Sigma J Eng & Nat Sci 6 (1), 2015, 139-147

Papers Produced from PhD Theses Presented at Institute of Science and Technology, Yıldız Technical University Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü Doktora Tezlerinden Üretilmiş Yayınlar

Research Article / Araștırma Makalesi THE VIBRATIONAL ANALYSIS OF PYRIDOXINE AND ITS H₂O CLUSTERS BY AB-INITIO DENSITY FUNCTIONAL METHOD

Berna ATAK BÜLBÜL*¹, Sevim AKYÜZ²

¹Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Fizik Anabilim Dalı, Yıldız-İSTANBUL ²İstanbul Kültür Üniversitesi, Fen-Edebiyat Fakültesi, Fizik Bölümü, Ataköy-İSTANBUL

Received/Geliş: 04.02.2015 Accepted/Kabul: 03.11.2015

ABSTRACT

The conformations of pyridoxine were searched by means of torsion potential energy surfaces scan studies through dihedral angles D1 (9H-8O-4C-3C), D2 (12H-10C-5C-6N), D3 (15O-14C-2C-1C) and D4 (O22-19H-3C-2C). In all calculations, Ab-Initio DFT (Density Functional Theory) method used and 6-311G++(d,p) basis set has been chosen. The molecular geometries of pyridoxine and pyridoxine-H2O complexes were optimized using DFT method at 6-311++G(d,p) level of theory. The harmonic and anharmonic vibrational wavenumbers, IR and Raman intensities of the most stable monomer was calculated. The results were compared with the experimental data. The assignment of the vibrational modes were determined by using GAR2PED program. HOMO-LUMO energy gap was calculated.

Keywords: Ab-Initio calculations, DFT, H₂O cluster, Pyridoxine, Vibrational spectra, Vitamin B₆.

PRIDOKSIN MOLEKÜLÜNÜN VE H2O KOMPLEKSLERININ AB-INITIO DFT TEORISI İLE TİTREŞİMSEL ANALİZİ

ÖZ

Pridoksin molekülünün konformerleri potansiyel enerji yüzey analizi yardımıyla D1 (9H-8O-4C-3C), D2 (12H-10C-5C-6N), D3 (15O-14C-2C-1C) ve D4 (O22-19H-3C-2C) dihedral açıları kullanılarak araştırılmıştır. Hesaplamalarda Ab-Initio yöntemlerinden DFT (Yoğunluk Fonksiyonu Teorisi) kullanılmış ve 6-311G++(d,p) baz seti seçilmiştir. Pridoksin ve pridoksin molekülünün su komplekslerinin moleküler geometrisi DFT yöntemi ve 6-311G++(d,p) baz seti seçilerek optimize edilmiştir. En düşük enerjili konformerinin harmonik ve anharmonik titreşim dalgasayıları, IR ve Raman şiddetleri hesaplanmıştır. Deneysel ve teorik sonuçlar karşılaştırılmıştır. GAR2PED programı kullanılarak titreşim kipleri belirlenmiştir. HOMO-LUMO enerji farkı hesaplanmıştır.

Anahtar Sözcükler: Ab-Initio hesaplamaları, DFT, H₂O kompleksleri, Pridoksin, Titreşim spektrumu, B₆ vitamini.

1. GİRİŞ

B6 vitamini çeşitli enzimatik reaksiyonlarda önemli bir rol oynar. Transaminasyon, α- ve βdekarboksilasyonları, β- ve γ-eliminasyonları, rasemizasyonlar, ve aldol reaksiyonları gibi çok fazla enzim-katalizör reaksiyonlarında koenzim gibi davranır¹. Cinta ve çalışma arkadaşları²

^{*} Corresponding Author/Sorumlu Yazar: e-mail/e-ileti: berna.bulbul@obase.com, tel: (216) 527 30 00

piridoksin hidrokloridin Raman ve SERS spektrumlarının pH ile olan bağımlılığını incelemiştir ve Ab-Initio (3-STO) ve yarı ampirik (PM3) yöntemleri yardımıyla titreşim kiplerini saptamıştır. Srivastava ve çalışma arkadaşları³ ise pridoksinin optimize olmuş konformeri için harmonik titreşimsel dalgasayısı değerlerini DFT yöntemini ve B3LYP/6-311++G** baz setini kullanarak hesaplamıştır. Fakat bu çalışmalarda potansiyel enerji yüzey analizi taraması yapılmamış ve molekülün su komplekslerinin anharmonik titreşim dalga sayıları saptanmamıştır. Bu çalışmanın amacı potansiyel enerji yüzey analizi taraması yaparak molekülün en düşük enerjili konformerini tespit edip, harmonik ve anharmonik titreşim dalgasayılarını belirlemek ve molekülün oluşturulmuş beş farklı H₂O komplekslerinde hidrojen bağı etkilerini incelemektir.

