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ABSTRACT 
 
Free vibration of Timoshenko beams having different boundary conditions is analyzed. The Lagrange 
equations are used to examine the free vibration characteristics of Timoshenko beams. The constraint 
conditions of supports are taken into account by using Lagrange multipliers. In the study, for applying the 
Lagrange equations, trial functions denoting the deflection and the rotation of the cross-section of the beam 
are expressed in the polynomial form. By using the Lagrange equations, the problem is reduced to the solution 
of a system of algebraic equations. The first eight eigenvalues of Timoshenko beam are calculated and 
tabulated for different thickness-to-length ratios. It is believed that the tabulated results will prove useful to 
designers and provide a reference against which other researchers can compare their results. 
Keywords: Free Vibrations of Timoshenko Beams, Lagrange Equations, Lagrange Multipliers. 
  
 
TİMOSHENKO KİRİŞLERİNİN SERBEST TİTREŞİMLERİNİN FARKLI MESNET ŞARTLARI 
ALTINDA İNCELENMESİ 
 
ÖZET 
 
Bu çalışmada farklı mesnet şartlarına sahip Timoshenko kirişlerinin serbest titreşimleri incelenmiştir. 
Problemin çözümü için Lagrange denklemleri kullanılmıştır. Problemde mesnet şartları Lagrange çarpanları 
kullanılarak sağlanmıştır. Lagrange denklemlerinin uygulanması için kirişin düşey yerdeğiştirmelerini ve kiriş 
kesitlerinin dönmelerini ifade eden çözüm fonksiyonlarının oluşturulmasında polinomlar kullanılmıştır. 
Lagrange denklemleri kullanılarak problem cebrik denklem sisteminin çözümüne indirgenmiştir. Timoshenko 
kirişinin ilk sekiz moduna ait özdeğerleri farklı narinlik oranları (kiriş yüksekliği/kiriş açıklığı) için tablolar 
halinde verilmiştir. Tablolaştırılan sonuçların tasarımcılar için faydalı olacağı ve diğer araştırmacıların 
sonuçlarını karşılaştırmada referans olacağı düşünülmektedir.  
Anahtar Sözcükler: Timoshenko kirişlerinin serbest titreşimleri, Lagrange denklemleri, Lagrange çarpanları. 
 
 
1. INTRODUCTION 

 
Vibrations of beams are of considerable interest to the engineers designing mechanical and 
structural systems. Many researchers have investigated the free vibration analysis of beams 
having various boundary conditions and based on the Bernoulli-Euler beam theory (for example 
[1-4]).  The well-known Bernoulli-Euler beam theory states that plane sections remain plane after 
deformation, regarding transverse shear strain to be neglected. Although this theory is very useful 
for slender beams and columns, it does not give accurate solutions for thick beams. In the 
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Timoshenko beam theory, the normality assumption of the Bernoulli-Euler theory is relaxed and a 
constant state of transverse shear strain with respect to the thickness coordinate is included. The 
Timoshenko beam theory requires shear correction factors to compensate for the error due to this 
constant shear stress assumption.  

Lee and Schultz [5] applied the pseudospectral method to the eigenvalue analysis of 
Timoshenko beams and axisymmetric circular Mindlin plates. In [5], clamped, simply, free and 
sliding boundary conditions of Timoshenko beams are treated and numerical results are presented 
for different thickness-to-length ratios. Zhou [6] used the Rayleigh-Ritz method for the free 
vibration of multi-span beams. In [6], the static Timoshenko beam functions which are composed 
of a set of transverse deflection functions and a set of rotational angle functions are developed as 
the trial functions. Rossi et al. [7] have solved analytically the problem of free vibrations of 
beams carrying elastically mounted concentrated masses. Farghaly [8] has investigated the natural 
frequencies and the critical buckling load coefficients for multi-span Timoshenko beam. 

In the present study, the free vibration of Timoshenko beams is analyzed by using the 
Lagrange equations with the trial functions in the polynomial form denoting the deflection and the 
rotation of the cross-section of the beam. The constraint conditions of the supports are taken into 
account by using Lagrange multipliers. The convergence study is based on the numerical values 
obtained for various numbers of polynomial terms. In the numerical examples, the first eight 
eigenvalues of the Timoshenko beams are determined for the different thickness-to-length ratios. 
The accuracy of the results is established by comparison with previously published accurate 
results for the free vibration analysis of the Timoshenko beams. 
 
2. THEORY AND FORMULATIONS  
 
Consider a straight uniform single-span Timoshenko beam of length L , depth h  and width b , 
having rectangular cross-section depicted in Fig. 1. A Cartesian coordinate system ( , , )x y z  is 
defined on the central axis of the beam, where the x axis is taken along the central axis, with the y 
axis in the width direction and the z axis in the depth direction. Also, the origin of the coordinate 
system is chosen at the mid-point of the total length of the beam. 

