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ABSTRACT 
 
Using fuzzy aggregation operators, compensatory fuzzy approaches can be proposed for multi-objective 
problems. The variety of operators for the aggregation of objectives might be confusing and might make it 
difficult to decide which one to apply to the problem. For example while Zimmermann’s “min” operator 
provides numerical efficiency, it does not guarantee compensatory and Pareto-optimality. In this paper, we 
present brief information about some important compensatory fuzzy aggregation operators and then apply 
them to the Multi-objective Linear Transportation Problem (MOLTP) to obtain a compensatory compromise 
Pareto-optimal solution set. And an illustrative example is provided to compare these aggregation operators 
and to conclude which operator is more appropriate for the concerning problem.  
Keywords: Transportation problem, multi-objective programming, fuzzy aggregation operators, fuzzy 
mathematical programming. 
  
 
BAZI BULANIK BİRLEŞTİRME OPERATÖRLERİNİN ÇOK AMAÇLI LİNEER TAŞIMA 
PROBLEMİ İÇİN KULLANILMASI 
 
ÖZET 
 
Bulanık operatörler kullanılarak, çok amaçlı problemler için dengeleyici bulanık yaklaşımlar üretilmektedir. 
Amaçların birleştirilmesi için kullanılan bu operatörlerin çeşitliliği kafa karıştırıcı olabilir ve probleme 
hangisinin uygulanacağı kararının verilmesini güçleştirebilir. Örneğin Zimmermann’ın “min” operatörü 
sayısal hesaplamalarda kolaylık sağlarken, dengeleyici olma özelliğini ve Pareto-optimalliği garanti 
etmemektedir. Çalışmamızda, bazı önemli bulanık birleştirme operatörleri hakkında temel bilgi sunularak, bu 
operatörler dengeleyici uzlaşık Pareto-optimal çözüm kümesini elde etmek amacıyla çok amaçlı lineer taşıma 
problemine uygulanmıştır. Ayrıca bu birleştirme operatörlerini karşılaştırmak amacıyla sayısal bir örnek 
verilmiş ve ele alınan problem için hangi operatörün uygun olduğu hakkında sonuçlar vurgulanmıştır.  
Anahtar Sözcükler: Taşıma problemi, çok amaçlı programlama, bulanık birleştirme operatörleri, bulanık 
matematiksel programlama. 
 
 
1. INTRODUCTION 
 
Transportation Problem (TP) has wide practical applications in logistic systems, manpower 
planning, personnel allocation, inventory control, production planning, etc. and aims to find the 
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best way to fulfill the demand of n demand points using the capacities of m supply points. In 
many real-life situations, decisions are often made in the presence of multiple, conflicting, 
incommensurate objectives. Thus, MOLTP becomes more useful and includes objectives such as 
distribution cost, quantity of goods delivered, unfulfilled demand, average delivery time of the 
commodities, reliability of transportation, accessibility to the users, product deterioration, etc. 

After Lee and Moore [1] studied the optimization of transportation problems with 
multiple objectives, Diaz [2, 3] and Isermann [4] proposed procedures to generate all non-
dominated solutions to the MOLTP. Current et al. [5, 6] did a review of multi-objective design of 
transportation networks. Climaco et al. [7] and Ringuest et al. [8] developed interactive 
algorithms for the MOLTP. Bit et al. [9] presented an additive fuzzy programming model for the 
MOLTP. Some solution procedures for MOLTP where the cost coefficients of the objective 
functions, and the source and destination parameters expressed as interval values by the decision 
maker are proposed by Das et al. [10] and Ahlatcioglu et al. [11]. Li and Lai [12] and Wahed [13] 
proposed a fuzzy compromise programming approach to MOTP. Basing on extension principle, 
Liu and Kao [14] developed a procedure to derive the fuzzy objective value of the fuzzy 
transportation problem where the cost coefficients, supply and demand quantities are fuzzy 
numbers. Using signed distance ranking, defuzzification by signed distance, interval-valued 
fuzzy sets and statistical data, Chiang [15] get the transportation problem in the fuzzy sense. 
Ammar and Youness [16] examined the solution of multi objective TP which has fuzzy cost, 
source and destination parameters. They introduced the concepts of fuzzy efficient and  
parametric efficient solutions. And Barough [17] presented a two stage procedure for fuzzy 
transportation problem in which the cost coefficients and supply and demand quantities are fuzzy 
numbers. Ojha et al. [18] formulated single and multi-objective transportation models with fuzzy 
relations under the fuzzy logic. In that paper, the parameters of models are stated by verbal words 
such as ‘very high’, ‘high’, ‘medium’, ‘low’ and ‘very low’. And both models are solved with 
Real coded Genetic Algorithms. Gupta and Kumar [19] is proposed a new method to find 
solution of a MOLTP by representing all the parameters as interval-valued fuzzy numbers. Ojha 
et al. [20] introduced the modified subgradient method for optimization and its effectiveness in a 
fuzzy transportation model. Here a multi-item balanced transportation problem is formulated 
where unit transportation costs, available spaces and budgets at destinations are imprecise. 

