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ABSTRACT 
 
It is shown that a new 2+1-dimensional second-order partial differential equation, when written as a first-order 
nonlinear evolutionary system, admits bi-Hamiltonian structure. Therefore, by Magri’s theorem it is a 
completely integrable system.  For this system a Lagrangian is introduced and Dirac’s theory is applied in 
order to obtain first Hamiltonian structure. Then recursion operator is constructed and finally the second 
Hamiltonian structure for this system is obtained. Jacobi identity for the Hamiltonian structure is proved by 
using Olver’s method. Thus, it is an example of a completely integrable system in three dimensions.  
Keywords: Integrable systems, Hamiltonian integrable systems.   
PACS numbers/numaraları: 04.20.Jb, 02.40.Ky. 
 
2+1 BOYUTTA YENİ İNTEGRE EDİLEBİLİR HAMİLTONIAN SİSTEMLER  
 
ÖZET 
 
Yeni 2+1 boyutlu ikinci mertebeden kismi türevli diferansiyel denklem, birinci mertebe lineer olmayan 
değişim sistemi olarak yazıldığında, bu yeni sistemin bi-Hamiltonian yapıya sahip olduğu gösterilmiştir. 
Böylece Magri teoremine göre tamamen integere edilebilir bir sistem elde edilmiştir. Bu sistem için 
Lagrangian elde edilmiş, ve birinci Hamiltonian yapıyı elde etmek için Dirac teori uygulanmıştır. Sistem için 
tekrarlama (recursion) operatorü kurulmuş ve  son olarak ikinci Hamiltonian yapı elde edilmiştir. Hamiltonian 
yapılar için Jacobi özdeşliği Olver’in metodu kullanılarak ispatlanmıştır. Böylece yeni denklem üç boyutta 
tamamen integre edilebilir sitemlere bir örnek teşkil etmektedir. 
Anahtar Sözcükler: İntegre edilebilir sistemler, Hamiltonian integer edilebilir sistemler. 
 
 
 
1. INTRODUCTION  
 
Integrable Hamiltonian systems are studied for more than three decades and there are many 
examples of 1+1-dimensional ones in literature. The well-known example in this field is 
Korteweg- de Vries (KdV) equation.  The first discovery, made by Gardner [1], was that the KdV 
equation could be written as a completely integrable Hamiltonian system. This idea was further 
developed by Zakharov and Fadeev [2]. The general concept of a Hamiltonian system of 
evolution equations first appears in the works of Magri [3], Kupershmidt [4] and Manin [5]. 
Further developments, including the simplified techniques for verifying the Jacobi identity, 
appear in Gelfand and Dorfman [6], Olver [7] and Kosmann –Schwarzbach [8].  The basic 
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theorem on bi-Hamiltonian systems is due to Magri [3, 9], who was also the first one to publish 
the second Hamiltonian structure for the KdV and the other equations.  

For a long time there were only few examples of 2+1- and even no examples of 3+1- 
dimensional integrable systems. Very recently Neyzi, Nutku and Sheftel [10] discovered that the 
second heavenly equation of Plebanski, when being presented in a two component form, is a 3+1-
dimensional bi-Hamiltonian integrable system. Later, it was discovered that the complex Monge-
Ampere equation in (3+1) real dimensions is completely integrable in the sense of the Magri’s 
theorem [11]. 

In [12] we studied symmetry reduction of second heavenly equation and we obtained a 
2+1-dimensional bi-Hamiltonian system. In this paper I will present a new 2+1-dimensional bi-
Hamiltonian system. The Lagrangian of this system is, 
 

( )yxtyxxxxt uuuuuuuuL −−−−= α22                 (1) 
 

and Euler Lagrange equation gives the following non linear 2+1 dimensional partial differential 
equation in one-component form. 
 

( ) 02 =−−−−− ytxtxyxxtxxxtt uuuuuuu α                                                                        (2) 
 

where α  is an arbitrary  constant. This system is obtained by using a linear combination of 
invariants given in [12]. 

In section 2, I will give Lagrangians and construct the first Hamiltonian structure using 
Dirac’s theory [13] of constraints.  In section 3 I derive a recursion operator for a new system. In 
section 4 I obtain the second Hamiltonian structure and Hamiltonian function by applying the 
recursion operator to the first Hamiltonian structure. Finally in section 5, the Jacobi identity for 
the Hamiltonian structure will be checked in detail by using Olver’s method [14]. 
 
