orientations in each layer. 
 

 
 

Figure 1. A laminate made up of laminae with different fiber orientations 
 

Transverse discontinuous mechanical properties cause displacement fields 
u=(ݑଵ,  ଷሻ in the thickness direction which can exhibit a rapid change of their slopes inݑ ,ଶݑ
correspondence to each layer interface. Fig.2 shows how the scenarios of displacement u 
distributions in a laminated plate could appear in the exact solution or experiments. This 
displacement distribution is known as zigzag effect in the literature. Although in-plane stresses 
ોܘ ൌ(σ୶୶, σ୷୷,σ୶୷ሻ can in general be discontinuous as a result of equilibrium reasons; transverse 
stresses ોܖ ൌ(σ୶୸, σ୷୸, σ୸୸ሻ  have to be continuous at each layer interface. This is often referred to 
in the literature as interlaminar continuity (IC) of transverse shear and normal stresses.  

 

 
 

Figure 2. Zigzag form of the displacement field in multilayered plates 
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Zigzag effect and interlaminar continuity (IC) of transverse shear and normal stresses 
are both called as C଴ requirements. Fig. 3 shows that both displacement and transverse stresses, 
due to compatibiliy and equilibrium reasons, are C଴ continuous functions in the thickness z 
direction. u and ોܖ have discontinuous first derivatives with correspondance to each interface 
where the mechanical properties change. 

 

 
 

Figure 3. ۱૙ requirements. Displacement and stress (ોܘ, u and ોܖሻ fields in the thickness plate 
direction in three layered plate. 

 
Since the zigzag effect described above can not be taken account in equivalent single 

layer theory (ESL); researchers directed their studies through layerwise theory (LWT). However; 
layerwise theory based on just displacements can not be sufficiently enough to describe the actual 
stress and strain state in multilayered plates and shells; therefore Reissner’s mixed variational 
theorem (RMVT) has  been the most suitable theory which takes the transverse stresses in 
multilayered plate and shell interfaces  in addition to the displacement variables. 
 
3. REISSNER’S MIXED VARIATION THEOREM (RMVT) 
 
Since Reissner’s mixed variation theorem (RMVT) has become the most suitable one in the 
recent researches in multilayered plate and shells; Hellinger-Reissner principle (HR) which is the 
basis of RMVT, has to be realised.  
 

 
 

Figure 4. Tonti diagram for generalized Hellinger-Reissner (HR) principle 
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As can be seen from Fig. 4; displacement field u and the stress field σ are 
master(primary) unknowns, that could be subjected to the δ process of variational calculus, in HR 
principle. ܝ܍ and ܍ો are respectively strains derived from displacement and stress masters and 
they are called as slaves in Tonti diagram. ܝ܍ derives from its master  (u) displacement field by 
using the kinematic- strain-displacement equations (KE). ܍ો is derived from its master (σ) stress 
variable by using the constitutive-stress-strain equations (CE). Two slave fields (ܝ܍ and ܍ો) are 
linked together called as weakened link since multiplied by Lagrange constraint ൫δσ୧୨൯. The other 
weak connections are the balance equations BE (in elasticity called as the stress equilibrium 
equations), and the flux boundary conditions FBC (in elasticity called as the traction boundary 
conditions) and these appear in Fig 4. as shaded lines.     

Adding the weak link contribution gives; 
 

ሺe୧୨׬
୳ െ e୧୨

σሻδσ୧୨dV െ ൫σ୧୨,୨׬ ൅ b୧൯δu୧dV ൅ ൫σ୧୨n୨׬ െ t̂୧൯δu୧dS୲ ൌ 0                                                (1) 
 

Next, by integrating the σ୧୨,୨δu୧ term by parts to eliminate the stress derivatives, splitting 
the surface integral dS into dS୳ U dS୲ ; 
 