2. DENEYSEL VE HESAPLAMA YÖNTEMLERİ

2.1. Deneysel Kısım

Bruker Tensor FT-IR spektrometresi kullanılarak 400-4000 cm⁻¹ (0.5 cm⁻¹ çözünürlük) bölgesi aralığı için pridoksin molekülünün IR spekturmu kaydedilmiştir. Raman spektrumu ise Bruker MultiRam FT-Raman spektrometresi ile kaydedilmiştir. Bu ölçümde 1064 nm dalga boyuna sahip Nd:YAG lazeri kullanılmıştır. (4 cm⁻¹ çözünürlük).

2.2. Hesaplama Kısmı

Pridoksin ($C_8H_{11}NO_3$) molekülünün en düşük enerjili konformeri ve beş farklı su kompleksi için titreşim dalga sayısı değerleri, geometri parametreleri Gaussian 09 programı⁴ DFT yöntemi ve B3LYP⁵/6-311++G(d,p)⁶ baz seti kullanılarak hesaplanmıştır. Gözlemlenen frekans değerleri ile teorik frekans değerleri arasındaki farklılıkları azaltmak için 1800 cm⁻¹ dalga sayısından küçük olan değerler 0.98, 1800 cm⁻¹ dalga sayısından büyük olan değerler 0.955 skala faktörüyle çarpılmıştır⁷. Titreşim kipleri GAR2PED programı⁸ ile hesaplanmıştır.

3. SONUÇLAR VE TARTIŞMA

Pridoksin molekülü 23 atomlu bir moleküldür ve 63 tane titreşim serbestlik derecesine sahiptir.

3.1. Konformasyon Analizi ve H-Bağı Etkileşimleri

Pridoksin molekülünün moleküler yapısı, atom numaraları ve taranmış torsiyon açıları (D1, D2, D3 and D4) Şekil 1'de gösterilmektedir. Potansiyel yüzey analizi taraması değişen 10°'lik açılar ile D1 (9H-8O-4C-3C), D2 (12H-10C-5C-6N), D3 (15O-14C-2C-1C) ve D4 (O22-19H-3C-2C) dihedral açıları kullanılarak yapılmıştır. En düşük enerjili konformer için geometri parametreleri belirlenmiştir ve Çizelge 1'de Srivastava ve arakadaşlarının³ çalışmasının sonuçları ile karşılaştırılmıştır. Değişen parametre değerleri işaretlenmiştir.

Şekil 1. Pridoksin molekülünün atom numaraları, geometrik yapısı ve araştırılan dihedral açıları

