
 
 

 112

                                    
Araştırma Makalesi / Research Article 

EFFECT OF FIBER ANGLE ON OUT-OF-PLANE AND IN-PLANE NATURAL 
FREQUENCIES OF LAMINATED COMPOSITE BEAMS  
 
 
Mehmet ÇEVİK* 
 
Dokuz Eylül University, İzmir Vocational School, Buca-İZMİR 
 
Geliş/Received: 26.07.2007   Kabul/Accepted: 26.05.2008 
 
 
ABSTRACT 
 
Out-of-plane and in-plane free vibrations of angle-ply and cross-ply laminated composite beams with different 
boundary conditions are studied. The effect of fiber angle on out-of-plane bending, torsional, in-plane 
bending, and axial natural frequencies are investigated separately. The beam is modeled and analyzed by the 
finite element method (FEM). The finite element software package ANSYS is used to perform the numerical 
analyses using an eight-node layered shell element. The rotary inertia and shear deformation effects are taken 
into account. The method of solution is validated by comparing numerical results with those available in the 
literature. It has been shown that, by choosing angle-ply lamination instead of cross-ply, torsional, in-plane 
bending and axial natural frequencies can be increased by approximately 40%. 
Keywords: Angle-ply laminated composite beam, natural frequency, finite element method. 
PACS number/numarası: 46.40.-f, 46.70.De, 02.70.Dh. 
 
TABAKALI KOMPOZİT KİRİŞLERİN DÜZLEM DIŞI VE DÜZLEM İÇİ DOĞAL 
FREKANSLARINA FİBER AÇISININ ETKİSİ 
 
ÖZET 
 
Farklı sınır şartlarına sahip açılı ve çapraz tabakalı kompozit kirişlerin düzlem içi ve düzlem dışı serbest 
titreşimleri incelenmiştir. Fiber açısının düzlem dışı eğilme, burulma, düzlem içi eğilme ve eksenel doğal 
frekanslara etkisi ayrı ayrı araştırılmıştır. Kiriş, sonlu eleman yöntemi kullanılarak modellenmiş ve analiz 
edilmiştir. Nümerik analizleri gerçekleştirmek için sekiz-düğümlü tabakalı kabuk eleman seçilerek sonlu 
eleman yazılım paketi ANSYS kullanılmıştır. Dönme ataleti ve kayma deformasyonu etkileri dikkate 
alınmıştır. Literatürde mevcut sayısal sonuçlar ile karşılaştırma yapılarak çözüm yöntemi doğrulanmıştır. 
Çapraz tabakalı yerine açılı tabakalı dizilişi tercih etmek suretiyle burulma, düzlem içi eğilme ve eksenel 
frekansların yaklaşık %40 arttırılabileceği gösterilmiştir. 
Anahtar Sözcükler: Açılı tabakalı kompozit kiriş, doğal frekans, sonlu eleman yöntemi. 
 
 
 
1. INTRODUCTION 
 
Fiber reinforced composites are increasingly used in aerospace, automotive, marine, civil 
engineering and other industries. In the last few decades, research and development in composite 
materials have shown a tremendous increase. Fiber reinforced laminated composites constitute a 
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significant part of these works. In many cases, metals are being replaced by laminated composites 
because of their superior advantages such as high strength-to-weight and stiffness-to-weight ratio.  

There has been continued research interest in the vibration analysis of composite beams. 
Most of these studies are related with cross-ply laminated beams. Yıldırım et al. [1] used the 
transfer matrix method for the numerical solution of both in-plane and out-of-plane free vibration 
problems of symmetric cross-ply laminated composite beams. Rao et al. [2] developed an 
analytical method for evaluating the natural frequencies of laminated composite and sandwich 
beams using higher-order mixed theory and analyzed various beams of thin and thick sections. 
Maiti and Sinha [3] developed a finite element method (FEM) to analyze the vibration behavior of 
laminated composite beams and investigated the effects of various parameters. Matsunaga [4] 
analyzed natural frequencies and buckling stresses of general cross-ply laminated composite 
beams by taking into account the complete effects of transverse shear and normal stresses and 
rotary inertia. Khdeir and Reddy [5] studied free vibrations of cross-ply laminated beams with 
arbitrary boundary conditions. Murthy et al. [6] derived a refined 2-node beam element based on 
higher order shear deformation theory for axial-flexural-shear coupled deformation in 
asymmetrically stacked laminated composite beams. Ramtekkar et al. [7] developed a six-node 
plane-stress mixed finite element model by using Hamilton’s principle. Natural frequencies of 
cross-ply laminated beams were obtained and various mode shapes were presented.  