െ ׬ σ୧୨,୨δu୧dV ൌ ׬ σ୧୨δe୧୨
୳dV െ ׬ σ୧୨n୨δu୧dS ൌ ׬ σ୧୨δe୧୨

୳dV െ ׬ σ୧୨n୨δu୧dS୳ െ ׬ σ୧୨n୨δu୧dS୲    (2.a) 
 

Then enforcing the boundary condition u୧ ൌ uො୧ and ߜuො୧ ൌ 0 over dS୳; 
 

െ ׬ σ୧୨,୨δu୧dV ൌ ׬ σ୧୨δe୧୨
୳dV െ ׬ σ୧୨n୨δu୧dS୲                                                                                   (2.b) 

 

Substituting Eq.(2.b) into Eq.(1) and simplification of the cancelling terms 
׬ σ୧୨n୨δu୧dS୲; the following Hellinger-Reissner variational statement is obtained; 
  

ΠHRߜ ൌ ሾ  ሺe୧୨׬
୳ െ e୧୨

σሻδσ୧୨ ൅ σ୧୨δe୧୨
୳ െ b୧δu୧ ሿ dV െ ׬ t̂୧ δu୧dS୲                                                    (3) 

 

As can be seen from Eq. (3);  variation process ሺδሻ is over stresses ሺδσ୧୨ሻ and strains 
ሺδe୧୨

୳ሻ derived from (u) displacements. The variational index of its primary variable is the highest 
derivative (m) of that field that appears in the variational principle and displacement shape 
functions must be C୫ିଵ continuous between finite elements and C୫ inside elements in finite 
element method. 

As can be seen from Eq. (4) that displacement variation index m୳ ൌ 1; since first order 
derivatives appear. 
 

e୧୨
୳ ൌ

ଵ

ଶ
ሺu୧,୨ ൅ u୨,୧ሻ                                                                                                                           (4)  

 

The variational index mσ of  the stresses is 0 because no stress derivatives appear in Eq. 
(3). This results in choosing displacement shape functions continous and differentiable (Cଵሻ inside 
elements and only continuous (C଴ሻ in the element boundaries. Similarly; stress shape functions 
must be only continuous ሺC଴ሻ inside elements and ሺCିଵሻ in the boundaries which cause jumps as 
expected for inplane stresses ሺσ୶୶,σ୷୷, σ୶୷ሻ. 

Reissner’s Mixed Variation Theorem (RMVT) [35]; is a special case of HR principle 
and as can be seen from Eq.(5) and Eq.(3); the difference between RMVT and HR principle 
comes from chosen Lagrange multipliers which are only out of plan stresses ሺδσ୬ሻ for RMVT. 
 

ΠRMVTߜ ൌ ሾ  ሺe୬׬
୳ െ e୬

σሻδσ୬ ൅ σ୧୨δe୧୨
୳ െ b୧δu୧ ሿ dV െ ׬ t̂୧ δu୧dS୲                                                (5) 

 

Splitting σ୧୨ term into σ୮(in-plan) and σ୬(out of plan-normal) stresses and  δe୧୨
୳ term into 

δe୮
୳ and δe୬

୳; Eq. (5) becomes; 
 

ΠRMVTߜ ൌ ሾ  ሺe୬׬
୳ െ e୬

σሻδσ୬ ൅ σ୮δe୮
୳ ൅ σ୬δe୬

୳ െ b୧δu୧ ሿ dV െ ׬ t̂୧ δu୧dS୲                                  (6) 
 

The transformed stress-strain relations of an orthotropic lamina in a plane state of stress 
are 
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σP ൌ ቎