In the most of these notable studies from the literature, Zimmermann’s “min” operator 
is used to aggregate the multiple objectives. And as far as we know, the efficiency of the 
aggregation operators for the solution of MOLTP has not been studied yet. So, in this paper, 
using some important fuzzy aggregation operators, we present some compensatory fuzzy 
approaches to MOLTP. By means of a numerical example, we also conclude which operator is 
more appropriate for the concerning problem.  

This paper is organized as follows. Next section provides brief information about 
compensatory fuzzy aggregation operators. Section 3 explains our methodology using Werners’ 
compensatory “fuzzy and’’ and “fuzzy or’’ operator, Modified Zimmermann’s convex 
combination of the min- and max-operators, Lai and Hwang’s augmented max–min operator. 
Section 4 gives an illustrative numerical example. Finally, Section 5 and Section 6 include the 
comparison results and conclusion.  
 
2. COMPENSATORY FUZZY AGGREGATION OPERATORS 
 
The variety of operators for the aggregation of fuzzy sets might be confusing and might make it 
difficult to decide which one to use in a specific model or situation. Zimmermann [21] proposed 
the following eight rules to justify a suitable operator for a particular fuzzy decision problem. 
Criteria for selecting appropriate aggregation operators are axiomatic strength, empirical fit, 
adaptability, numerical efficiency, compensation, range of compensation, aggregating behavior, 
required scale level of membership functions.  
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The most important aspect in the fuzzy approach is the compensatory or non-
compensatory nature of the aggregate operator. By compensation [21], in the context of 
aggregation operators for two fuzzy sets, it means that the following: given that the degree of 

membership to the aggregated fuzzy set is       ,agg k k kBA
x z x x k     . z  is 

compensatory if  agg kx k   is obtainable for a different  kA
x   by a change in 

 kB
x  . Several investigators [21, 22, 23, 24] have discussed this aspect. 

Using the linear membership function, Zimmermann proposed the “min’’ operator 
model to the multi-objective linear programming problems [25]. It is usually used due to its easy 
computation. Although the “min’’ operator method has been proven to have several nice 
properties [21], the solution generated by min operator does not guarantee compensatory and 
Pareto-optimal [26, 27, 28]. The biggest disadvantage of the aggregation operator “min’’ is that it 
is non-compensatory. In other words, the results obtained by the “min’’ operator represent the 
worst situation and cannot be compensated by other members which may be very good. On the 
other hand, the decision modeled with maximum operator is called fully compensatory in the 
sense that it achieves the full satisfaction of a single goal. 

As a result of experiment made by Zimmermann and Zysno [29], most of the decisions 
taken in the real world are neither non-compensatory (min operator) nor fully compensatory. So, 
these operators do not seem to be very suitable for modeling the real world problems in many 
situations. To overcome this difficulty Zimmermann and Zysno [29] have suggested a class of 
hybrid operators called compensatory operator with the help of a suitable parameter of 
compensation  . They showed that the “  operator (or “compensatory and’’ operator)’’ is 

more adequate in human decision making than operators “min’’, “product’’, “max’’, “weighted 
geometric mean’’. But it is a nonlinear operator and increases the computational difficulties 
tremendously. 