Although the research on the vibration analysis of laminated composite beams is mostly 
concentrated on cross-ply laminated composites, there are several studies on the vibration analysis 
of angle-ply laminated composite beams. Chandrashekhara et al. [8] presented exact solutions for 
the free vibration of symmetrically laminated composite beams, and demonstrated the effect of 
shear deformation, material anisotropy and boundary conditions on the natural frequencies. 
Bhimaraddi and Chandrashekhara [9] considered the modeling of laminated beams by a 
systematic reduction of the constitutive relations of the three-dimensional anisotropic body and 
concluded that these relations should be adopted while modeling especially angle-ply laminated 
composite beams. Chandrashekhara and Bangera [10] investigated the free vibration of angle-ply 
composite beams by a higher-order shear deformation theory using the shear flexible FEM. 
Krishnaswamy et al. [11] solved the generally layered composite beam vibration problems. 
Kadivar and Mohebpour [12] developed one-dimensional finite element based on classical 
lamination theory, and first- and higher-order shear deformation theories to study the dynamic 
response of cross-ply and angle-ply laminated beams. Chakraborty et al. [13] presented a refined 
locking free first-order shear deformable finite element and demonstrated its utility in solving free 
vibration and wave propagation problems in laminated composite beam structures with symmetric 
and asymmetric ply stacking. Chen et al. [14] presented a new method of state-space-based 
differential quadrature for free vibration of generally laminated beams. Tahani [15] developed 
two laminated beam theories for beams with general lamination including angle-ply laminated 
beams. Aydogdu [16] investigated the vibration analysis of angle-ply laminated beams subjected 
to different sets of boundary conditions based on a three-degrees-of-freedom shear deformable 
beam theory.  

These studies deal mainly with the out-of-plane vibrations of angle-ply laminated 
beams. In the present study, however, both in-plane and out-of-plane coupled vibrations of angle-
ply and cross-ply laminated composite beams with different boundary conditions are studied. The 
effect of fiber angle on out-of-plane bending, torsional, in-plane bending, and axial modes of 
vibrations is investigated separately. Frequencies of angle-ply and cross-ply laminations are 
compared. The beam is modeled and analyzed by the FEM. The rotary inertia and shear 
deformation effects are taken into account. The method of solution is validated by comparing 
numerical results with those available in the literature. The influence of material orthotropy, 
length-to-thickness and width-to-thickness ratios on the natural frequencies is also considered. 
Mode shapes for various modes are illustrated.  
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2. FINITE ELEMENT MODELING OF THE COMPOSITE BEAM 
 
The geometry and coordinates of the laminated composite beam are illustrated in Fig. 1a and 
lamination of a typical 4-layered composite model is shown in Fig. 1b. The length, height 
(thickness) and width of the beam are represented by L, h and b, respectively. In order to simulate 
the out-of-plane bending, in-plane bending, torsional and axial vibrations of the beam, ANSYS 
10.0 finite element analysis software package [17] is utilized. 8-noded, linear layered 3-
dimensional structural shell element (shell 99) having six degrees of freedom at each node 
(translations in the nodal x, y, and z directions and rotations about the nodal x, y, and z-axes) is 
used for modeling. This element takes into account the rotary inertia and shear deformation 
effects. The frequencies are determined for clamped-clamped (C-C), clamped-hinged (C-H), 
clamped-free (C-F), and hinged-hinged (H-H) end conditions. 
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Figure 1a. Geometry and coordinates of the laminated composite beam. 
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Figure 1b. Lamination of a typical 4-layered composite model. 
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3. VALIDATION OF THE MODEL  
 