L L L
(a) (b) (c)  

(f)

bL
(e)

L
(d)

h

 
 

 

Figure 1. (a) Clamped-clamped, (b) clamped-pinned, (c) pinned-pinned, (d) clamped-free,         
(e) free-free Timoshenko beams, (f) cross-section of the beams 

 
The Timoshenko beam theory is based on the following displacement fields 
 

( , , ) ( , )xu x z t z x tψ= −  
( , , ) ( , )z zu x z t u x t= ,                  (1) 
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where ( , )zu x t  is the transverse displacement of a point on the beam reference plane and ( , )x tψ  
is the rotation of a normal to the reference plane about y-axis. 
The strains and stresses in the Timoshenko beam theory are 
 

, z
x xz

d due z
dx dx
ψ γ ψ= − = −                 (2a) 

,xx x xz s xzE e k Gσ σ γ= =                 (2b) 
 

where E is the Young’s modulus, G is the transverse shear modulus and sk  is a constant that 
accounts for non-uniform shear stress distribution through the thickness.  
The strain energy of the beam in Cartesian coordinates is 
 

/ 2

/ 2

1 ( )
2

L

xx x xz xz
L A

U e dA dxσ σ γ
−

= +∫ ∫ .                 (3) 
 

Substituting Eq. (2b) into Eq. (3) leads to 
 

/ 2 / 2

/ 2 / 2

( )
2

L h

x x s xz xz
L h

bU e E e k G dz dxγ γ
− −

= +∫ ∫ .                (4) 
 

With the help of Eqs. (2a) and (4), the strain energy of the beam at any time can be expressed as 
 

2 2/ 2 / 2

/ 2 / 2

1 ( , ) 1 ( , ) ( , )
2 2

L L
z

xx s xz
L L

d x t du x tU D dx k A x t dx
dx dx

ψ ψ
− −

⎛ ⎞ ⎛ ⎞
= + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫ ∫               (5) 

 

where 
 

/ 2 / 2
2

/ 2 / 2

,
h h

xx xz
h h

D b E z dz A b G dz
− −

= =∫ ∫ .                 (6) 
 

xxD  and xzA  in Eq. (6) can be expressed as follows; 
 

( ), ( )xx xzD EI x A GA x= =                   (7) 
 

where ( )I x  and ( )A x  are the moment of inertia and the area of the cross-section. Rewriting Eq. 
(5) at any time in terms of the above expression gives 
 

2 2/ 2

/ 2

1 ( , ) ( , )( ) ( ) ( , )
2

L
z

s
L

d x t du x tU EI x k GA x x t dx
dx dx

ψ ψ
−

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= + −⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∫ .           (8) 
 

It follows from Eq. (1) that the velocities take the form 
 

( , , ) ( , ) ( , ),x z
x z

du x z t d x t du x tv z v
dt dt dt

ψ
= = − = .                (9) 

 

The kinetic energy of the beam at any time is 
 

/ 2
2 2

/ 2

1 ( )( )
2

L

x z
L A

T z v v d A dxρ
−

⎡ ⎤= +⎣ ⎦∫ ∫ ,               (10) 
 

where ( )zρ  is the mass of the beam per unit volume. Substituting Eq. (9) into Eq. (10) leads to 
 

2 2/ 2 / 2
2

/ 2 / 2

( , ) ( , ) ( )
2

L h
z

L h

b d x t du x tT z z dz dx
dt dt

ψ ρ
− −

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= +⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∫ ∫ .            (11) 
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By defining the following cross-sectional inertial coefficients 
 

( )
/ 2

2

/ 2

, (1, ) ( )
h

A D
h

J J b z z dzρ
−

= ∫                (12) 
 

the kinetic energy of the beam at any time is 
 

2 2/ 2 / 2

/ 2 / 2

1 ( , ) 1 ( , )
2 2

L L
z

A D
L L

du x t d x tT J dx J dx
dx dx

ψ

− −

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫ ∫ .             (13) 

 

The AJ  and DJ  expressions are given as follows by using the moment of inertia I and 
the area A of the cross-section; 
 

( ), ( )A DJ A x J I xρ ρ= = .                (14) 
 

Rewriting Eq. (13) at any time by using Eq. (14) gives 
 

2 2/ 2

/ 2

1 ( , ) ( , )( ) ( )
2

L
z

L

du x t d x tT A x I x dx
dt dt

ψρ ρ
−

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= +⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∫ .             (15) 

 

The functional of the problem is 
 

I T U= − .                 (16) 
 