Tanım	Bu çalışma	Kaynak ³	Bağ açıları	Bu çalışma	Kaynak ³	Bağ açıları	Bu çalışma	Kaynak ³
R(1,2)	1.392	1.392	A(4,5,10)	120.331	120.197	D(1,2,14,18)	-121.741	114.773
R(1,6)	1.336	1.337	A(6,5,10)	118.635	118.625	D(3,2,14,15)	-62.718	53.811
R(1,7)	1.087	1.087	A(1,6,5)	118.961	118.874	D(3,2,14,17)	176.657	172.213
R(2,3)	1.405	1.407	A(4,8,9)	108.429	111.072	D(3,2,14,18)	58.403	-64.280
R(2,14)	1.506	1.511	A(5,10,11)	111.121	109.258	D(2,3,4,5)	2.535	1.3291
R(3,4)	1.399	1.399	A(5,10,12)	110.989	111.025	D(2,3,4,8)	-178.416	179.605
R(3,19)	1.512	1.514	A(5,10,13)	109.247	109.317	D(19,3,4,5)	-176.0280	176.251
R(4,5)	1.409	1.411	A(11,10,12)	106.550	106.519	D(19,3,4,8)	3.021	2.815
R(4,8)	1.363	1.362	A(11,10,13)	109.323	109.602	D(2,3,19,20)	-111.003	14.824
R(5,6)	1.333	1.332	A(12,10,13)	109.563	108.439	D(2,3,19,21)	9.520	-105.414
R(5,10)	1.503	1.593	A(2,14,15)	109.065	111.323	D(2,3,19,22)	133.226	138.611
R(8,9)	0.973	0.974	A(2,14,17)	108.888	109.972	D(4,3,19,20)	67. 4 77	-167.718
R(10,11)	1.094	1.089	A(2,14,18)	110.935	112.494	D(4,3,19,21)	-172.000	72.045
R(10,12)	1.094	1.094	A(15,14,17)	110.478	108.464	D(4,3,19,22)	-48.294	-43.931
R(10,13)	1.089	1.089	A(15,14,18)	109.850	109.847	D(3,4,5,6)	-1.572	-0.776
R(14,15)	1.439	1.444	A(17,14,18)	107.617	104.457	D(3,4,5,10)	178.387	178.951
R(14,17)	1.095	1.094	A(14,15,16)	108.540	108.531	D(8,4,5,6)	179.334	-179.891
R(14,18)	1.098	1.089	A(3,19,20)	110.043	111.802	D(8,4,5,10)	-0.706	-0.163
R(15,16)	0.963	0.964	A(3,19,21)	111.421	109.286	D(3,4,8,9)	20.100	17.781
R(19,20)	1.094	1.092	A(3,19,22)	112.130	113.013	D(5,4,8,9)	-160.826	-163.126
R(19,21)	1.089	1.096	A(20,19,21)	108.602	107.108	D(4,5,6,1)	-0.496	-0.286
R(19,22)	1.444	1.436	A(20,19,22)	104.433	104.905	D(10,5,6,1)	179.544	179.982
R(22,23)	0.964	0.963	A(21,19,22)	109.935	110.517	D(4,5,10,11)	-60.598	-60.826
A(2,1,6)	124.152	124.196	A(19,22,23)	108.134	108.041	D(4,5,10,12)	57.779	178.501
A(2,1,7)	119.844	119.835	D(6,1,2,3)	-0.539	-0.188	D(4,5,10,13)	178.698	57.504
A(6,1,7)	116.003	115.971	D(6,1,2,14)	179.600	-179.285	D(6,5,10,11)	119.362	118.909
A(1,2,3)	117.811	117.836	D(7,1,2,3)	179.467	-179.986	D(6,5,10,12)	-122.261	-1.764
A(1,2,14)	119.606	119.647	D(7,1,2,14)	-0.395	0.917	D(6,5,10,13)	-1.342	-122.762
A(3,2,14)	122.583	122.510	D(2,1,6,5)	1.579	0.781	D(2,14,15,16)	-176.507	-73.497
A(2,3,4)	117.768	117.743	D(7,1,6,5)	-178.423	-179.414	D(17,14,15,16)	-56.857	51.106
A(2,3,19)	123.211	122.591	D(1,2,3,4)	-1.517	-0.863	D(18,14,15,16)	61.715	167.259
A(4,3,19)	119.004	119.620	D(1,2,3,19)	176.981	176.64	D(3,19,22,23)	-69.108	-60.523
A(3,4,5)	120.221	120.162	D(14,2,3,4)	178.340	178.206	D(20,19,22,23)	171.768	177.431
A(3,4,8)	122.237	122.566	D(14,2,3,19)	-3.162	-4.291	D(21,19,22,23)	55.426	62.303
A(5,4,8)	117.535	117.266	D(1,2,14,15)	117.137	-127.136			
A(4,5,6)	121.033	121.177	D(1,2,14,17)	-3.486	-8.734			

Çizelge 1. Optimize edilmiş (DFT/6-311++G(d,p)) bağ uzunlukları (R/Å), açılar (A/°) ve dihedral açılar (D/°) ve ilgili datalar³

Pridoksin molekülün H₂O komleksleri oluşturulurken önce 1 mol H₂O eklenmiş, beşinci kompleks için 4 mol H₂O eklenmiştir. Şekil 2'de bu kompleksler ve H-bağı uzunlukları gösterilmiştir. Görüldüğü gibi bu uzunluklar 1.994-1.767 Å arasında değişmektedir. Bu durum da oluşan H-bağlarının kuvvetli olduğunu gösterilmektedir.