௫௫ߪ
௞

௬௬ߪ
௞

௫௬ߪ
௞

቏ ൌ ൦

ଵଵܥ
௞തതതത ଵଶܥ

௞തതതത ଵ଺ܥ
௞തതതത

ଵଶܥ
௞തതതത ଶଶܥ

௞തതതത ଶ଺ܥ
௞തതതത

ଵ଺ܥ
௞തതതത ଶ଺ܥ

௞തതതത ଺଺ܥ
௞തതതത

൪ ቎

௫௫ߝ
௞

௬௬ߝ
௞

௫௬ߛ
௞

቏ ൅ ൦

0 0 ଵଷܥ
௞തതതത

0 0 ଶଷܥ
௞തതതത

0 0 ଷ଺ܥ
௞തതതത

൪ ቎
௫௭ߛ

௞

௬௭ߛ
௞

߳௭௭
௞

቏                                                       (7) 

 

where the Cన఩
୩തതത are the transformed elastic coefficients related to the (x,y,z) coordinate 

system, which are related to the elastic coefficients in the material coordinates C୧୨
୩. In order to 

reduce the number of terms which needs differentiation; by rearranging Eq.(7) using transverse 
shear stresses instead of shear strains, takes the form: 
 

σP ൌ ൦

σ୶୶
୩

σ୷୷
୩

σ୶୷
୩

൪ ൌ ൦

Cଵଵ
୩෢ Cଵଶ

୩෢ Cଵ଺
୩෢

Cଵଶ
୩෢ Cଶଶ

୩෢ Cଶ଺
୩෢

Cଵ଺
୩෢ Cଶ଺

୩෢ C଺଺
୩෢

൪ ൦

ε୶୶
୩

ε୷୷
୩

γ୶୷
୩

൪ ൅ ൦

0 0 Cଵଷ
୩෢

0 0 Cଶଷ
୩෢

0 0 Cଷ଺
୩෢

൪ ቎
τ୶୸

୩

τ୷୸
୩

σ୸୸
୩

቏                                                       (8)              

 

Whitney and Pagano [36] gives the relation between Cన఩
୩෢ in Eq.(8) and Cన఩

୩തതത in Eq.(7) 
where σଵ ൌ σ୶ ; σଶ ൌ σ୷ ; σଷ ൌ σ୸ ; σ଺ ൌ τ୶୷; 
 

σ୧ ൌ Cన఩തതതԖ୨              ሺi, j ൌ 1,2,3,6ሻ                                                                                                          (9) 
 

For i=3 in Eq.(3) takes; 
 

ଷߪ ൌ Cଷ఩തതതത Ԗ୨ ൌ  Cଷଵതതതതത Ԗଵ ൅ Cଷଶതതതതത Ԗଶ ൅ Cଷଷതതതതത Ԗଷ ൅ Cଷ଺തതതതത Ԗ଺                                                                       (10) 
 

By solving Eq.(10) for Ԗଷ; 
 

Ԗଷ ൌ
σయିሺCయభതതതതത ஫భାCయమതതതതത ஫మାCయలതതതതത ஫లሻ

Cయయതതതതത                                                                                                           (11)                               
 

By substituting Eq.(11) into Eq.(9); 
 

σ୧ ൌ ቀCనαതതതത െ
 Cഠయതതതതത   Cయαതതതതത 

Cయయതതതതത ቁ Ԗα ൅
 Cഠయതതതതത 

Cయయതതതതത σଷ ൌ Cనα
୩෢ Ԗα ൅  Cనଷ

୩෢σଷ     ሺi ൌ 1,2,3,6, α ൌ 1,2,6ሻ                           (12) 
 

is obtained. 
As can be seen from Eq.(12) or in matrix form Eq.(8); in plan stresses ሺσPሻ are written 

in terms of in plan strains and out of plan shear stresses and this change reduces the differentiation 
needs compared with Eq.(7) which has transverse shear strains.   