In order to validate the accuracy and applicability of the present model, numerical results are 
compared with those available in the literature. For this purpose, fundamental out-of-plane 
frequencies of a symmetric [θ/-θ/-θ/θ] angle-ply laminated graphite-epoxy beam (L/h=15, h/b=1) 
are considered.  The material properties are as follows: E1 = 144.8 GPa,  E2 = 9.65 GPa,  G12 = G13 
= 4.14 GPa,  G23 = 3.45 GPa,  ν12 = 0.3, ρ = 1389.23 Ns2/m4 where E, G and ν  are the modulus of 
elasticity, shear modulus and Poisson’s ratio, respectively. In Table 1, dimensionless natural 
frequencies 2 2 1 2

1L ( E h )ω ρ⎡ ⎤=⎣ ⎦  of the beam are compared with the results from analytical 

methods [8,11], a semi-analytical state-space-based differential quadrature method (SSDQM) 
[14], first-order shear deformation theories [12] and refined higher-order shear deformation 
theory [16]. In FSDT-1, bend-torsion coupling and Poisson effect are not considered. In FSDT-2, 
bend-torsion coupling is considered but Poisson effect is neglected; and in FSDT-3, both bend-
torsion coupling and Poisson effect are included. As seen from the table, the present model 
yielded results in good agreement with the results of [11], [14], [16], and FSDT-3, since it takes 
into account both bend-twist coupling and Poisson effect. 
 

Table 1. Comparison of dimensionless frequencies of symmetric [θ/-θ/-θ/θ] angle-ply beam 
 

Boundary   Fiber-angle    
conditions Theory 0° 15° 30° 45° 60° 75° 90° 

C-C Analytical [8] 4.8487 4.6635 4.0981 3.1843 2.1984 1.6815 1.6200 
 Analytical [11] 4.869 3.988 2.878 1.947 1.644 1.621 1.631 
 SSDQM [14] 4.8575 3.6484 2.3445 1.8383 1.6711 1.6161 1.6237 
 FSDT-1 [12] 4.8712 4.6835 4.1118 3.1908 2.2006 1.6814 1.6207 
 FSDT-2 [12] 4.8712 4.1071 3.3806 2.6199 1.9611 1.6604 1.6207 
 FSDT-3 [12] 4.8629 4.0082 2.8762 1.9330 1.6290 1.6063 1.6161 
 RHSDT [16] 4.973 4.294 2.195 1.929 1.669 1.612 1.619 
 Present 4.8457 4.0455 2.9444 1.9974 1.6542 1.6110 1.6183 

C-H Analytical [8] 3.730 3.559 3.057 2.303 1.551 1.175 1.136 
 Analytical [11] 3.837 3.243 2.213 1.388 1.146 1.129 1.131 
 RHSDT[16] 3.775 2.960 1.671 1.178 1.150 1.122 1.129 
 Present 3.7277 2.9881 2.0805 1.3787 1.1469 1.1238 1.1301 

 
4. NUMERICAL RESULTS AND DISCUSSION 
 
In this section, variation of dimensionless natural frequencies are analyzed and the effect of fiber 
angle on the natural frequencies is investigated. Unless stated otherwise, the orthotropic material 
properties of the composite layers are: E1/E2 = 40,  G12 = G13 = 0.6E2,  G23 = 0.5E2, ν12 = 0.25. 
The frequencies are nondimensionalised as 2 2 1 2

2L ( E h )ω ρ⎡ ⎤=⎣ ⎦ . 