A computationally efficient compensatory operator is Luhandjula’s compensatory min-

bounded sum operator:   min 1 min 1,D i ii
i

          
  is presented to solve 

Multi-objective Linear Programming (MOLP) problem [21]. Unfortunately, it is difficult to 
determine the compensatory coefficient  . The solution generated by min-bounded sum 

operator is not necessarily efficient. However, it is an attractive one from the standpoint of 
computational efficiency. In order to overcome this drawback, Li [22] proposed a two-phase 
approach to overcome this difficulty. As a matter of fact, the first phase is to use Zimmermann’s 
approach. If the possible solution is unique in phase one, it will be a Pareto-optimal solution. 
Otherwise, in phase two, a new program will be formulated to maximize the arithmetic mean 
value of all memberships restricted by original constraints and constraints comes from phase one. 
Obviously, phase two yields an efficient solution because of full compensation of the 
“averaging’’ operator. Chen and Chou [30] proposed a fuzzy approach to integrate the min 
operator, average operator and two-phase methods. Guu and Wu [31] proposed a similar two-
phase model for fuzzy linear programming problem to improve the dominated solution yielded 
by min operator. To the case of MOLP, Lee and Li [27] associated a two-phase approach with 
  cut to treat the possibilistic distributions of fuzzy coefficients. Wu and Guu [28] proposed a 
simplified two-phase model for MOLP to yield a fuzzy efficient solution between non-
compensatory (“min’’ operator) and full compensatory (average operator). Tiryaki [32] proposed 
interactive compensatory fuzzy programming for decentralized multi-level linear programming 
problems to obtain a preferred compensatory compromise Pareto-optimal solution.  
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In this paper, we will use Werners’ compensatory “fuzzy and’’ operator and show that 
the solutions generated by this operator do guarantee Pareto-optimality for our MOLTP problem. 
And also we will compare this operator with the following other computationally efficient 
compensatory fuzzy aggregation operators.  

Let us introduce these operators, where 0 1i  , 1, 2, ,i m   and the 

magnitude of  0,1   represent the grade of compensation. 
 

Werners’ compensatory “fuzzy and’’ and “fuzzy or’’ operators: Based on the   operator, 

Werners [33] introduced the compensatory “fuzzy and’’ and “fuzzy or’’ operators which are the 
convex combinations of min and arithmetical mean, and max and arithmetical mean, 
respectively: 

   1
min ,and i i

i
im


   

     
 
                     (1) 

   1
max .or i i

i
im


   

     
 
                 (2) 

 

Although these operators are not inductive and associative, they are commutative, 
idempotent, strictly monotonic increasing (and decreasing, respectively) in each component, 

continuous and compensatory. Obviously, when 1  , these equations reduce to 

minand   and maxor  , respectively. The combination of these two operators forms 

the generalized “and’’ and “or’’ operators. 
 

Modified Zimmermann’s convex combination of the min- and max-operators: This 
compensatory operator is modified by Lai and Hwang and a modified version of Zimmermann 
and Zysno’s   operator [22]: 

 min 1 maxD i i
i i

       .               (3) 

Lai and Hwang’s augmented max–min operator [22]: 
 

minD i ii
i

      ,                 (4) 

where   is a sufficiently small positive number. As seen, the augmented max–min 
operator is an extension of Zimmermann’s “min’’ operator. 
 
3. USING SOME FUZZY AGGREGATION OPERATORS FOR MOLTP 
 
The mathematical model of the MOLTP can be written as follows: 

1 1

min ( )
m n

k k
ij ij

i j

F c x
 

x , 1, 2, , k K ,              (5) 

 
 

H. Gonce Köçken, F. Tiryaki                                                     Sigma 32, 399-421, 2014 



403 
 

s.t.:      
1

, 1,2, ,
n

ij i
j

x a i m


   ,     

   

1

, 1, 2, ,
m

ij j
i

x b j n


   ,     

    

0, 1, 2, , ; 1, 2, ,ijx i m j n      .      

ijx  is decision variable which refers to product quantity that transported from supply 

point i to demand point j. 1 2, , , ma a a  and 1 2, , , nb b b  are m  supply and n  demand 

quantities, respectively. K  is the number of the objective functions of MOLTP. 
k
ijc  is unit 

transportation cost from supply point i to demand point j for the objective 

 , 1,2, ,k k K  . 