Introducing the following non-dimensional parameters 
 

1 ,xx
L

=  ,zuw
L

=  ψ ψ= ,                (17) 
 

the potential and kinetic energy of the beam can be written at any time as 
 

2 21/ 2
1 1 1

1 1 1
1 11/ 2

1 ( ) ( , ) ( , )( ) ( , )
2 s

EI x d x t d w x tU k GA x L x t dx
L dx dx

ψ ψ
−

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= + −⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∫ ,        (18) 

2 21/ 2
3 1 1

1 1 1
1/ 2

1 ( , ) ( , )( ) ( )
2

dw x t d x tT A x L I x L dx
dt dt

ψρ ρ
−

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= +⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∫ .            (19) 

 

It is known that some expressions satisfying geometrical boundary conditions are 
chosen for 1( , )w x t  and 1( , )x tψ  and by using the Lagrange equations, the natural boundary 
conditions are also satisfied. Therefore, by using the Lagrange equations and by assuming the 
transverse displacement 1( , )w x t  and the rotation of cross-sections 1( , )x tψ  to be representable by 
a linear series of admissible functions and adjusting the coefficients in the series to satisfy the 
Lagrange equations, approximate solutions are found for the displacement and the rotation 
functions. For applying the Lagrange equations, the trial functions 1( , )w x t  and 1( , )x tψ  are 
approximated by space-dependent polynomial terms 0 1 2

1 1 1 1, , ,...., Mx x x x  and time-dependent 

generalized displacement coordinates ( )mA t  and ( )mB t . Thus 
 

1 1
0

( ) ( )
M

m
m

m
w x ,t A t x

=

= ∑               (20a) 

1 1
0

( ) ( )
M

m
m

m
x ,t B t xψ

=

= ∑ .              (20b) 
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The constraint conditions of the supports are satisfied by using the Lagrange multipliers. 
Therefore, it is not necessary at first for these functions to satisfy the geometrical boundary 
conditions. As it is known, there is no need for these functions to satisfy the natural boundary 
conditions. However, if the functions are chosen to satisfy the natural boundary conditions, rate of 
convergence also increase. The constraint conditions of the beams are given as follows: 
For the clamped-clamped beam (Fig. 1a) 
 

( ) ( ) ( ) ( )1 2 1 21 1 1 1, 0, , 0, , 0, , 0S S S Sw x t w x t x t x tψ ψ= = = = ,          (21a) 
 

for the clamped-pinned beam (Fig. 1b) 
 

( ) ( ) ( )1 2 11 1 1, 0, , 0, , 0S S Sw x t w x t x tψ= = = ,             (21b) 
 

for the pinned-pinned beam (Fig. 1c) 
 

( ) ( )1 21 1, 0, , 0S Sw x t w x t= = ,             (21c) 
 

for the clamped-free beam (Fig. 1d) 
 

( ) ( )1 11 1, 0, , 0S Sw x t x tψ= = ,              (21d) 
 

and there is no constraint conditions for the free-free beam (Fig. 1e). In Eqs. (21a-d), 1 iSx denotes 
the location of the i  th support. 

The Lagrange multipliers formulation of the considered problem necessities the 
construction of the Lagrangian functional. The Lagrangian functional of the problem is obtained 
as follows: 
 

mL I L= +                  (22) 
 

where,  
for the clamped-clamped beam (Fig. 1a) 
 

( ) ( ) ( ) ( )1 2 1 21 1 2 1 1 1 2 1, , , ,m S S S SL w x t w x t x t x tα α β ψ β ψ= + + + ,          (23a) 
 

for the clamped-pinned beam (Fig. 1b) 
 

( ) ( ) ( )1 2 11 1 2 1 1 1, , ,m S S SL w x t w x t x tα α β ψ= + + ,            (23b) 
 

for the pinned-pinned beam (Fig. 1c) 
 

( ) ( )1 21 1 2 1, ,m S SL w x t w x tα α= + ,             (23c) 
 

for the clamped-free beam (Fig. 1d) 
 

( ) ( )1 11 1 1 1, ,m S SL w x t x tα β ψ= + ,              (23d) 
 

In Eqs. (23a-d), ,i iα β  quantities are the Lagrange multipliers which are the support 
force reactions and support moment reactions in the considered problem. 
 