2. LAGRANGIAN AND FIRST HAMILTONIAN STRUCTURE 
  
In this part I use the method of [10] for the calculation of the first Hamiltonian structure. The 
Lagrangian density (1) for the equation in one-component form (2), but this must be converted to 
a form suitable for applying Dirac’s theory of constraints. For this purpose, I introduce an 
auxiliary variable q whereby system (2) assumes the form 
 

( )[ ]⎪⎩

⎪
⎨

⎧

≡−+−+=

=

Quuqqq
u

q

qu

xyxxyxx
xx

t

t

α21                (3) 

 

of a first-order two-component system. Here sub indexes x, y and t stand for partial derivative of 

x∂
∂

, 
y∂
∂

 and 
t∂
∂

 respectively and in all paper I will use the same notation. Lagrangian density 

for system (3) is given by, should be degenerate, that is, linear in the time derivative of the 
unknown tu  and with no tq : 
 

( )( )yxtyxxxxxxt uuuuuuuququL −α−−−−= 222
2
1

              (4) 
 

This Lagrangian is degenerate [16], because its Hessian  
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02

2

=
∂
∂

tu
L

 

 

vanishes identically. Alternatively, the canonical momentum given by; 
 

( )yxxx
t

uuqu
u
L

−−=
∂
∂

= αΠ   

can not be inverted the velocity tu  and we have degenerate Lagrangian. After substituting 

tuq = , coincides with our original Lagrangian (1) up to a total divergence. We can easily check 

that Euler-Lagrange equations for (4) give the system (3). The variational derivative for ku  
defined as following. 
 

−
∂
∂

∂+
∂
∂

∂+
∂
∂

∂−
∂
∂

∂−
∂
∂

∂−
∂
∂

= k
yy

yk
xx

xk
y

yk
x

xk
t

tkk uuuuuuu
22

δ
δ

 

 

Here 2,1=k  with qu =1  and uu =2 , hence we get, 
 

ququuu
q
L

txxxxt =⇒=−= 0
δ
δ

 

 

and  
 

( ) 02 =+++−α+−=
δ
δ

xxyxxyxxxt quuqquq
u
L

 
 

( )[ ]xyxxyxx
xx

t uuqqq
u

q −+−+= α21
 

 

Since the Lagrangian density (4) is linear in tu  and has no tq , the canonical momenta  
 

( )

0

2

=
∂
∂

=π

−α−=
∂
∂

=π

t
q

yxxx
t

u

q
L

uuqu
u
L

                (5) 

 

cannot be inverted for the velocities tu  and  tq  and so the Lagrangian is degenerate. Therefore, 
according to the Dirac’s theory [13], we impose (5) as constraints 
 

( )
qq

yxxxuu uuqu

π=φ

−α+−π=φ 2
                 (6) 

 

where the canonical momenta should satisfy canonical Possion brackets 
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( )[ ] ( ) ( )yyxxyxuyx k
i

k
i ′−′−=′′ δδδπ ),(,,  , 2,1, =ki   

 

and calculate the Passion brackets of the constraints 
 

( ) ( )[ ]yxyxK jiij ′′φφ= ,,, .                 (7) 
 

If we organize them into a 22×  matrix form, we find 
 

( ) ( )[ ] ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )yyxxyyxxyyxx

yyxxyyxxxq
yyxxxqyxyxK

yxy

xxx

xxu

−′δ−′αδ−−′δ−′αδ+′−δ′−αδ−

′−δ′−αδ+−′δ−′δ+

′−δ′−δ′−=′′φφ=

′

′

′′

2
2,,,11

 

                                  (8) 
 

( ) ( )[ ] ( ) ( )yyxxuyxyxKK xxqu −′δ−′δ−=′′φφ=−= 2,,,2112  
 

( ) ( )[ ] 0,,,22 =′′φφ= yxyxK qq , 
 

where the subscripts run from 1 to 2 with 1 and 2 corresponding to u and q , respectively. In all 

the coefficients of ijK  if we kill factor  ( )2−  this yields the symplectic operator ijK  that is an 

inverse of the Hamiltonian operator 0J : 
 