Without loss of generality, we assume that 

     0 , 0 , 0 ( , )k
i j ija i b j c i j       and i j

i j

a b  (Balance condition). 

Now, in the context of multi-objective, let us give the definitions of efficient or non-
dominated or Pareto-optimal solutions for MOLTP. These are used instead of the optimal 
solution concept in a single objective transportation problem. 

 

Definition 3.1. (Pareto-optimal Solution for MOLTP). Let S be the feasible region of (5). 

Sx *  is said to be a Pareto-optimal (strongly-efficient) solution if and only if there does not 

exist another Sx  such that 
*( ) ( )k kF x F x  for all k  and 

*( ) ( )k kF x F x  for at 

least one k, where  *
ijx x .  

Definition 3.2.  (Compromise solution for MOLTP) A feasible solution 
* Sx  is called a 

compromise solution of (5) if and only if 
* Ex  and 

*( ) ( )k

S
F F


 

x
x x  where 

 1 2( ) ( ), ( ), , ( )kF F F Fx x x x ,   stands for “min” operator and E  is the set of 

Pareto-optimal solutions of MOLTP. 
 
3.1. Constructing the Membership Functions of Objectives 
 

The membership functions of the objectives will be defined to apply our approach. Let kL  and 

kU  be the lower and upper bounds of the objective function 
kF , respectively.  In the literature, 

there are two common ways of determining these bounds ([21]). The first way: Solve the 
MOLTP as a single objective TP using each time only one objective and ignoring all others.  
Determine the corresponding values for every objective at each solution derived. And find the 

best  kL  and the worst  kU  values corresponding to the set of solutions. And the second 
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way: By solving 2K single-objective TP, the lower and upper bounds kL  and kU  can also be 

determined for each objective  kF x , Kk ,,2,1   as follows:  

 min k
k S

L F



x

x ,  max k
k

S
U F




x
x ,              (6) 

Here, we note that (6) will be used for determining the lower and upper bounds of 
objectives. Also for the sake of simplicity, in this paper we used the linear membership function: 

 
.

1, ,

, ,

0,

k
k

k
k kk

k k k
k k

k
k

F L

U F
F L F U

U L

F U













  




               (7)

   

Here, k kL U , 1, 2,...,k K  and in the case of k kL U , ( ( )) 1k
k F x . 

The membership function  k
k F  is linear and strictly monotone decreasing for 

kF  in the 

interval  ,k kL U .  

Using Zimmermann’s minimum operator ([25]), MOLTP can be written as:  

max min ( ( ))k
kkx

F x                                   (8) 

s.t.  Sx . 

By introducing an auxiliary variable  , (8) can be transformed into the following 
equivalent conventional linear programming problem: 

max   

s.t.  ( ( )) , 1,...,k
k F k K  x                  (9) 

Sx  ,   0,1 . 

Here, we note that (9) is the “min” operator model for MOLTP, and also a nonlinear 
programming model. Its optimal objective value denotes the maximizing value of the least 
satisfaction level among all objectives of MOLTP. And it can also be interpreted as the “most 
basic satisfaction” that each objective in the transportation system can attain.  

Now, we can construct the compensatory models with fuzzy aggregation operators for 
MOLTP as follows:  
 
3.2. Werners’ Compensatory “fuzzy and” Operator for MOLTP 
 
It is pointed out that Zimmermann’s min operator model doesn’t always yield a Pareto-optimal 

solution [26, 27, 28]. By using Werners’ and  operator ((1)), (9) is converted to:  

1 2

(1 )
max ( ... )Kand K

    
    

                         
(10) 

s.t. Sx , 
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  k
k kF   x

 
,
 
 

1k   , 

, [0,1], 1,2,...,k k K     

[0,1]  .        