Çizelge 2. Pridoksin molekülünü en düşük enerjili konformerinin ve H₂O komplekslerinin enerji değerleri

	Enerji (kcal/mol)
Monomer	-371525.20
Kompleks a	-419510.78
Kompleks b	-419507.82
Kompleks c	-419514.89
Kompleks d	-419516.08
Kompleks e	-563468.17

Sekil 2. Pridoksin molekülünün H₂O komplekslerinin atom numaraları ve geometrik yapıları

3.2. Titreşimsel Analiz

Pridoksin molekülünün deneysel FT-IR ve Raman spektrumları Şekil 3 ve 4'te gösterilmektedir.

Hesaplanan dalga sayısı değerleri, Raman şiddet değerleri ve titreşim kipleri Çizelge 3'te gösterilmektedir. Aynı zamanda bu çizelgede hesaplanan ve deneysel dalga sayısı değerleri de karşılaştırılmaktadır. Bu çizelgeden açıkça görülmektedir ki, anharmonik dalga sayısı değerleri ile deneysel dalga sayısı değerleri birbirine daha yakındır. Pridoksin-H₂O kompleks-a'da (Şekil 2) pridoksin molekülünün azot atomuyla eklenen H₂O molekülünün oksijen atomu arasında Hbağı oluşmuştur. H-bağı etkisiyle pridinin dalga sayısı değerlerinde kaymalar meydana gelmiştir. Pridoksin-H₂O kompleks-e (Şekil 2) oluşturulurken moleküle 4 mol H₂O molekülü eklenmiştir. Hesaplamalar sonucunda pridinin dalga sayısı değerlerinde ve CO bağ gerilmesi değerinde kayma olduğu gözlemlenmiştir. H-bağı etkisiyle değişen dalga sayısı değerleri Çizelge 3'te gösterilmektedir.