The Lagrange equations are given as follows; 
 

0
k k

L d L
dtΩ Ω

∂ ∂
− =

∂ ∂
,  1 2 2k , ,...., M N= +             (24) 

 

where the overdot stands for the partial derivative with respect to time, N is the number of the 
Lagrange multipliers and 
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k kAΩ =     1 2k , ,....,M=  

k kBΩ =     1 2k M , ...., M= +            (25a) 
 

and, for the clamped-clamped beam (Fig. 1a) 
 

2 1 1MΩ α+ = , 2 2 2MΩ α+ = , 2 3 1MΩ β+ = , 2 4 2MΩ β+ =            (25b) 
 

for the clamped-pinned beam (Fig. 1b) 
 

2 1 1MΩ α+ = , 2 2 2MΩ α+ = , 2 3 1MΩ β+ = , 2 4 0MΩ + =            (25c) 
 

for the pinned-pinned beam (Fig. 1c) 
 

2 1 1MΩ α+ = , 2 2 2MΩ α+ = , 2 3 0MΩ + = , 2 4 0MΩ + =                              (25d) 
 

for the clamped-free beam (Fig. 1d) 
 

2 1 1MΩ α+ = , 2 2 1MΩ β+ = , 2 3 0MΩ + = , 2 4 0MΩ + =            (25e) 
 

for the free-free beam (Fig. 1e) 
 

2 1 0MΩ + = , 2 2 0MΩ + = , 2 3 0MΩ + = , 2 4 0MΩ + = .           (25f) 
 

The time-dependent generalized displacement coordinates for the free vibration of the 
beam can be expressed as follows: 
 

( ) i t
m mA t A e ω= ,               (26a) 

 

( ) i t
m mB t B e ω= .               (26b) 

 

In Eqs. (26a-b), mA  and mB  are complex variables containing a phase angle. 
Dimensionless amplitudes of the displacement and normal rotation of a cross-section of the beam 
can be expressed as follows; 
 

1 1
0

( )
M

m
m

m

w x A x
=

= ∑ ,               (27a) 

1 1
0

( )
M

m
m

m

x B xψ
=

= ∑ .               (27b) 
 

Introducing the following non-dimensional parameters 
 

2 4 2 2
2

2, ,
12

sA L k G AL h
E I E I L

ρ ωλ κ µ= = =               (28) 
 

and by using Eq. (24), the following simultaneous sets of linear algebraic equations are obtained 
which can be expressed in the following matrix forms 
 

[ ]{ } [ ]{ } { }2 0A D B Dλ− = ,                (29) 
 

where [ ]A  and [ ]B  are the coefficient matrices obtained by using Eq. (24) and  

In Eq. (30), 1( )kx − ′  is the first derivative of the 1kx −  and the vector { }D  in Eq. (29) is defined by 
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/ 2
1 1

/ 2

( ) ( ) d x
L

k m
km

L

A x xκ − −

−

′ ′= ∫    1 2k , , ...., M= , 1 2m , , ...., M=  
 

/ 2
1 1

/ 2

( ) ( )d x
L

k m
km

L

A x xκ − −

−

′= ∫    1 2k , , ...., M=  1 2m M , ...., M= +  
 

/ 2
1 1

/ 2

( )( ) d x
L

k m
km

L

A x xκ − −

−

′= ∫    1 2k M , ...., M= + , 1 2m , , ...., M=  
 

/ 2
1 1 1 1

/ 2

( ) ( ) d x
L

k m k m
km

L

A x x x xκ − − − −

−

′ ′⎡ ⎤= +⎣ ⎦∫  1 2k M , ...., M= + , 1 2m M , ...., M= +  
 

/ 2
1 1

/ 2

d x
L

k m
km

L

B x x− −

−

= ∫    1 2k , , ...., M= , 1 2m , , ...., M=  
 

0kmB =      1 2k , , ...., M= , 1 2m M , ...., M= +  
 

0kmB =      1 2k M , ...., M= + , 1 2m , , ...., M=  
 

/ 2
1 1

/ 2

d x
L

k m
km

L

B x xµ − −

−

= ∫    1 2k M , ...., M= + , 1 2m M , ...., M= +           (30) 

 

k kD A=      1 2 3=k , , ...., M  

k kD B=      1 2k M , ...., M= +            (31) 
 

The size of matrices [ ]A  and [ ]B  is (2 ) (2 )M N M N+ × +  and the size of vector { }D  

is (2 )M N+ . The total number of unknown coefficients is (2 )M N+ . Again, the number of 
equations which can be written by using Eq. (24) is (2 )M N+ , which is given in matrix form by 
Eq. (29). Therefore, the total number of these equations is equivalent to the total number of 
unknown coefficients and these unknowns can be determined by using above-mentioned 
equations. The eigenvalues (characteristic values) λ  are found from the condition that the 
determinant of the system of equations given by Eq. (29) must vanish. Moreover, the other 
components of matrices [ ]A  and [ ]B  are obtained from the boundary conditions and the other 

components of the vector { }D  are given in appendix at the end of the paper. 
 