 So, our compensatory model generates compensatory compromise Pareto-optimal 
solutions for  MOLTP.  

We shall give this assertion in the following theorem. 

Theorem: If  , xx λ  is an optimal solution of problem (10), then x  is a Pareto-optimal 

solution for MOLTP, where 1 2( , , ,..., ).Kλ λ λx x x x xλ   

Proof: The theorem can be proven similarly to ones in [32].  
If required, Pareto-optimality test ([34]) can also be applied to the solutions of (10) and 

it could be seen that these solutions are Pareto-optimal for MOLTP. 
 
3.3. Werners’ Compensatory “fuzzy or” Operator for MOLTP 
 

By using Werners’ or  operator ((2)), (9) is converted to as follows:  

1 2

(1 )
max ( ... )Kor K

    
    

     
s.t. Sx , 

  k
k kF   x , 1, 2,...,k K   

  k
k F x , for at least one  1,2, ,k K   

0 1, 1,2,...,k k K     
 

[0,1]   

or   

1 2

(1 )
max ( ... )Kor K

    
     ,            (11)

 
s.t. Sx , 

  k
k kF   x , 1, 2,...,k K  , 

1k   , 1, 2,...,k K  ,
 

  k
k kF M r  x , 1, 2,...,k K  , 

1

1
K

k
k

r K


  , 

0 1, 1,2,...,k k K      , 

 0,1kr  , 1, 2, ,k K   , 
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[0,1]  . 

Objective function of (11) maximizes the linear combination of the level of 
satisfaction of the most satisfied objective (max operator) and the level of satisfaction average 
satisfied objective.  
 
3.4. Modified Zimmermann’s Convex Combination of the min- and max-operators for 
MOLTP 
 
With modified Zimmermann’s convex combination of the min- and max-operators  

       min 1 maxk k
D k k

k k
F F      x x , 

our MOLTP becomes  

        max min 1 maxk k
k k

kS k
F F   


 

x
x x  

or 

  1 2max 1       

s.t.    1
k

k F x , 1, 2, ,k K    

   2
k

k F x , for at least one  1,2, ,k K   

Sx ,   1 2, 0,1    

or 

  1 2max 1                   (12) 

s.t.    1
k

k F x , 1, 2, ,k K   , 

   2
k

k kF Mr  x , 1, 2, ,k K   , 

1

1
K

k
k

r K


  , 

Sx ,   1 2, 0,1   , 

 0,1kr  , 1, 2, ,k K    

where M  is a very large real number. 
The objective function of (12) maximizes the linear combination of the level of 

satisfaction of the less satisfied objective (min operator) and the level of satisfaction of the most 
satisfied objective (max operator).   
 
3.5. Lai and Hwang’s Augmented max–min Operator for MOLTP 

Using (4), the modified Lai and Hwang’s augmented max-min operator for MOLTP must be  

     min k k
D k k

k
k

F F     x x . 
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Taking   min k
k

k

F x , our MOLTP becomes  

  max max k
D k

k

F      
 

 x
            (13)

 

s.t.    k
k F x , 1, 2, ,k K   , 

 Sx .  
 
3.6. A Hybrid Approach of Werners’ and Lai-Hwang’s Operators for MOLTP 
 

If we use      min k k
k k k

k

F F       x x  by Werners’ sense and 

combine it with Lai-Hwang’s augmented max-min operator, our MOLTP will become 

  
1

max 1
K

k
k

   


   
 

              (14) 

s.t.    k
k kF   x , 1, 2, ,k K   , 

 1k   , 1, 2, ,k K    

 Sx . 
 
4. AN ILLUSTRATIVE EXAMPLE 
 
Let us consider a multiple-objective transportation problem with the following characteristics: 

Supplies: 1 5a  ,  2 4a  , 3 2a  , 4 9a  . 

Demands: 1 4b  , 2 4b  , 3 6b  , 4 2b  , 5 4b  .  