 
4.1. Out-of-plane Vibrations 
 
The variation of the lowest six out-of-plane frequencies of symmetric [θ/-θ/-θ/θ] beams with 
respect to fiber angle for different boundary conditions is presented in Fig. 2. In symmetric 
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stacking sequences, out-of-plane bending modes are always coupled with torsional modes. The 
mode shapes change from flexural into torsional (or from torsional into flexural) where the 
frequency curves approach each other. (For example; in Fig 2a, 3rd and 4th modes at θ = 30°; 5th 
and 6th modes at θ =10°). Taking into consideration this modal transition, it is noticed that out-of-
plane bending frequency decreases, in general, as the fiber angle increases; whereas, torsional 
frequency increases up to about 25° fiber angle and then decreases gradually. 
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(c) C-F (d) H-H 

 

Figure 2. Variation of the lowest six out-of-plane frequencies with respect to fiber angle for 
different boundary conditions. 

 
4.2. In-plane Vibrations 
 
Fig. 3 shows the variation of the lowest six in-plane frequencies of symmetric [θ/-θ/-θ/θ] beams 
with respect to fiber angle for different boundary conditions. In symmetric stacking sequences, 
nevertheless, in-plane bending modes and axial modes are always uncoupled. The variation is 
considerably different from that of out-of-plane frequencies. The in-plane bending frequency 
increases up to about 15°-20° of fiber angle, reaches its maximum, and then decreases gradually 
up to 90°. This is more apparent in higher modes. The mode shapes change from flexural into 
axial (or from axial into flexural) where the frequency curves approach each other. Axial 
frequencies are determined for the purposes of this study. It is interesting that, unlike in-plane 
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bending frequencies, axial vibration frequencies result in a gradual decrease with increasing fiber 
angle. 
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Figure 3. Variation of the lowest six in-plane frequencies with respect to fiber angle for different 
boundary conditions. 

 
4.3. Anti-symmetric Stacking Sequences 
 
Unlike symmetric stacking sequences, coupling takes place between out-of-plane bending and in-
plane bending modes in this case; that is, bending modes are uncoupled from torsional modes. It 
can further be noted that torsional modes are either uncoupled or coupled with axial modes. In 
Fig. 4, the first eight modeshapes for [30°/-30°/30°/-30°] anti-symmetric stacking sequence are 
shown. As seen from the figure, the fifth mode (e) is pure torsional and the seventh mode (g) is 
axial-torsional coupled mode; while the other six modes are out-of-plane bending and in-plane 
bending coupled modes. In Fig. 5, the variation of the lowest 11 frequencies with respect to fiber 
angle for  anti-symmetric [θ/-θ/θ/-θ] lamination under C-C boundary conditions is presented. The 
modal transitions where the frequency curves approach each other, are also apparent in Fig. 5. 
The variation of frequencies with respect to fiber angle is similar to that in symmetric stacking 
sequences. 
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0 1x/L 0 1x/L 0 1x/L

(a) (b) (c) 

0 1x/L 0 1x/L 0 1x/L
(d) (e) (f) 

0 1x/L 0 1x/L

 

(g) (h)  
 

Figure 4. First eight modeshapes of anti-symmetric [30°/-30°/30°/-30°] laminated beam. 
⎯⎯ out-of-plane bending (u) ; −⋅ −⋅ − in-plane bending (v) ; 

 ⋅⋅⋅⋅⋅⋅⋅ torsional (w) ; − − − axial vibrations (n) 
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Figure 5. Variation of the lowest 11 frequencies with respect to fiber angle for anti-symmetric  

[θ/-θ/θ/-θ] lamination under C-C boundary conditions. 
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Fig. 6  shows the effect of the width-to-thickness (b/h) ratio on the fundamental 
frequencies  for  C-C boundary conditions. It is seen that the dimensionless out-of-plane bending 
and axial frequencies decrease with increasing fiber angle, whereas b/h ratio has almost no effect 
on these modes. Fundamental torsional frequency becomes maximum at about 15°-30° fiber angle 
and decreasing b/h ratio increases torsional frequency. On the other hand, maximum in-plane 
bending frequencies occur at about 10°-15° and increasing b/h ratio increases in-plane bending 
frequency. 
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(a) Out-of-plane bending (b) Torsional 
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Figure 6. Effect of the b/h ratio on the fundamental frequencies for C-C boundary conditions. 
 