3. NUMERICAL RESULTS 
 
The first eight eigenvalues of the Timoshenko beam with clamped-clamped, clamped-pinned, 
pinned-pinned, clamped-free, free-free boundary conditions are given in Tables 2-6 for the 
different thickness-to-length ratios. In order to compare the obtained results with the existing 
results, the classical solutions based on the Bernoulli-Euler beam theory and the results of the 
Pseudospectral method given in the Ref. [5] are added to the tables. Convergence study of the 
Timoshenko beam with pinned-pinned boundary conditions is carried out for / 0.05h L =  and the 
results are given in Table 1.  

It is not necessary to give the E, G and A values of the beam in the calculations. 
Referring to the relationship between the E  and G  as 
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2

2

6
(1 )

sk L
h

κ
ν

=
+

                 (32) 
 

where ν  is the Poisson’s ratio. In all of the following calculations, the rectangular cross-sectional 
beams with shear correction factor 5 / 6sk = , the Poisson’s ratio 0.3ν =  and different thickness-
to-length ratios ranging from / 0.002 to 0.2h L =  are considered.  
 
Table 1. The convergence study of the first eight dimensionless frequency parameters iλ  of the 

pinned-pinned Timoshenko beams for h/L=0.05. 
 

M 1λ  2λ  3λ  4λ  5λ  6λ  7λ  8λ  

6 3.13536 6.24422 10.8167 15.6169 - - - - 
8 3.13498 6.23142 9.31090 12.4148 19.1151 - - - 

10 3.13498 6.23136 9.25602 12.1887 15.3761 18.6607 - - 
12 3.13498 6.23136 9.25537 12.1814 15.0103 17.7638 21.3842 24.9885 
14 3.13498 6.23136 9.25536 12.1813 14.9929 17.6837 20.3467 22.9914 
16 3.13498 6.23136 9.25536 12.1813 14.9926 17.6810 20.2463 22.7017 
18 3.13498 6.23136 9.25536 12.1812 14.9926 17.6802 20.2445 22.6809 

 
It is observed from the Table 1 that, the natural frequencies decrease as the number of 

the polynomial terms increases: It means that the convergence to the exact value is from above. 
Namely, by increasing the number of the polynomial terms, the exact value can be approached 
from above. It should be remembered that energy methods always overestimate the fundamental 
frequency, so with more refined analyses, the exact value can be approached from above.  

From here on, the number of the polynomial terms M is taken as 18 in all of the 
numerical investigations. 

It can be deduced that the results obtained from the present study are in good aggrement 
with those of Lee and Schultz [5] as given in the Tables 2-4. 

It is known that, the eigenvalues obtained by using first order or higher order beam 
theories are lower than the corresponding eigenvalues obtained by the classical beam theory. As 
seen from the Tables 2-6, the eigenvalues of the beams decrease with the increase of thickness-to-
length ratio.  

For example, the fifth eigenvalue of the pinned-pinned beam is 15.7066 for 
/ 0.002h L = , it is 15.6996 for / 0.005h L = , 15.6749 for / 0.01h L = , 15.5784 for / 0.02h L = , 

14.9926 for / 0.05h L = , 13.6131 for / 0.1h L =  and 11.2219 for / 0.2h L = .  
However, the two solutions are very close to each other for small values of h / L . For 

instance, the differences between the results of the two theories are very small when h/L is less 
than 0.02. Moreover, the difference of the value of the eigenvalue of the classical beam theory 
and the Timoshenko beam theory increases for increasing mode numbers. For example, while the 
value of the eigenvalue of the clamped-clamped Timoshenko beam for 0 2h / L .=  is 89 percent 
of the classical theory for the first mode, it is 70 for the fourth mode, and 51 for the eighth mode.  
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Table 2. The comparison study of the first eight dimensionless frequency parameters iλ  of the 

pinned-pinned Timoshenko beams for different thickness-to-length ratios. 
 

Methods 1λ  2λ  3λ  4λ  5λ  6λ  7λ  8λ  

Classical 
Solution 3.14159 6.28319 9.42478 12.5664 15.7080 18.8496 21.9911 25.1327 

h/L=0.002 

Present 3.14158 6.28311 9.42449 12.5656 15.7066 18.8471 21.9878 25.0625 
PS* 3.14158 6.28310 9.42449 12.5657 15.7066 18.8473 21.9875 25.1273 

h/L=0.005 

Present 3.14152 6.28265 9.42298 12.5621 15.6996 18.8351 21.9687 25.1025 
PS 3.14153 6.28265 9.42298 12.5621 15.6997 18.8352 21.9684 25.0988 

h/L=0.01 

Present 3.14132 6.28105 9.41760 12.5494 15.6749 18.7925 21.9013 25.0022 
PS 3.14133 6.28106 9.41761 12.5494 15.6749 18.7926 21.9011 24.9988 