																						100
	PED(%6)	x(0HX100)	K(OHX100) K(OHX100)	x (CHY (99) x (CHX / 100) x (CHX / 99) x (CHX / 99) x (CHX / 99) x (CHX / 99)	ж.снъу. ши) ъ.(СНъу.99) «ССУ(51)+К(СССХ,10)+ «СNХ,10)	«(CC)(Z7)+ «(CN)(I8)+ «(CCN)(I2) КСН ₄₆ /(Z5)+ «(CC)(I6)+ «(CN)(I2) КССН18(85)	кснари) кснирая соннова коспновы коннуон ксниран «систрин «систра» коспновы коннуон кспра, «сонуса	ССНТ()(85) КССНТ()(9)+ КССНТ(28) КССНТ()(5)+ КССНТ(28) КССНТ()(52)+ «СПХ(21)	&NCH)(33)+ x(CN)(15)+ x(CC)(14) x(CD)(41)+ &(CR)(15)+ x(CN)(11) x(CD)(37)+ x(CN)(20+6(CD)(12) x(CD)(37)+ x(CN)(20+6(CD)(12))	асснудар Мому 14,4 честрат ассемдут места) КССН(38)- мССХ 26) КССН(54)- бССН(22)	ссил(нт)тасил, и «сс(25)+ «со(18)+ «ссн)(11) «ссн)(69)+ «сссул)(16)	v(COX(22) v(COX79)	ассиндэи ассиндэн иссуцон испу(8) ассинду48н йссн)(11)		(CCC) (CC)(25)+ (CCC)(13)+ «CO)(10)+ «CCOHX8)+ «CCCNX6) «CCCNX35)+ «CCCOX18)+ «CCCCX17)	ασσαλχ39/+ ασσο Οχ14/+ ασσο χ12) ασσοχ13/+ ασσο Χ14/+ ασαλγ10/+ ασοχ17) ασσο λ22/+ άζο σλγ12/+ άζο σλγ20-	(CCCN)(32)+ (CCCC(21)+ (CCCX)9)+ (CHH)(6) (CCOH)(35)+ (CHH)(3)+ (CCN)(9) (CCOH)(5)- (CCCCCX)	40001/227 # 4000/13 40001/227 # 4000/137# 4000 40001/267 # 40001/23 # 600018	& CCCV32P+ (CCOH)(15+ & (CH),8)+ & (CCVX0)+ # (CCCX0)	&CCCX43P &CHHY11)+@CCCYV(10)+@CCCHX9) &CCCCX30)+ &CCCHX(19)+ &CHX18)+ &CCCX11)	a(CCCN)(36)+a(CCCO)(28)+a(CCCH)(21) a(CCCH)(30)+a(CCCH)(15)+a(CCCCY)(10)+a(CCCN)(10) a(CCCH)(25)-a(CCCCH)(15)+a(CCCCY)(10)+a(CCCN)(10)	цессядузьт цесопдныт целения; сосседузь цессоу(19)+ КСН3(15)+ цессоу(12) цесенузь чессоу(12)
	Ra	36	18	25 23 16 24 25 23 16 24	100 26 21	2 2 9	12 7 4 9 9	11 ~ 4 %	5 II 6 .	0 I 7 V	000-	0.19	- 4 0		530	0,400	900		6 E v	, 4 I	783	14 30 10 10
	Şiddet	н	16 100	o, m + v ∞ = (4 4	·····	- ∞ + ∞ 6	0 M M M	10.05	5123	- 14 - v	35	0 - C	I >	<u>,</u> 44	440	1 25 2	<u> -</u>	4 4 C	100	moc	u 1 1
2	Kaynak	3823	3822 3615	3138 3136 3126 3078 3049	3024 3024 1634	1597 1522 1512	1490 1480 1445 1445	1407 1395 1372	1358 1313 1300	1251	1055	1012	9/3 948 919	908 763 763	683 650	590 549 526	505 431 200	360 358	320 291	233	131 115	27 87 78 100 Stoddo
	v (anhar.)	3570	3528 3332	2914 2915 2852 2828 2828	2753 1555	1519 1446 1424	1415 1405 1367	134/ 1321 1313	1247 1237 1207	1811	1001	956 946	923 876	870 756 731	66 949 25	569 526 506	489 421 407	351 312	287 241 231	233	125	11.2 100 67
omer	Va., (har.)	3694	3680 3503	3033 3014 2014 2014 2014 2014	2882 2882 1611	1576 1501 1497	1459 1459 1426 1415	1376 1362 1361	1293 1287 1248	1220	1040	908 988	984 945 904	895 751 751	00 15 15 15	282 270 272	494 432	336	200 288 289	33	E E E	97 82 73
G(d.p) Mor	Vart.	3828	3813 3630	3143 3135 3078 3039 3039	2987 2987 1636	1600 1524 1520	1490 1477 1477 1488 1437	1410 1397 1383 1361	1313 1307 1267	1239	1083	1013	999 959 918	909 762	681 645	594 550 528	502 439	361 316	304 292	236	112 112	yo 83 74 ∞hor anh
T/6-311++	9 3	3691	3389 3327	3046 3025 2959 2959	2918 1587	1576 1471 1449	1428 1429 1385 1385	1347 1347 1338 1270	1264 1230 1220	1187	1025 1007 1007	966 954	006 887	863 749 749	626	577 532 516	495 425	360	307 292	12.52	124	101 20 21 21 21 20 20
Komolek	e .	3695	3680 3496	3044 3027 3016 2974 2944 2936	2824 2884 1609	1578 1505 1500	1472 1462 1457 1417	1376 1376 1344	1293 1248 1249	1222 1222 1211	1070 1042 1075	1002 992	950 905	736 736	676 638	587 544 520	498 435	315	300 288 267	235	137	92 84 75
L	nak' Ra		3476vw		1621w	1571w 1465m	1385m	1326m	1279m	1233m	1059m			747w	\$47.60	544m 519s	484m 426m 246a	entr	282m	168w	113m	O har hamoni
	Kay. IR	3850, 3050mm	3751vw 3170, 3170,		1621, 1707	1567m 1567m	1413vs 1359s		1287s 1251m 1219vs	10003	1026vs		963m 963m 927w	882m 755s	647w 575m	552ww 521ww	484vw 417w					Antrein. dH.
lenevsel	Ra			3031 3020 2991 2953 2953 2953	2884 2884 1618	1565	1460 1450 1419	1378 1316	1280 1251	0571	1054	986	955 928	751	6	547 519	482 417 201	342	279		173	ol de a ad
H	Bu çalışn IR	3275	3167	2982 2952 2917 2871	2818 1615	1560 1496	1462 1450 1439 1413	1375 1352 1317	1284	1222	1002	984	956 922	884 756 738	09.2 646	573 546 517	484 416					ωo Λ.O.n.
Titresim Kini	Bucahsma	(HO)	(HO)» (HO)»	v(CH) v(CH) v(CH) v(CH) v(CH) v(CH)	w(cH3) w(CH3) w(CC)	v(CC) &(CH _{ma})+ v(CC) &(CCH)	CCHH CCHH CCCH CCCH CCCH CCCH CCCH CCC	&CHH) &CCH) &CCH) &CCH)+*(CN)	&NCH)+*(CN) *(CC) *(CC)	&CCH) &CCH)	ACCH) K(CCH) K(CCH)	(CO)	ACCH) ACCNH) ACCNH)	(CCON)	KCCCN) KCCCN	40000) 40000) 8000)	(CCCN)	t(cccN) t(cccN)	KCCC) KCCC)	\$(CCC)	(CCCN)	(CCCC) (CCCC) (CCCCH)