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−−+
=

0xx

xxyxxxx
ij u

uDDDqqD
K

α
,               (9) 

 

which is an explicitly skew-symmetric local matrix-differential operator. The first Hamiltonian 

operator ( ) 1
0

−= ijKJ  is obtained by inverting ijK  in (9) as 
 

( ) ⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−+−

=

xx
yx

xxxx

x
xx

xx

x

xx

xx

u
DD

uu
qDD

u
q

u

u
J

αα
22

0
1

10

                                    (10) 

 

which is explicitly skew-symmetric.  Also it satisfies the Jacobi identity, as will be shown in 
detail in section 5. The Hamiltonian density is 
 

LquH tqtu −π+π=1 , 
 

which results in 
 

( )yxxxx uuuuqH −+= 22
1 2

1
.               (11) 

 

The new system (3) can now be written in a Hamiltonian form with the Hamiltonian 
density 1H  defined by (11) 
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1
0

1

ut

qt

u
J

q
δ
δ
Η⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟ Η⎝ ⎠ ⎝ ⎠ ( )[ ]⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−+−α+=
xyxxyxx

xx

uuqqq
u

q
21                                    (12) 

 

where 
uu δ
δ

=δ  and 
qq δ
δ

=δ  are Euler-Lagrange operators [14], defined as  

 

( ) 1 1
1

0

j

u
j j

dE H
u dx u

δ
δ

∞

=

Η ∂Η⎛ ⎞= = −⎜ ⎟ ∂⎝ ⎠
∑                                                     (13) 

 

with j j

duu
dx

= , and similarly for 1qδ Η , which correspond to the variational derivatives of the 

Hamiltonian functional 1 1H dxdy
∞

−∞

Η = ∫ . 

 
3. RECURSION OPERATOR 
 
We start with the equation determining symmetries of the two-component system (3). We 
introduce the two-component symmetry characteristic Φ  by 
 

( )
( )yxyx

yxyx

qquuqutyxq

qquuqutyxu

,,,,,,,,

,,,,,,,,

ψ=

ϕ=

τ

τ
    ,            ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≡

ψ
ϕ

Φ .            (14) 

 

From the Frechét derivative of the flow we find  
 

( )⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
α

−−+
−

−
=

yx
xx

x
xx

x
tyx

xx
x

xx

t

DD
u

D
u
q

DDD
u

D
u

Q

D
A

211

1

2

          (15) 

 

So that the equation determining symmetries of the new three-dimensional evolution 
system is given by 
 

( ) 0=ΦA .                 (16) 
 

If we combine the first determining equation with the second equation in (16), 
multiplied by the overall factor xxu , we reproduce the determining equation for symmetries of 
original equation (1).  The equation for symmetries (16) can be set in a 2-term divergence form  
 

( )( ) ( )( ) 01 =−+−−+−−
xyxxttxxyxxx qquq ϕψϕψϕϕαϕ            (17) 

 

that implies the local existence of the potential variable ϕ~  defined by 
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( )
( ) yxxtt

xxyxxxx

qq

uq

ϕψϕϕ

ψϕϕαϕϕ

−+−=

+−−=

1~

~
              (18) 

 

which also satisfies the same determining equation for the symmetries of (1) and therefore it is a 
partner symmetry for ϕ . In the two-component form, we define the second component of this 

new symmetry, similar to the definition of ψ , as tϕψ ~~ = . Then the two-component 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ψ
ϕ

Φ ~
~~

 

 

vector satisfies the determining equation for symmetries in the form (16) and hence a symmetry 
characteristic of  the system  (3), provided the vector (14) is also a symmetry characteristic.  
 

( )ΦΦ R=~
                 (19) 

 

with the recursion operator R  given by  
 

( )[ ]

( ) ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−+−

−α+
=

−−

xxyx

xxxyxxxx

qDDQ

uDDDDqD
R

1

11

 ,            (20) 

 

where 1−
xD  is the inverse of  xD  and defined as 

 

( ) ξξ dffD
x

x
x ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= ∫ ∫

∞−

∞
−

2
11 .               (21) 

 

For the properties of this operator see [15].  Moreover, vanishing of the 
commutator [ ]AR, , computed without using the equations (3), reproduce the new system (3) and 

hence the operator R  and A  form a Lax pair for the 2-component system. The commutator 
reads,  
 