Penalties:





















221186

311956

57737

969129

1C





















89682

54818

25991

41892

2C  





















13696

63535

29484

63642

3C  

The lower and upper bounds of the objectives that we obtained to define the 
membership functions of the objectives are shown in Table 1.   
 

Table 1. Bound values of objectives 
 

 1F 2F 3F

Lk 102 72 64 

Uk 188 157 136
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From Table 1, the membership functions are obtained as follows:  

1 1

1

188 ( ) 188 ( )
( ) ,

188 102 86

F x F x
x  
 



 

2 2

2

157 ( ) 157 ( )
( ) ,

157 72 85

F x F x
x  
 


 

3 3

3

136 ( ) 136 ( )
( ) .

136 64 72

F x F x
x  
 


 

 
4.1. Werners’ Compensatory “fuzzy and” Operator for the Example 
 
Using (10),  our compensatory problem will be in the form as follows: 

1 2 3

(1 )
max ( )

3and

    
   

            (15) 
5 5 5

1 2 3
1 1 1

5 4 4

4 1 2
1 1 1

4 4 4

3 4 5
1 1 1

5, 4, 2,

9, 4, 4,

6, 2, 4,

0, 1,2,3,4. 1,2,3,4,5,

j j j
j j j

j i i
j i i

i i i
i i i

ij

x x x

x x x
S

x x x

x i j

  

  

  


   




   



  

   

  

  

  

x
 

1 1 2 2 3 3( ) , ( ) , ( ) ,x x x             

 

1 2 31, 1, 1,          

 

1 2 3, , , 0.      

By solving (15), the results for different 11 values of the compensation parameter   

with 0.1  increment are obtained and given in Table 2(a) and Table 2(b). The results are: the 

compensation satisfactory level and
 , the values of objective functions  1,2,3kF k  ; the 

satisfactory levels of the objectives corresponding to solution x , (i.e. the values of membership 

functions)  1,2,3k k  ; the most basic satisfactory level  ; respectively.  

As it can be seen from Table 2(a) and Table 2(b), our compensatory model generates 

the following compensatory compromise Pareto-optimal solutions 
1*X  , 

2*X  and 
3*X   for this 

example. 
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Table 2(a). The results of our compensatory model with and . 
 

 
=
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0.
70
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54
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0.
70
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70
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=

 0
.9
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70

54
 

12
7.

33
2 

97
.0

37
 

85
.2

08
 

0.
70

54
 

0.
70

54
 

0.
70

54
 

0.
70

54
 

 
=

 0
.8

 

0.
70

54
 

12
7.

33
2 

97
.0

37
 

85
.2

08
 

0.
70

54
 

0.
70

54
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70

54
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70

54
 

 
=
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70
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7.
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2 
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.0
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.2
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70
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54
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70
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=
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7.
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2 
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.2
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0.
70
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=
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7.
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.2
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=
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.2
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.2

08
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70
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=
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0.
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6 
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.8

78
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.3

74
 

0.
67

20
 

0.
67

20
 

0.
81

42
5 

0.
67

20
 

 
=

 0
.1

 

0.
71

47
 

13
0.

20
6 

99
.8

78
 

77
.3

74
 

0.
67

20
 

0.
67

20
 

0.
81

42
5 

0.
67

20
 

 
=

 0
 

0.
72

20
 

12
7 

10
4 

76
 

0.
70

93
 

0.
62

35
 

0.
83

33
 

0.
06

24
 

 

µ
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d 

F
1  

F
2  

F
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µ
1 

µ
2 

µ
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Table 2(b). The results of our compensatory model with and . 
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For 0   1*

3 0 0 2 0

0 2 2 0 0

0 2 0 0 0

1 0 4 0 4

 
 
 
 
 
 

X  ,  1 1* 127F X  ,  2 1* 104F X  , 

 3 1* 76.F X   

For 0.1   and 0.2    2*

3 0 0 2 0

0 2 1.542 0 0.4580

0 2 0 0 0

1 0 4.4580 0 3.5420

 
 
 
 
 
 

X  , 

 1 2* 130.2060F X  ,   2 2* 99.8780F X  ,  3 2* 77.3740F X  . 

