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ABSTRACT 
 
We constructed Green’s function solution of discontinuous Sturm-Liouville problems with eigenparameter in 
boundary conditions. 
Keywords: Discontinuous Sturm–Liouville problems, eigenparameter, Green’s function, eigenvalue, 
eigenfunction.  
MSC numbers/numaraları: 34L20, 35R10. 
 
SINIR KOŞULUNDA ÖZ PARAMETRE BULUNAN SÜREKSİZ SINIR DEĞER PROBLEMİNİN 
GREEN FONKSİYONU 
 
ÖZET 
 
Bu makalede sınır koşullarında özparametre bulunan, süreksiz Sturm-Liouville problemleri için Green 
fonksiyonu inşa edilmiştir.  
Anahtar Sözcükler: Süreksiz Sturm-Liouville problemleri, özparametre, Green fonksiyonu, özdeğer, 
özfonksiyon.   
 
 
 
1. INTRODUCTION 
 
In this paper, we establish the Green’s function for Sturm-Liouville equation  
 

- )()()()('' xyxyxqxy λ=+                                                                                                  (1.1)  

 

on the interval ⎥⎦
⎤

⎜
⎝
⎛

⎟
⎠
⎞

⎢⎣
⎡ πππ ,

22
,0 ∪ , with the eigenparameter-dependent boundary conditions  

 

0)0()0( ' =+ yyλ  ,                                                          (1.2) 
 

0)()( ' =+ ππλ yy                                                        (1.3) 
 

and the transmission conditions  
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where the real valued function )(xq   is continuous on ⎥⎦
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π , λ  is a  real eigenparameter  

and, 0≠δ  is an arbitrary real number. 
Many topics in mathematical physics require investigations of eigenvalues and 

eigenfunctions of boundary value problems. In spite of the fact that the general theory and 
methods of boundary value problems with continuous coefficients are highly developed, very 
little is known about a general character of similar problems with discontinuity. Some problems 
with transmission conditions which arise in mechanics, such as thermal conduction problems for a 
thin laminated plate, were studied in [1]. 

In recent years, continuous results have been obtained for the boundary value problems 
with eigenparameter dependent boundary conditions. Some of these results can be seen in [2, 3, 4, 
5, 6, 7, 8]. In particular, [4, 6, 9, 10] contain many references to problems in physics and 
mechanics. Some special cases of the problem (1.1)-(1.5) arise from applications of the method of 
separation of variables to the varied assortment of physical problems [1, 5, 10]. It must be noted 
that asymptotic formulas of eigenvalues and eigenfunctions of this problem are investigated in 
[11].   

In this paper we will consider eigenparameter dependent boundary conditions and will 
extend some results of the standard Sturm-Liouville problems to discontinuous cases. In 
particular, we will construct Green’s function for the problem (1.1)-(1.5) using a method 
described in [12]. 
 
2. SOME BASIC SOLUTIONS ACCORDING TO TRANSMISSION CONDITIONS 
 
We define two fundamental solutions 
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of the differential equation (1.1) which satisfy one of the boundary conditions in (1.2), (1.3) and 
both of the  transmission conditions (1.4), (1.5) as follows. 

F. Aydın Akgün                                                                              Sigma 28, 15-25, 2010 



 
 

 17

Let  ),(1 λφ x  be a solution of the equation (1.1) on ⎟
⎠
⎞

⎢⎣
⎡

2
,0 π

, satisfying the initial 

conditions  
 

1),0(1 =λφ   ,  λλφ −=),0('1  .                                          (2.3) 
 

It has been shown in [11] that the solution of (1.1) with (2.3) is unique on  ⎥⎦
⎤

⎢⎣
⎡

2
,0 π

. 

Now consider the differential equation (1.1) on ⎥⎦
⎤

⎜
⎝
⎛ ππ ,

2
 together with the special type initial 

conditions 
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We will prove that these initial conditions define a unique solution ),(2 λφ xy = , 

which is also an entire function of the parameter C∈λ  for each fixed ⎥⎦
⎤

⎢⎣
⎡∈ ππ ,

2
x . Consider 

the sequence ,...2,1,0),,( =nxyn λ defined by the recurrence formula 
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⎜
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=
π

π
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⎠
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2
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Thus, 
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By induction, it follows from (2.7) that 
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Hence, the series  
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converges uniformly for values of  λ  satisfying N≤λ in the interval  ππ
≤< x

2
 for 

2≥n . Moreover, we can obtain the following equations by differentiating the equation (2.6) 
 

( ) ( )∫ −−− −−=−
x
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2
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π

λλλ   ,                                 (2.11) 

 

( ) ( )),(),())(()()( 211
'''' λλλ xyxyxqxyxy nnnn −−− −−=−  .                      (2.12) 

 
 

By virtue of (2.9) each of the series 
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converge uniformly for N≤λ  on the interval ⎥⎦
⎤

⎜
⎝
⎛ ππ ,

2
. 