h/L=0.02 

Present 3.14052 6.27470 9.39629 12.4993 15.5784 18.6280 21.6444 24.6249 
PS 3.14053 6.27471 9.39632 12.4994 15.5784 18.6282 21.6443 24.6227 

h/L=0.05 

Present 3.13498 6.23136 9.25536 12.1812 14.9926 17.6802 20.2445 22.6809 
PS 3.13498 6.23136 9.25537 12.1813 14.9926 17.6810 20.2447 22.6862 

h/L=0.1 

Present 3.11567 6.09066 8.84048 11.3430 13.6131 15.6769 17.5700 19.1928 
PS 3.11568 6.09066 8.84052 11.3431 13.6132 15.6790 17.5705 19.3142 

h/L=0.2 

Present 3.04533 5.67155 7.83949 9.65693 11.2219 12.5971 13.0323 13.4442 
PS 3.04533 5.67155 7.83952 9.65709 11.2220 12.6022 13.0323 13.4443 

 
*Pseudospectral Method in Ref. [5].  
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Table 3. The comparison study of the first eight dimensionless frequency parameters iλ  of the 

clamped-clamped Timoshenko beams for different thickness-to-length ratios.  
 

Methods 1λ  2λ  3λ  4λ  5λ  6λ  7λ  8λ  

Classical 
Solution 4.73004 7.85320 10.9956 14.1372 17.2788 20.4204 23.5619 26.7035 

h/L=0.002 

Present 4.72997 7.85294 10.9949 14.1358 17.2765 20.4166 23.5574 26.7011 
PS* 4.72998 7.85295 10.9950 14.1359 17.2766 20.4168 23.5567 26.6960 

h/L=0.005 

Present 4.72962 7.85161 10.9916 14.1293 17.2650 20.3983 23.5298 26.6618 
PS 4.72963 7.85163 10.9917 14.1294 17.2651 20.3985 23.5292 26.6567 

h/L=0.01 

Present 4.72839 7.84689 10.9799 14.1061 17.2244 20.3336 23.4328 26.5242 
PS 4.72840 7.84690 10.9800 14.1062 17.2246 20.3338 23.4325 26.5192 

h/L=0.02 

Present 4.72347 7.82816 10.9339 14.0154 17.0675 20.0866 23.0678 26.0130 
PS 4.72350 7.82817 10.9341 14.0154 17.0679 20.0868 23.0682 26.0086 

h/L=0.05 

Present 4.68987 7.70351 10.6399 13.4611 16.1586 18.7316 21.1825 23.5193 
PS 4.68991 7.70352 10.6401 13.4611 16.1590 18.7318 21.1825 23.5168 

h/L=0.1 

Present 4.57951 7.33121 9.85595 12.1453 14.2323 16.1478 17.9214 19.3788 
PS 4.57955 7.33122 9.85611 12.1454 14.2324 16.1487 17.9215 19.5723 

h/L=0.2 

Present 4.24198 6.41793 8.28526 9.90363 11.3486 12.6357 13.4567 13.8115 
PS 4.24201 6.41794 8.28532 9.90372 11.3487 12.6402 13.4567 13.8101 

 
*Pseudospectral Method in Ref. [5].  
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Table 4. The comparison study of the first eight dimensionless frequency parameters iλ  of the 

free-free Timoshenko beams for different thickness-to-length ratios.  
 

Methods 1λ  2λ  3λ  4λ  5λ  6λ  7λ  8λ  

Classical 
Solution 4.73004 7.85320 10.9956 14.1372 17.2788 20.4204 23.5619 26.7035 

h/L=0.002 

Present 4.7300 7.85303 10.9951 14.1360 17.2768 20.4165 23.5529 26.6751 
PS* 4.7300 7.85304 10.9952 14.1362 17.2770 20.4174 23.5575 26.6970 

h/L=0.005 

Present 4.72982 7.85216 10.9927 14.1309 17.2672 20.4012 23.5278 26.6411 
PS 4.72982 7.85217 10.9928 14.1311 17.2678 20.4022 23.5341 26.6630 

h/L=0.01 

Present 4.72916 7.84906 10.9841 14.1129 17.2334 20.3472 23.4402 26.5220 
PS 4.72918 7.84908 10.9843 14.1131 17.2350 20.3483 23.4516 26.5436 

h/L=0.02 

Present 4.72658 7.83677 10.9505 14.0424 17.1077 20.1409 23.1358 26.0772 
PS 4.72659 7.83679 10.9508 14.0426 17.1078 20.1415 23.1394 26.0979 

h/L=0.05 

Present 4.70873 7.75402 10.7332 13.6036 16.3500 18.9781 21.4813 23.8446 
PS 4.70873 7.75404 10.7332 13.6040 16.3550 18.9813 21.4834 23.8654 

h/L=0.1 

Present 4.64849 7.49717 10.1254 12.5074 14.6680 16.6352 18.4371 20.0782 
PS 4.64849 7.49719 10.1255 12.5076 14.6682 16.6358 18.4375 20.0959 

h/L=0.2 

Present 4.44958 6.80256 8.77284 10.4093 11.7940 12.8162 13.5583 13.6517 
PS 4.44958 6.80257 8.77287 10.4094 11.7942 12.8163 13.5584 13.6520 