[ ]
( ) ( ) ( )

( )( ) ( )( )( ){ } ( ) ⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−−−α+−−

−−−−
=

−−

xtxtxyxxxt
xx

xxtxxtxxtx

QqDQqqDDquQ
u

quDQqQqD
AR

211
,

11

 

 

It can be easily see that [ ] 0, =AR  is equivalent to the system (3) and therefore  R  

and A  form a Lax pair for 2-component system (3). 
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4. SECOND HAMILTONIAN STRUCTURE AND HAMILTONIAN FUNCTION 
 
The second Hamiltonian operator 1J  is obtained by applying the recursion operator (20) to the 

first Hamiltonian operator 01 RJJ =  with the result 
 

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛ −

=

−

22
1

1

1

J
u
q

u
q

D

J

xx

x

xx

x
x

,               (22) 

 

where  
 

( ) ( )

( ) ( )

22
1

21 1 1 1 1 11 1
2 2

1 1 .
2

x x
x x y y x

xx xx xx xx xx xx

x x
y x y x

xx xx xx xx

q qJ Q D D Q D D D
u u u u u u

q qD D D D
u u u u

α

⎛ ⎞ ⎛ ⎞
= − + − + + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞

+ − + −⎜ ⎟
⎝ ⎠

 

Operator 1J  is obviously skew-symmetric and the Jacobi identity for this operator will 

be checked in the next section in detail. The Hamiltonian function for 1J  which generates the 
system (3) is given by 
 

( ) xxquyxH +=0 .                (23) 
 

The Hamiltonian function 0H  satisfies the recursion relation of Magri,  
 

1 0
0 1

1 0

u u

q qt

u
J J

q
δ δ
δ δ
Η Η⎛ ⎞ ⎛ ⎞⎛ ⎞

= =⎜ ⎟ ⎜ ⎟⎜ ⎟ Η Η⎝ ⎠ ⎝ ⎠ ⎝ ⎠
              (24) 

 

which shows that the new equation (1) in the 2-component form (3) is a bi-Hamiltonian system. 
The second Hamiltonian operator is obtained by acting with the recursion operator R  on the 
Hamiltonian operator 0J . In order to have the higher flows we generalize this relation as 
 

0JRJ n
n =                  (25) 

 

In the case of (22) we have 1=n . If we take, for example, 2=n  we can generate a 

new Hamiltonian operator 1
1

0110
2

2 JJJRJJRJ −=== . Here we used the relation 
1

01
−= JJR .  By the repeated application of the recursion operator (20) to the Hamiltonian 

operators 0J , 1J  and so on, we could obtain multi-Hamiltonian representation of our new 
system. 
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5. JACOBI IDENTITY 
 
In this section, I will concentrate on checking of the Jacobi identity for the Hamiltonian operators 

0J  and 1J .  

Definition: A linear operator qq AAJ →:  is called Hamiltonian if its Possion bracket 
{ } ∫ ⋅= dxQJPQP δδ,

 
satisfies skew-symmetry property 

 

{ } { }PQQP ,, −= ,                                                            (26) 
 

and the Jacobi identity 
 

{ }{ } { }{ } { }{ } 0,,,,,, =++ PRQQPRRQP                                                                   (27) 
 

for all functionals QP,  and R  
But using this definition directly, the verification of Jacobi identity (27), even for 

simplest skew-adjoint operators, appears a hopelessly complicated computational task.  For this 
reason we will use the Olver’s method [14] by following the theorem below. 

Theorem: Let J be a skew-adjoint qq× matrix differential operator and ( )∫ ∧= dxJ θθΘ
2
1

 

be the corresponding bi-vector. Then J is Hamiltonian if and only if  
 

( ) 0Pr =ΘθJV .                                                                                          (28) 
 

We mentioned that if we can present the system (3) in the form (24), the system is 
called bi-Hamiltonian system. We say that 0J , 1J  form a Hamiltonian pair if every linear 

combination 10 bJaJ +  where  a  and b  are constants, should satisfy the Jacobi identity.  