Fig. 7 shows the effect of the length-to-thickness (L/h) ratio on the fundamental 
frequencies. Increasing L/h ratio increases fundamental dimensionless torsional and axial 
frequencies clearly. However, this ratio has almost no effect on dimensionless bending 
frequencies after 25°-35° fiber angle. Variation of frequencies with respect to fiber angle is as 
described already. 
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Figure 7. Effect of the L/h ratio on the fundamental frequencies for C-C boundary conditions. 
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Figure 8. Effect of the ratio of the extensional modulus to the transverse modulus on the 
fundamental frequency for C-C boundary conditions. 
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Fig. 8 shows the effect of the ratio of the extensional modulus to the transverse modulus 
on the fundamental dimensionless out-of-plane and in-plane bending frequencies. The effect of 
fiber angle is more apparent at lower angles and it has no effect over 60°. 

Fig. 9 illustrates the mode shapes of the fundamental out-of-plane bending, torsional, in-
plane bending and axial modes of [30°/-30°/-30°/30°] laminated beam. 
 

 
(a) Out-of-plane bending (b) Torsional  

 
(c) In-plane bending (d) Axial 

 

Figure 9. Mode shapes of the fundamental modes of [30°/-30°/-30°/30°] laminated beam 
 
4.4. Comparison with cross-ply lamination 
 
In order to make a comparison between cross-ply and angle-ply laminations, dimensionless 
fundamental frequencies of symmetric [θ/-θ/-θ/θ] laminated composite beams are tabulated in 
Table 2 for different L/h  ratios. In angle-ply beams, maximum out-of-plane bending and axial 
frequencies occur at 0° lamination, maximum in-plane bending frequency occurs at 10°-15° 
lamination, and maximum torsional frequency occurs at 25° lamination. It can be concluded from 
Table 2 that, by choosing angle-ply lamination instead of cross-ply, dimensionless torsional, in-
plane bending and axial frequencies can be increased by approximately 40%. Angle-ply 
lamination provides no advantage in out-of-plane bending frequency. 

According to the aim of use of the laminated composite beam, either cross-ply or angle-
ply lamination should be preferred. For the beams subject to out-of-plane bending vibrations, 
cross-ply lamination is preferable; however, for those subject to in-plane bending or torsional 
vibrations angle-ply lamination result in higher natural frequencies; i.e. are more preferable. On 
the other hand, in order to avoid undesirable material coupling, either symmetric or anti-
symmetric stacking sequences may be employed. 
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Table 2. Comparison of maximum dimensionless natural frequencies of angle-ply and cross-ply 
laminated beams 

 

 Angle-ply Cross-ply 
 L/h=20 L/h=15 L/h=10 L/h=20 L/h=15 L/h=10 
Out-of-plane bending 30.167 25.902 19.561 28.554 24.590 18.638 
Torsional 86.630 66.128 45.566 61.880 46.466 31.034 
In-plane bending 34.609 32.162 29.059 24.543 22.138 17.912 
Axial 529.800 298.013 132.450 379.582 213.515 94.895 

 
 
5. CONCLUSIONS 
 
The effects of fiber angle on the natural frequencies of laminated composite beams are 
investigated. Out-of-plane bending frequency always decreases as the fiber angle increases; 
whereas, torsional frequency increases up to about 25° fiber angle and then decreases gradually. 
The in-plane bending frequency increases up to about 15°-20° of fiber angle, reaches its 
maximum, and then decreases gradually up to 90°. This is more apparent in higher modes. In 
axial vibrations, however, frequencies result in a gradual decrease with increasing fiber angle. 
The mode shapes change from flexural into torsional or axial where the frequency curves 
approach each other. By choosing angle-ply lamination instead of cross-ply, dimensionless 
torsional, in-plane bending and axial natural frequencies can be increased by approximately 40%. 
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