Similarly; Whitney and Pagano [36]  writes e୬
σ  matrix in Eq.(6) in terms of inplane 

strains (ε୮ሻ and transverse stresses as; 
 

e୬
σ ൌ ൦

γ୶୸
୩

γ୷୸
୩

ε୸୸
୩

൪ ൌ ቎
0 0 0
0 0 0

Cଵଷ
୩෢ Cଶଷ

୩෢ Cଷ଺
୩෢

቏ ൦

ε୶୶
୩

ε୷୷
୩

γ୶୷
୩

൪ ൅ ൦

Cହହ
୩෢ Cସହ

୩෢ 0

Cସହ
୩෢ Cସସ

୩෢ 0

0 0 Cଷଷ
୩෢

൪ ቎
τ୶୸

୩

τ୷୸
୩

σ୸୸
୩

቏                                               (13)     

 

where 
 

Cనన
୩෢ ൌ

Cഡഡ
ౡതതതത

∆
    ;     Cన఩

୩෢ ൌ
ିCഠഡ

ౡതതതത

∆
     ;     ∆ൌ  Cହହ

୩തതതതത Cସସ
୩തതതതത െ Cସହ

୩തതതതതଶ
   ;    i, jሺi ് jሻ ൌ 4,5                                       (14) 

 

Cଷଷ
୩෢ ൌ

     ଵ     

Cయయ
ౡതതതതത                                                                                                                                     (15) 

 

e୬
୳ and e୮

୳ are respectively out of plane and in plane strains in Eq.(6), which are derived 
from displacement field (u) and obtained by;  
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                                                           (16) 

 
4. COMPARISONS OF MULTILAYERED THEORIES IN THE LITERATURE 
 
Carrera’s [34] research could be seen as the most detailed one which compares Ren [30], Di 
Sciuva [31], Idlbi, Karama and Touratier [32] and Pagano’s [12] 3-D exact solution with his own 
studies obtained by LWM-m (Layerwise Model Mixed Analysis), ESLM-m (Equivalent Single 
Layer Model Mixed Analysis), LWM-d (Layerwise Model Displacement Analysis) and ESLM-d 
(Equivalent Single Layer Model Displacement Analysis). 

Ren [30] extended Lekhnitskii [29]’s approach that was originally for beams, and which 
describes interlaminar continuous transverse shear stress as well as zigzag effects, to plates. Ren 
[30] expressed continuous transverse shear stresses between layers ሺτ୶୸

୩ିଵ ൌ τ୶୸
୩ ሻ and ሺτ୷୸

୩ିଵ ൌ τ୷୸
୩ ሻ   

as; 
 

τ୶୸
୩ ൌ ξ୶ሺx, yሻa୩ሺzሻ ൅ η୶ሺݔ,  ሻc୩ሺzሻ                                                                                         (17.a)ݕ

 

 τ୷୸
୩ ൌ ξ୷ሺx, yሻb୩ሺzሻ ൅ η୷ሺݔ,  ሻg୩ሺzሻ                                                                                        (17.b)ݕ

 

where detailed derivation of coeefficients a୩ሺzሻ, b୩ሺzሻ, c୩ሺzሻ and g୩ሺzሻ in Eqs. (17.a-
17.b) could be obtained in Ren [30].                                          

Di Sciuva [31]  proposed a discrete-layer plate model based on the piecewise cubic 
approximation of the in-plane displacement across the plate thickness; 

 

uα෦ ൌ uα െ z ∂αw ൅ fατሺzሻgτ     ;  α and τ ൌ 1,2                                                                              (18.a) 
 

uଷ෦ ൌ w                                                                                                                                                (18.b) 
 

where uα and w are the displacements in the xα and z directions respectively; gτ are the 
transverse shear rotations for z=0. ∂α (.) represents the partial derivative ∂ሺ. ሻ/ ∂α  . The functions 
fατሺzሻ specify the distribution of the transverse shear strains along the thickness as; 
 

fατሺzሻ ൌ δα
τ  fሺzሻ ൅ ∑ aατ୩ሺz െ z୩ሻY୩

Nିଵ
୩ୀଵ                                                                                          (19.a) 