 
*Pseudospectral Method in Ref. [5].  
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Table 5. The first eight dimensionless frequency parameters iλ  of the clamped-free Timoshenko 
beams for different thickness-to-length ratios. 

 

Methods 1λ  2λ  3λ  4λ  5λ  6λ  7λ  8λ  
Classical 
Solution 1.8751 4.6941 7.8548 10.9960 14.1371 17.2787 20.4203 23.5619 

h/L=0.002 
Present 1.8751 4.6940 7.8545 10.9949 14.1360 17.2765 20.4168 23.5547 

h/L=0.005 
Present 1.8751 4.6937 7.8534 10.9921 14.1301 17.2662 20.3996 23.5290 

h/L=0.01 
Present 1.8750 4.6927 7.8495 10.9820 14.1093 17.2294 20.3393 23.4387 

h/L=0.02 
Present 1.8748 4.6888 7.8340 10.9423 14.0283 17.0871 20.1102 23.0985 

h/L=0.05 
Present 1.8732 4.6620 7.7303 10.6861 13.5309 14.9025 18.9780 21.3312 

h/L=0.1 
Present 1.8677 4.5724 7.4153 10.5733 12.6524 14.4452 16.1224 16.5083 

h/L=0.2 
Present 1.8465 4.2852 6.6112 10.1580 12.4559 12.7887 13.3540 14.3551 

 
Table 6. The first eight dimensionless frequency parameters iλ  of the clamped-pinned 

Timoshenko beams for different thickness-to-length ratios. 
 

Methods 1λ  2λ  3λ  4λ  5λ  6λ  7λ  8λ  
Classical 
Solution 3.927 7.069 10.2101 13.352 16.4933 19.6349 22.7765 25.9181 

h/L=0.002 
Present 3.9265 7.0684 10.2097 13.3508 16.4916 19.6319 22.7726 25.9165 

h/L=0.005 
Present 3.9264 7.0676 10.2074 13.3458 16.4825 19.6169 22.7495 25.8825 

h/L=0.01 
Present 3.9258 7.0646 10.1992 13.3283 16.4504 19.5638 22.6681 25.7638 

h/L=0.02 
Present 3.9234 7.0530 10.1668 13.2595 16.3256 19.3601 22.3731 25.3580 

h/L=0.05 
Present 3.9071 6.9747 9.9562 12.8306 15.5852 18.2150 20.7217 23.1063 

h/L=0.1 
Present 3.8517 6.7305 9.3658 11.7583 13.9329 15.9194 17.7500 19.2987 

h/L=0.2 
Present 3.6656 6.0726 8.0743 9.7860 11.2866 12.6191 13.1417 13.9660 
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4. CONCLUSIONS 
 
The free vibration of the Timoshenko beams have been investigated for different thickness-to-
length ratios. The obtained eigenvalues for the Timoshenko beams having various boundary 
conditions are compared with the previously published results. Using the Lagrange equations with 
the trial functions in the polynomial form and satisfying the constraint conditions by the use of 
Lagrange multipliers is a very good way for studying the free vibration characteristics of the 
beams. Numerical calculations have been carried out to clarify the effects of the thickness-to-
length ratio on the eigenvalues of the beams. It is observed from the investigations that the results 
of the classical and the Timoshenko beam theory are very close to each other for small values of 
h / L . However, as the thickness-to-length ratio becomes larger, the results of the classical theory 
and the Timoshenko beam theory differ from each other significiantly. 

All of the obtained results are very accurate and may be useful to other researchers so as 
to compare their results. 
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APPENDIX 
 
A1. For clamped-clamped boundary condition. 
 