Çizelge 3. Pridoksin molekülünün hesaplanan ve deneysel dalga sayısı (cm⁻¹) değerleri

Şekil 3. Pridoksin molekülünün a) 3300 cm⁻¹ ve 2500 cm⁻¹ b) 1650 cm⁻¹ ve 700 cm⁻¹ c) 700 cm⁻¹ ve 400 cm⁻¹ bölgeleri aralıklarının IR spektroskopisi

Şekil 4. Pridoksin molekülünün a) 3040 cm⁻¹ ve 2880 cm⁻¹ b) 1630 cm⁻¹ ve 380 cm⁻¹
c) 350 cm⁻¹ ve 165 cm⁻¹ bölgeleri aralıklarının Raman spektroskopisi

3.3. HOMO-LUMO Analizi

Moleküler orbitallerde boş olan en düşük enerjili moleküler orbitale LUMO, dolu olan en yüksek enerjili orbitale de HOMO denilmektedir. HOMO enerjisi molekülün electron verme ve LUMO enerjisi ise molekülün electron alma yeteneğini göstermektedir. Bu çalışmada HOMO,

LUMO ve HOMO-LUMO arasındaki enerji farkı DFT/6-311++G(d,p) baz seti kullanılarak hesaplanmıştır. Hesaplamalar sonucunda HOMO enerjisi -5.774, LUMO enerjisi -4.774 ve HOMO-LUMO arasındaki enerji farkı da 1 eV olarak bulunmuştur. HOMO halkanın, karbonil grubun, halka üzerindeki C-N bağlarının ve zincirdeki C-O bağının üzerine yerleşmiştir. LUMO ise karbonil grubun, molekülün zincirindeki O-H bandlarının üzerine yerleşmiştir.

Şekil 5. Pridoksin molekülü için a) HOMO b) LUMO gösterimi

4. SONUÇLAR

Bu çalışmada pridoksin molekülünün monomer formu ve su kompleksleri DFT yöntemi ve 6-311++G(d,p) baz seti seçilerek çalışılmıştır. Mümkün olan tüm konformerlerini bulabilmek için potansiyel enerji yüzey analizi çalışması yapılmıştır. D1 (9H-8O-C4-3C), D2 (12H-10C-5C-6N), D3 (15O-14C-2C-1C) ve D4 (O22-19H-3C-2C) dihedral açıları 0°'den 360°'ye 10°'lik farklarla taranmıştır. Molekülün H₂O kompleksi analizi molekülün su içerisinde çözülebilir olduğunu göstermektedir.. HOMO, LUMO ve HOMO-LUMO arasındaki enerji farkı sırasıyla -5.774, -4.774 ve 1 eV bulunmuştur. HOMO-LUMO geçişleri elektron yoğunluğu transferinin pridin halkasından karbonil gruplara ve OH bandlarına kadar etkili olduğunu göstermektedir.

Acknowledgments / Teşekkür

Bu çalışma, İstanbul Kültür Üniversitesi Bilimsel Araştırma Proje Birimi tarafından desteklenmiştir.

REFERENCES / KAYNAKLAR

- [1] G.S. Kiruba and M.W. Wong, J. Org. Chem., 68, 2874 (2003).
- [2] S. Cinta, C. Morari, E. Vogel, D. Maniu, M. Aluas, T. Iliescu, O. Cozar and W. Kiefer, Vibrational Spectroscopy, 19, 329-334 (1999).
- [3] M. Srivastava, P. Rani, N.P. Singh and R.A. Yadav, Spectrochim. Acta A, 120, 274 (2014).
- [4] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J.

Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

- [5] A.D. Becke, J. Chem. Phys., 98, 5648 (1993).
- [6] M.J. Frisch, J.A. Pople and J.S. Binkley, J. Chem. Phys., 80, 3265 (1984).
- [7] K. Balci and S. Akyuz, Vib. Spectrosc., 48, 215 (2008).
- [8] J.M.L. Martin and C. Van Alsenoy, *GAR2PED : A Program to Obtain a Potential Energy Distribution from a Gaussian Archive Record*, University of Antwerp, Belgium, (2007).