Therefore, if we directly compute the Jacobi identity for 10 bJaJ +=Γ  , then we guarantee 

that 0J  and 1J  satisfy the Jacobi identity. Because, if we choose 0,1 == ba  and 

1,0 == ba  then we will end up with the Jacobi identity for 0J  and 1J  respectively.  In this 

way, we will prove that, 0J  and 1J  independently satisfy the Jacobi identity and also that any 

linear combination 10 bJaJ +  also satisfies Jacobi identity.  Therefore we start with, 
 

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

++−
−

−
−

=+=

−

CBDAD
u

abq

u
abq

bD

bJaJ

yx
xx

x

xx

x
x

1

10Γ             (29) 

 

where  
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( )

( )

( )

2
2

2

2

1 2

.

x x y xy
xx

x

xx xx

xxyxxx xx
x

xx xx xx

A bq aq bq bu a
u

bq abB
u u

uu qC A B a bq
u u u

α α

α

= − + + −

−⎛ ⎞
= +⎜ ⎟
⎝ ⎠

= − + −

             (30) 

 

By using theorem (28), we define the two-form bi-vector   
 

( )∫∑ ∧=
ji

ji
ij dydx

,2
1 ωωΓΘ                (31) 

 

Where the uni-vectors correspond to ηω =1  and θω =2  and 2,1, =ji . Hence 
(31) becomes 
 

( ) dxdyBA
u
a

u
bq

u
bq

u
D yx

xxxx

x

xx

x

xx
x∫ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
∧+∧−∧⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+∧⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+∧= − θθθθθηηθαηηΘ 1

2
1

 

 

If we substitute Θ  in (28) we obtain 
 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) dydx
u

VabqqV
u
b

u
Vb

u
VAuuVbqVbqVabq

u

u
VabqqV

u
bV

y
xx

JxxJ
xxxx

J

x
xx

JxxxyJyJxJx
xx

xx
JxxJ

xx

⎪⎭

⎪
⎬
⎫

∧∧⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∧∧⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++−−

∧∧
⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−= ∫

θθαα

θθα

ηθΘ

ωωω

ωωωω

ωωωΓ

22

2
2

2

1PrPr1Pr

1PrPrPrPr21

1Pr2Pr2
2
1Pr

                  (32) 
 

and by using the following relation [14], 
 

( )∑ ∑ ∂
∂

=
J J

J u
DV

,,

Pr
βα

α
β

αβωΓ ωΓ      ,,,,1 xxxxxxJ =                   (33) 

 

we can compute the terms given in (32) as given below 
 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
= θθθηω CBA

u
abq

DqV yx
xx

x
xxJPr  

 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
= θθθηω CBA

u
abq

DqV yx
xx

x
yyJPr
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⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
x

xx

x

xxx

x
x

xxxx
J u

abq
u

abq
bD

uu
V θθηω 2

11Pr
  

2 3

1 2Pr x x
J x x

xx xx xx xxx

bq a bq aV D b
u u u uω η θ θ

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− −
= − − −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−= x

xx

x

xxx

x
yxyJ u

abq
u

abq
bDuV θθηωPr . 

 

After we substitute these terms in (32) we get a very large equation which is not suitable 
to write here. After that we do a very lengthy and cumbersome calculation and finally we get 
zero. This means, by virtue of (28), that the Jacobi identity is satisfied both for 0J  and 1J  and 
they form a Hamiltonian pair. 
 
6. CONCLUSION 
 
We discover new 2+1-dimensional nonlinear evolution equation and we write this equation in a 
two-component form in order to obtain its Hamiltonian structure. We start with the first 
Hamiltonian structure. We use Dirac’s theory of constraints to construct the matrix operator K  
which is an inverse of the first Hamiltonian operator 0J . We obtain a recursion operator for 

symmetries and we show that the recursion operator R and the linear operator A of the equation 
determining symmetries commute and, moreover, they form a Lax pair for the new two-
component evolutionary system. We have found second Hamiltonian structure by acting with the 
recursion operator R  on the first Hamiltonian operator 0J . Finally, we prove that both 

Hamiltonian operators 10 , JJ  and also their linear combination 21 bJaJ +  satisfy the Jacobi 
identity. Therefore, this new system is bi-Hamiltonian and, by Magri’s theorem, the multi-
Hamiltonian structure makes the new system to be a completely integrable system in 2+1-
dimensions. In the future work we will present the Lie algebra of all point symmetries and 
integrals of motion which generate all variational point symmetries of the new evolution system. 
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