 

with a cubic function f(z); 
 

fሺzሻ ൌ z ቀδF െ δT
ସ

ଷ୦మ zଶቁ                                                                                                                 (19.b) 
 

where δα
τ  is the Kronecker delta (δα

τ ൌ 1 if α ൌ τ;  δα
τ ൌ 0 if α ് τሻ; aατ୩ are parameters 

to be determined; z୩ are the coordinates of the k th layer; Y୩ is the heaviside unit function (it has 
the value 0 for z < z୩ and 1 for z ൒ z୩ ). The tracers δF and δT identify the contributions through 
classical plate theory – CLT (δF ൌ δT ൌ 0ሻ ; FSDT (δF ൌ 1, δT ൌ 0ሻ; HSDT ሺδF ൌ δT ൌ 1ሻ; 
RHSDT (δF ൌ 1, δT ൌ 0ሻ plate models. 

Di Sciuvia [31] determined aατ୩ parameters in Eq. (19.a) by satisfying the interlaminar 
continous transverse shear stresses ሺτ୶୸

୩ିଵ ൌ τ୶୸
୩ ሻ and ൫τ୷୸

୩ିଵ ൌ τ୷୸
୩ ൯. 

Another study, Carrera[34] compared the results with, belongs to Idlbi, Karama and 
Touratier [32] that compared the accuracy of three shear deformation laminated plate theories 
proposed by Reissner [33], Reddy [34] and Touratier’s [35] sinus approach with the elasticity 
solution given by Pagano[12].  

Just similar as Eq.(18.a); the kinematics suitable for shear bending is written in Idlbi, 
Karama and Touratier [32] as; 
 

Uα ൌ െzw,α൅ fሺzሻγα
଴       ;          α ൌ 1 , 2                                                                                      (20.a) 
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Uଷ ൌ w                                                                                                                                               (20.b) 
 

where γα
଴ are the transverse shear strains at the mid plane of the plate. 

Idlbi, Karama and Touratier [32] compared the three shear deformation laminated plate 
theories  by choosing  f(z)=z for Reissner [33]; f(z)=z(1-4ݖଶ/3݄ଶሻ  for Reddy [34] and 

f(z)=
୦

π
 Sinሺ

π୸

୦
ሻ for Touratier’s [35] sinus approach. 

The interlayer continuity conditions, given in Beakou and Touratier [36] were then 
introduced to Touratier’s [35] sinus approach that was the best model among those compared, in 
[32]. 

The three dimensional elasticity solutions of Pagano [12] for a simply supported, 
symmetric three ply (0/90/0) rectangular plate (b=3a) under sinusoidal loading are used to assess 
the theories of Ren [30], Di Sciuva [31], Idlbi, Karama and Touratier [32]. The layer material 
coefficients used in Pagano [12] are; EL ൌ 25x10଺psi ሺ172 GPaሻ, ET ൌ 10଺psi ሺ7GPaሻ, GLT ൌ
0.5x10଺psi ሺ3.4 GPaሻ, μLT ൌ μLT ൌ 0.25, GTT ൌ 0.2x10଺psi ሺ1.4 GPaሻ where L signifies the 
direction parallel to the fibres, T the transverse direction and μ is the Poisson’s ratio. 

Carrera[37] made a full Equivalent Single Layer Mixed (ESLM) description in which 
Murakami’s [23] zig-zag functions is used for displacement field through total thickness as; 
 

u ൌ u଴ ൅ ሺെ1ሻ୩ζ୩u୸ ൅ z୰u୰      , r ൌ 1,2, … , N                                                                                (21) 
 

where subscript Z refers to the introduced zig-zag term in z power expansion whrere 
linear and higher order distributions in the z-direction are introduced by the r-polynomials and 
ζ୩ ൌ 2 z୩/ h୩ is a non dimensioned layer coordinate in which  z୩ is the physical coordinate of the 
k-layer whose thickness is  h୩.  The exponent k in ሺെ1ሻ୩ changes the sign of the zig-zag term in 
each layer which permits the discontinuity of the first derivative of the displacement variables in 
the z-direction. As can be seen from Eq.(21) that the unknown variables u଴, u୸ and u୰ are layer 
(k) independent. 