Hence, it follows from (2.11) and (2.12) that the differentiated series 
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also converge uniformly  in x  on the interval ⎥⎦
⎤

⎜
⎝
⎛ ππ ,

2
. Now taking (2.10) and (2.12) into 

account, we have  
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Thus ),(2 λφ x  satisfies the differential equation (1.1) on the interval ⎥⎦
⎤

⎜
⎝
⎛ ππ ,

2
 and the 

initial conditions (2.4) and (2.5). Hence, the function ),( λφ x defined by equation (2.1) satisfies 

the differential equation (1.1) on ⎥⎦
⎤

⎜
⎝
⎛

⎟
⎠
⎞

⎢⎣
⎡ πππ ,

22
,0 ∪ , the boundary condition (1.2) and the 

transmission conditions (1.4) and (1.5). 

We now turn to the unique solution ),(2 λχ x of the equation (1.1) on ⎥⎦
⎤

⎜
⎝
⎛ ππ ,

2
 

satisfying the initial conditions  
 

1),(2 −=λπχ  and λλπχ =),('
2                                                                (2.13) 

 

which is an entire function of  λ  for fixed x . 
The function ),(1 λχ x  will be defined in terms of ),(2 λχ x  and by the conditions 

 

,,0
2

1
2 2 ⎟

⎠
⎞

⎜
⎝
⎛ +=⎟

⎠
⎞

⎜
⎝
⎛ λπχ

δ
πy             (2.14) 

 

⎟
⎠
⎞

⎜
⎝
⎛ +=⎟

⎠
⎞

⎜
⎝
⎛ λπδχπ ,0

22
2

''y .            (2.15) 

 

Applying the same technique as in the definition of ),(2 λφ x  we can prove that the 

equation (1.1) with conditions (2.14)-(2.15) has a unique solution ),(1 λχ x  which is also an 
entire function of   

λ  for fixed ⎟
⎠
⎞

⎢⎣
⎡∈

2
,0 πx . Thus ),( λχ x  satisfies the differential equation (1.1), the 

boundary condition (1.3) and the transmission conditions (1.4) and (1.5) on ⎥⎦
⎤

⎜
⎝
⎛

⎟
⎠
⎞

⎢⎣
⎡ πππ ,

22
,0 ∪ . 

The Wronskian 
 

),(),(),(),();,()( '' λφλχλχλφχφλω λ xxxxxW iiiiiii −==                                   (2.16) 
 

are independent of x  for 2,1=i  and it can easily be shown  that  
 

)()()( 21 λωλωλω == .                                                                                      (2.17) 
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Theorem 1: The eigenvalues of the problem (1.1)-(1.5) consist of zeros of the function )(λω . 
Theorem can be proved easily by the same technique as for Theorem 1 in [12]. 

Lemma 1: Let 2s=λ .Then the following integral equations hold. 
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Proof: Consider the solution ),(1 λφ x  of the differential equation (1.1)  
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Multiplying both sides by )( τ−xsSin  and then integrating we get  
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,0 πx . After integrating by parts twice the first integral and using the conditions in 
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Lemma 2: Let 2s=λ for s being a complex number. Let ts =Im . Then, the following 

asymptotic equations hold for ∞→λ . 
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Theorem 2: Let 2s=λ  and ts =Im . The asymptotic representation of characteristic function 

)(λω  is  
 

( )xteOsSinsSinssCossCoss +⎟
⎠
⎞

⎜
⎝
⎛ +−⎟

⎠
⎞

⎜
⎝
⎛ +=

422
2

422
2)(

2
2 πππ

δ
πππδλω .  (2.25) 

 

Proof: This result is a direct consequence of equation (2.16) and Lemma 2. 
 
3. ASYMPTOTIC REPRESENTATION OF GREEN FUNCTION 
 
Let us consider Sturm-Liouville equation 
 

)()()()()( '' xfxyxqxyyL −=+−=                                                                   (3.1) 
  

together with eigenparameter-dependent boundary conditions (1.2)-(1.3) and transmission 
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We can represent the general solution of (3.1) in the following form  
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We applied the standard method of variation of the constants to (3.2), thus, the functions 
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Where 121 ,, BAA  and 2B  are arbitrary constants. Substituting these expressions to 
(3.2), we obtain the solution of  (3.1)  
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Substituting these solutions into the eigenparameter-dependent boundary conditions 
(1.2)-(1.3) and the transmission conditions (1.3)-(1.4), we obtain the resolvent of the boundary 
value problem (1.1)-(1.5) as  
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We can now easily find the Green’s function of the problem (1.1)-(1.5) from the 
resolvent (3.1).  
Theorem 3: If the equation 0)( =uL  has only trivial solution, then, for any function )(xf  

which is continuous on the interval [ ]ba, , there exists a solution of the equation )(xfLu =  
given by  
 

   ∫=
b

a

dfxGxu ξξλξ )();,()( . 

 

Proof of this theorem can be found in [13] where );,( λξxG  denotes the Greeen’s 

function for the operator L . 
From Theorem 3 we have  
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and from (3.7), the Green’s function of the problem (1.1)-(1.5) can be represented as follows 
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Finally, in view of the condition (2.10) and using the asymptotic formulas in (2.21)-
(2.25), we obtain the asymptotic representation of Green’s function );,( λyxG  for ∞→λ  as  
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