1k
km S mA x −=  1 2k , , ...., M= ;  2 1 2 2m M , M= + +           (A1) 

1k
km S mA x −=  1 2k M , ...., M= + ; 2 3 2 4m M , M= + +           (A2) 

1m
km S kA x −=  2 1 2 2k M , M= + + ; 1 2m , , ...., M=            (A3) 

1m
km S kA x −=  2 3 2 4k M , M= + + ; 1 2m M , ...., M= +            (A4) 

0kmA =   1 2k , , ...., M= ;  2 3 2 4m M , M= + +           (A5) 
0kmA =   1 2k M , ...., M= + ; 2 1 2 2m M , M= + +           (A6) 
0kmA =   2 1 2 2k M , M= + + ; 1 2m M , ...., M= +            (A7) 
0kmA =   2 3 2 4k M , M= + + ; 1 2m , , ...., M=            (A8) 
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0kmA =   2 1 2 4k , m M ,..... M= + +              (A9) 
0kmB =   1 2 2k , , ...., M= ;  2 1 2 4m M ,..... M= + +         (A10) 
0kmB =   2 1 2 4k M ,..... M= + + ; 1 2 2m , , ...., M=          (A11) 
0kmB =   2 1 2 4k , m M ,..... M= + +            (A12) 

1kD α=   2 1k M= + ,            (A13) 

2kD α=   2 2k M= +             (A14) 

1kD β=   2 3k M= + ,            (A15) 

2kD β=   2 4k M= +             (A16) 
 
A2. For clamped-pinned boundary condition. 
 

1k
km S mA x −=  1 2k , , ...., M= ;  2 1 2 2m M , M= + +         (A17) 

1k
km S mA x −=  1 2k M , ...., M= + ; 2 3m M= +          (A18) 

1m
km S kA x −=  2 1 2 2k M , M= + + ; 1 2m , , ...., M=          (A19) 

1m
km S kA x −=  2 3k M= + ;  1 2m M , ...., M= +          (A20) 

0kmA =   1 2k , , ...., M= ;  2 3m M= +          (A21) 
0kmA =   1 2k M , ...., M= + ; 2 1 2 2m M , M= + +         (A22) 
0kmA =   2 1 2 2k M , M= + + ; 1 2m M , ...., M= +          (A23) 
0kmA =   2 3k M= + ;  1 2m , , ...., M=          (A24) 
0kmA =   2 1 2 3k , m M ,..... M= + +            (A25) 
0kmB =   1 2 2k , , ...., M= ;  2 1 2 3m M ,..... M= + +         (A26) 
0kmB =   2 1 2 3k M ,..... M= + + ; 1 2 2m , , ...., M=          (A27) 
0kmB =   2 1 2 3k , m M ,..... M= + +            (A28) 

1kD α=   2 1k M= + ,            (A29) 

2kD α=   2 2k M= +             (A30) 

1kD β=   2 3k M= + ,            (A31) 
 
A3. For pinned-pinned boundary condition. 
 

1k
km S mA x −=  1 2k , , ...., M= ;  2 1 2 2m M , M= + +         (A32) 

1m
km S kA x −=  2 1 2 2k M , M= + + ; 1 2m , , ...., M=          (A33) 

0kmA =   1 2k M , ...., M= + ; 2 1 2 2m M , M= + +         (A34) 
0kmA =   2 1 2 2k M , M= + + ; 1 2m M , ...., M= +          (A35) 
0kmA =   2 1 2 2k , m M , M= + +            (A36) 
0kmB =   1 2 2k , , ...., M= ;  2 1 2 2m M , M= + +         (A37) 
0kmB =   2 1 2 2k M , M= + + ; 1 2 2m , , ...., M=          (A38) 
0kmB =   2 1 2 2k , m M , M= + +            (A39) 

1kD α=   2 1k M= + ,            (A40) 

2kD α=   2 2k M= +             (A41) 
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A3. For clamped-free boundary condition. 
 

1k
km S mA x −=  1 2k , , ...., M= ;  2 1m M= +          (A42) 

1k
km S mA x −=  1 2k M , ...., M= + ; 2 2m M= +          (A43) 

1m
km S kA x −=  2 1k M= + ;  1 2m , , ...., M=          (A44) 

1m
km S kA x −=  2 2k M= + ;  1 2m M , ...., M= +          (A45) 

0kmA =   1 2k , , ...., M= ;  2 2m M= +          (A46) 
0kmA =   1 2k M , ...., M= + ; 2 1m M= +          (A47) 
0kmA =   2 1k M= + ;  1 2m M , ...., M= +          (A48) 
0kmA =   2 2k M= + ;  1 2m , , ...., M=          (A49) 
0kmA =   2 1 2 2k , m M , M= + +            (A50) 
0kmB =   1 2 2k , , ...., M= ;  2 1 2 2m M , M= + +         (A51) 
0kmB =   2 1 2 2k M , M= + + ; 1 2 2m , , ...., M=          (A52) 
0kmB =   2 1 2 2k , m M , M= + +            (A53) 

1kD α=   2 1k M= + ,            (A54) 

1kD β=   2 2k M= +             (A55) 
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