Carrera[37] expressed the stress variables in terms of the displacement variables in 
ESLM description by using a weak form of Hooke’s law  which  can also be seen as the first 
integrand  in Eq.(6)  as; 
 

ሺe୬׬
୳ െ e୬

σሻδσ୬dv ൌ 0                                                                                                                         (22) 
 

By substituting Eq.(16) for e୬
୳ and Eq.(13) for e୬

σ  in Eq.(22); it leads to a relation 
between transverse stress and displacement variables and the stress variables could be easily 
expressed in terms of displacement unknowns. 

Carrera [24-25] has also used Layerwise Mixed (LM) description by RMVT which does 
not require any zig-zag function for the simulation of the zig-zag effects.  

Carrera [34] compared his studies with exact solution of Pagano [12] and the other 
available analyses of Ren [30], Di Sciuva [31], Idlbi, Karama and Touratier [32], which is given 
in Table 1. The problem considered in Table 1. is a three layered (0/90/0) rectangular (b=3a) 
simply supported plate bent by a transverse bisinusoidal distribution of normal pressure ሺpሻ just 
as the same case in Pagano[12] mentioned above.  

Acronyms have been introduced to denote the different analysis of Carrera[34] in Table 
1. Three characters have been used to build up these acronyms. The first character can be L or E 
which states Layerwise or Equivalent Single Layer Analysis and the second one can be M or D 
which states Mixed or classical analysis on the basis of Displacement formulation.  The third 
character can assume the numbers 1,2,3 or 4 which state the order N of the stress and 
displacement fields. For instance, LM3 means Layer-wise Mixed analysis with cubic stress and 
displacement field in each layer.  A suffix has been added to the acronyms for the transverse 
stress results as –A, -H and –I which denote stresses obtained by the assumed model, by Hooke’s 
law and by integration of the 3-D indefinite equilibrium equations, respectively.  
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Calculations are performed for normalized central deflection wഥ=w x 100 
ET୦య

௣௔ర  and 

normalized shear stresses τ୶୸തതതത ൌ τ୶୸/ሺ
୮ୟ

୦
ሻ where ET is transverse elasticity modulus; h is the total 

thickness of the plate; ܽ is the width of the plate and p is the normal pressure applied.  
 

Table 1. Comparisons of multilayered plate analyses with exact solution [12] 
 

 ഥ=w x 100ܟ †
૜ܐ܂۳

૝܉ܘ    ૌܢܠതതതത ൌ ૌܢܠ/ሺ
܉ܘ
ܐ

ሻ 

a/h 4 10 20  4 10 20 
Exact [12] 2.820 0.919 0.610  0.387 0.420 0.434 

[32] 2.729 0.918 0.609  0.378 0.441 0.451 
[31]-linear 2.717 0.881 0.599  0.366 0.419 ----- 
[31]-cubic 2.757 0.919 0.610  0.329 0.420 ----- 

[30] 2.800 0.920 -----  0.317 0.415 ----- 
Layerwise Model Mixed Analysis (LM) 

LM4 2.821 0.919 0.610 A 0.386 0.420 0.434 
    H 0.386 0.420 0.434 

LM3 2.822 0.919 0.610 A 0.387 0.420 0.434 
    H 0.473 0.426 0.439 
        
    I 0.387 0.420 0.434 

LM2 2.825 0.919 0.610 A 0.394 0.422 0.435 
    H 0.396 0.421 0.434 
    I 0.391 0.420 0.434 

LM1 2.730 0.910 0.608 A 0.347 0.417 0.433 
    H 0.365 0.458 0.479 
    I 0.396 0.418 0.434 

Layerwise Model Displacement Analysis (LD) 
LD4 2.821 0.919 0.610 H 0.386 0.420 0.434 