From 0.3   to 1.0   3*

1.5242 0 1.4758 2 0

0 2 0.8984 0 1.1016

0 2 0 0 0

2.4758 0 3.6258 0 2.8984

 
 
 
 
 
 

X  , 

 1 3* 127.3320F X  ,   2 3* 97.0370F X  ,  3 3* 85.2080F X  . 

All of these solutions pointed out that the certainly transported amounts are: 

12 15 21 24 31 33 34 35 42 44

14 22 32

0,

2.

x x x x x x x x x x

x x x

          
    

. 

And also, the least transported amount are: 

11 23

41

43 45

1.5242, 0.8984,

1,

3.6258, 2.8984

x x

x

x x

  
  
   

. 

For 0  , and  equals to average operator (full-compensatory) operator that is 

  
3

1

1
min 0.7220

3
k

and
k

k F 


  x  and gives the solution 
1*X . The satisfactory 

level of the transportation system for our MOLTP is averagely 0.7220 .   

For 1 , and  equals to min  (non-compensatory) operator that is 

  min 0.7054k
and

k k F  x  and gives the solution 
3*X . This solution remains 
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the same from 0.3   to 1  . As seen the minimal satisfactory level of all objectives is 

equal to 0.7054 .  
4.2. Werners’ Compensatory “fuzzy or” Operator for the Example 
 
Using (11),  our compensatory problem will be in the form as follows: 

1 2 3

(1 )
max ( )

3or
    

    ,             (16)
 

s.t. Sx , 

1 1 2 2 3 3( ) , ( ) , ( ) ,x x x               

1 2 31, 1, 1,            

     1 1 2 2 3 2, ,x M r x M r x M r           , 

1 2 3 2r r r   , 

0 1, 1,2,3k k     , 

 0,1kr  , 1, 2,3k  , 

 0,1  .
 

By solving (16), the results for different 11 values of the compensation parameter   

with 0.1  increment are obtained and given in Table 3(a) and Table 3(b).  
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Table 3(a). The results of our compensatory model with or . 
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Table 3(b). The results of our compensatory model with or . 
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Table 4(a). The results of our compensatory model with Modified Zimmermann’s convex 
combination of the min- and max-operators. 
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Table 4(b). The results of our compensatory model with Modified Zimmermann’s convex 
combination of the min- and max-operators. 
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4.3. Modified Zimmermann’s Convex Combination of the min- and max-operators for the 
Example 
 
Using (12), our compensatory problem will be in the form as follows: 

  1 2max 1                   (17) 

s.t. Sx , 
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1 1 2 1 3 1( ) , ( ) , ( ) ,x x x       
 

     1 1 2 2 2 2 3 2 2, ,x M r x M r x M r           ,
 

1 2 3 2r r r   , 

 1 2, 0,1   , 

 0,1kr  , 1, 2,3k   

where M  is a very large real number. 
The results of (17) are given in Table 4(a) and Table 4(b).  

 
4.4. Lai and Hwang’s Augmented max–min Operator for the Example 
 
Using (13), our compensatory problem will be in the form as follows: 

       1 2 3max maxD        x x x             (18) 

s.t.       1 2 2, ,       x x x ,  

 Sx .  
 

where 
510  .  The results of (18) are given in Table 5.  

 
Table 5. The results of our compensatory model with Lai and Hwang’s augmented max–min 

operator for the example 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
4.5. A Hybrid Approach of Werners’ and Lai-Hwang’s Operators for the Example  
 
Using (14), our compensatory problem will be in the form as follows: 

    1 2 3max 1                       (19) 

 510            

D  0.705  
11x  1.524  

24x  0  
42x  0 

1F  127.332  
12x  0  

25x  1.102  
43x  3.626 

2F  97.037  
13x  1.476  

31x  0  
44x  0 

3F  85.208  
14x  2  

32x  2  
45x  2.898 

1  0.7054  
15x  0  

33x  0    

2  0.7054  
21x  0  

34x  0    

3  0.7054  
22x  2  

35x  0    

  0.705  
23x  0.898  

41x  2.476    
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s.t.  1 1 2 2 3 3( ) , ( ) , ( ) ,x x x             

 

1 2 31, 1, 1,          

 

Sx

 

1 2 3, , , 0.      

where 
510  .  The results of (19) are given in Table 6.  