    I 0.387 0.421 0.434 
LD3 2.821 0.919 0.610 H 0.390 0.420 0.434 

    I 0.386 0.420 0.434 
LD2 2.798 0.918 0.610 H 0.459 0.419 0.434 

    I 0.389 0.420 0.434 
LD1 2.721 0.899 0.604 H 0.356 0.420 0.434 

    I 0.395 0.421 0.435 
Equivalent Single Layer Model Mixed Analysis (EM) 

EM3 2.815 0.919 0.610 A 0.422 0.427 0.441 
    H 0.442 0.426 0.440 

EM2 2.767 0.906 0.606 A 0.365 0.429 0.444 
    H 0.355 0.424 0.438 

EM1 2.839 0.915 0.606 A 0.399 0.459 0.476 
    H 0.368 0.435 0.450 

Equivalent Single Layer Model Displacement Analysis (ED)-Not included Zig-zag Effect 
ED4 2.625 0.867 0.595 H 0.612 0.307 0.312 

    I 0.378 0.427 0.596 
ED3 2.627 0.867 0.595 H 0.613 0.307 0.312 

    I 0.378 0.427 0.436 
ED2 2.035 0.752 0.566 H 0.399 0.158 0.158 

    I 0.437 0.439 0.439 
ED1 2.051 0.750 0.563 H 0.414 0.158 0.158 

    I 0.437 0.439 0.439 

                                                 
† EL/ET ൌ 25, GLT/ET ൌ  GL୸/ET ൌ 0.50, GTT/ET ൌ 0.20, υLT ൌ υL୸ ൌ υTT ൌ 0.25 
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5. SUMMARY AND CONCLUDING REMARKS 
 
The following points could be obtained as a result of the review of multilayered structure 
literature as; 
 

 Although layerwise theories (LD and LM) suffer from major computational drawback 
due to the heavy algebra; they lead to excellent aggreement with respect to three dimensional 
exact solutions. 
 Mixed models either ESLM-mixed ( Equivalent Single Layer Model – mixed ) or 
LWM-mixed ( Layerwise Model – mixed ) show better performance than classical 
displacement models. (LWM-displacement and ESLM-displacement) 
 Since ESLM – displacement type analysis does not describe zig-zag effects; are not in 
sufficient aggrement to the exact solution and needs a posteriori procedure for computing 
transverse shear stresses. The accuracy of ESLM analysis is also very much subordinate to 
laminate lay-outs and to the mechanical properties of the lamina. 
 

In conclusion; Layerwise Mixed Model by Reissner’s Mixed Variational Theorem 
(RMVT) that is, post processing procedures are not required for interlaminar transverse shear 
stresses, leads to better three dimensional description of stress and strain fields of multilayered 
structures than classical analysis formulated with only displacement variables.  

 
LIST OF SYMBOLS AND ACRONYMS 
 
Symbols 
 

a, b, h : Plate / shell geometrical parameters ( length, width and thickness ) 
NL   : Number of constituent layers of multilayered structures 
k : Sub/super-script used to denote parameters related to the k-layer 
σ୮  : In-plane stresses 
σ୬  : Normal (transverse) stresses 
e୳  : Strain matrix derived from displacements (u) 
eσ  : Strain matrix derived from stresses (σ) 
EL  : Longitudinal elasticity modulus 
ET  : Transverse elasticity modulus 
GLT : Shear modulus in the longitudinal-transverse plane 
 
Acronyms 
 

RMVT : Reissner’s Mixed Variation Theorem 
LWT  : Layerwise Theory 
ESLT  : Equivalent Single Layer Theory 
FSDT : First Order Shear Deformation Theory 
HSDT : Higher Order Shear Deformation Theory 
CLT : Classical Lamination Theory 
IC  : Interlaminar Continuity 
ZZ : Zig-Zag Effect 
KE : Kinematic Equations 
PBC : Primary Boundary Conditions 
CE : Constitutive Equations 
FBC : Flux Boundary Conditions 
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