Remark: All solutions are obtained by using the GAMS computer package.  
 

Table 6. The results of our compensatory model with hybrid approach of Werners’ and Lai-
Hwang’s operators for MOLTP 

 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
5. COMPARISON RESULTS 

Among several various operators, we selected and used Werners’ and  operator as a suitable 

one for MOLTP, basing on Zimmermann’s eight rules to justify a suitable operator [21]. These 
reasons can be given such as: Adaptability: this operator is dependent on the context and the 
semantic interpretation; that is it models a decision problem which is MOLTP. Thus our 
proposed fuzzy compensatory method aids the decision maker to get a suitable decision 
according to the situation; Numerical efficiency: this operator is computationally efficient; 

Compensation: this operator has compensation if a change in a member of and  can be 

counteracted by a change in an another member of it; Range of resulting membership: the larger 

the range of resulting membership the better the operator, for example, in Werners’ and  

operator, 0.7054and   for 1   (it means “min’’ operator), 0.7220and   for 

0   (it means “average’’ operator). Although modified Zimmermann’s approach gives the 

larger the range of resulting membership, that is,  0.7054,1D   but it does not guarantee 

to get Pareto-optimal solution. Although using Werners’ or  operator, the range of resulting 

 510            

D  0.705  
11x  1.524  

24x  0  
42x  0 

1F  127.332  
12x  0  

25x  1.102  
43x  3.626 

2F  97.037  
13x  1.476  

31x  0  
44x  0 

3F  85.208  
14x  2  

32x  2  
45x  2.898 

1  0.7054  
15x  0  

33x  0    

2  0.7054  
21x  0  

34x  0    

3  0.7054  
22x  2  

35x  0    

  0.705  
23x  0.898  

41x  2.476    
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membership is  0.7220,1D  , but while this operator satisfies the full satisfaction of at 

least one objective, some others’ satisfactions may be zero. Whereas Werners’ and  operator 

does also guarantee the least degree of satisfactions among all objectives. For this reason, or  

operator is not appropriate for MOLTP. Lai and Hwang’s augmented max–min operator 

generates a unique Pareto-optimal solution near to the “min’’ operator because   is sufficiently 

small positive number, whereas Werners’ and  operator has more Pareto-optimal solution 

variety dependent on  . And the hybrid of Werners’ and  and augmented max–min operators 

also generates a unique Pareto-optimal solution similar to augmented max–min operators’ one. 

Therefore, and  operator enables us to choose a compromise solution in a wider set. The 

compromise solution is both compensatory and Pareto optimal. Using and  operator, our 

method achieves the compromise solution for MOLTP in an only one-phase instead of afore 
mentioned two phase approaches [24]. And we also gave a theorem that the compensatory 
solution generated by this operator does guarantee Pareto-optimality for our MOLTP.  
 
6. CONCLUSIONS 
 
As known, the solution techniques of MOLTP are often encountered in the literature. It is quite 
useful using the fuzzy techniques from the point of view efficiency and simplicity. In the 
literature, it is mostly used Zimmermann’s min operator to aggregate multiple objectives. 
However, it is known that this operator does not guarantee to generate the Pareto-optimal 
solutions [26, 27, 28]. In this paper, we presented brief information about Werners’ 
compensatory “fuzzy and’’ and “fuzzy or’’ operators, Modified Zimmermann’s convex 
combination of the min- and max-operators, Lai and Hwang’s augmented max–min operator. 
And we applied them to the MOLTP to obtain a compensatory compromise Pareto-optimal 
solution set. And an illustrative numerical example is provided to compare these aggregation 
operators. To investigate the effect of different degrees of compensation, 11 cases with different 

values of compensations were solved. Among these operators, we conclude that Werners’ and  

operator as a suitable one for MOLTP, basing on Zimmermann’s eight rules to justify a suitable 
operator [21]. 
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