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ÖZET 
 
Fiziksel ve kimyasal özellikler farklı yarıiletken ince filmlerin büyültülmesinde kaydedilen ilerlemeler 
elektronik sanayisinde temel bilimsel çalışmaları ve uygulamalarında yeni fırsatlar oluşturdu. Yarıiletken 
heteroyapıların nano ölçekli elektronik ve optoelektronik cihaz teknolojilerdeki öneminin idrakı, güvenilir ve 
hassas üretim ve verim tahmininde kullanılan tasarım yöntemlerinin katıhal fiziği ve kuvantum mekaniğinin 
temel ilkeleri ile uyum içinde olmasına bağlıdır.  Bu makalede, nano ölçekli heteroyapı cihazların tasarımında 
atomik malzeme kuram tabanlı sıkı bağlam kuramı ile tasarımını inceleyeceğiz.  Bunlar sp3 ve sp3s*  sıkı 
bağlam kuramları olup kullanılan parametreler yarıiletkenlerin bilinen band yapılarını vermektedir. Bu sıkı 
bağlam yaklaşımını kullanarak, teknolojide önemli olan AlGaAs/GaAs heteroyapının enerji band yapısının 
tasarımını inceleyeceğiz.   Sıkı bağlam kuramının nano ölçekli aygıtlarda yüklü parçacıkarın taşınmasında 
heteroyapı enerji band yapısının önemini anlamakta faydalı olacağına inanıyoruz. 
Anahtar sözcükler: Tasarım, Sıkı bağlam kuramı, Heteroyapılar, Nanoelektronik 
 
ABSTRACT  
 
Advances in growing semiconductor thin films of different physical and chemical properties has provided new 
opportunities in basic science studies and device applications in electronics industry. Realization of the full 
potentials of semiconductor heterostructures for nanoscale electronic and optoelectronic device technologies 
require reliable and precise predictive process and performance simulation models that are consistent with the 
fundamental principles of solid state physics and quantum mechanics.  In this review article, we present a tight 
binding view of the atomistic materials theory based modeling of heterostructure nanoscale devices. The 
models are the empirical sp3 and sp3s* tight binding theories in which the parameters are obtained from a fit to 
the real band structures of semiconductors. Using this scheme, we discuss the modeling of the electronic band 
structure of technologically important AlGaAs/GaAs heterostructures. We believe that the tight binding theory 
should be useful in understanding the effects of electronic band structure of heterostructures on charge 
transport and performance of nanoscale devices.  
Keywords: Modeling, Tight Binding Theory, Heterostructures, Nanoelectronics 
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1. INTRODUCTION 
 
Advances in the processing of semiconductor thin films, opened new ways of thinking in the 
making of artifical structures for electronic and optical devices that work much faster than 
conventional silicon devices [1-5].  The use of heterostructures in semiconductor device design 
allows one to locally modify the energy band structure of the constituents to control the motion of 
charge carriers. One can artificially change  the energy of the moving conduction band and 
valence band charge carriers across the heterointerface, leading to new device concepts. Due to 
advances in processing technologies, it is now possible to reduce the device dimensions up to 
atomic dimensions and to employ one dimensional (1D) nanostructures (superlattices and 
quantum dots) in electronic and optoelectronic devices [6,7].  The electron confinement in two, 
one or zero two dimensions in nanostructures are of great interest and have already contributed to 
the development of new concepts in solid state physics. When the semiconductor composition 
changes abruptly at interface between constituents, the difference in their energy bands is 
accommodated by the discontinuities in the conduction and valence bands, shown in Figure 1. 
Consequently, the energy of the charge carriers at the conduction and valence band edges  change 
across the heterointerface, adding extra driving force to their motion throughout the device.  

The impact of heterostructures on the semiconductor physics and device technology is 
two fold. First, a high charge carrier injection efficiency can be obtained in an anisotype 
heterojuction in  
 

 
 

Figure 1. Schematic view of band diagram of abrupt  AlGaAs/GaAs multiquantum well  
 

which the charge carriers are flowing from a widegap emitter to narrowgap base, shown in Figure 
2. In the operation of heterostructure bipolar transistors (HBTs), the spike cE∆ in the conduction 

band and step vE∆  in the valence band at heteroemitter interface influences the carrier injection 
and current transport and in turn influence the device performance.  
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The charge carrier injection factor is particularly related to the conduction and valence 
band offsets but is often further enhanced by the electric field induced by the charge transfer. 
Since the potential barrier at  heterointerface exists regardless of the base doping level, the base 
region can be doped heavily to reduce its resistance and the emitter doping can be reduced to 
minimize its capacitance. Consequently, the use of heteroemitter greatly enhances the emitter 
current gain and improves the high frequency performance at the same time by reducing the base 
resistance and base-emitter capacitance [1]. Furthermore, grading of the conduction band across 
the heteroemitter offers further increase of the base transit velocity. 

Second impact of heterostructures on the semiconductor physics and device technology 
is to confine charge carriers in a narrow bandgap material to reduce their scattering by parent 
impurities in doped widegap barrier layer of two dimensional structures. The charge carrier 
scattering that limits the high speed character of metal oxide field effect transistors (MOSFETs) 
can be minimized by using the heterojunction to separate the free charge carriers in narrowgap 
quantum well from their parent impurities in doped widegap barrier layer, shown in Figure 3, 
leading to a much higher mobility and high current from drain to source of a modulation doped 
field effect transistors (MODFETs) [1]-[5]. 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Schematic view of energy band diagram of abrupt  heteroemitter Npn AlGaAs/GaAs 
HBT in forward mode; Emitter junction is forward biased and collector junction is reverse biased  

 
As pointed out above, due to advances in processing technologies, one can now control 

the alloy composition and doping in ternary and quaternary IV-IV, III-V and  II-VI semiconductor 
compounds over atomic distances, as low as tens of angstroms. Despite the fact that these man-
made heterostructures do violate the steady state chemical thermodynamics principles, they are 
easily grown on GaAs and Si substrates [4],[5] by the highly sophisticated non-equilibrium 
crystal growth techniques such as MBE and MOCVD. When these advanced growth techniques 
are combined with the advanced characterization techniques and analysis, impressive number of 
high performance devices for fast signal processing, and some novel structures that are of interest 
to solid state scientists and device engineers. The epitaxial layers are so thin that the quantum 

Electrons injected from abrupt 
heteroemitter diffuse across base  
and are collected by collector. 

Holes injected from the base into  
emitter are blocked by valence band offset  
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mechanical effects, which are important in the operation of heterostructure devices, have been 
realized. One of the key issues is the understanding the formation and determining the magnitude 
of conduction and valence band offsets at heterointerfaces, which dominate various device 
properties such as injection efficiency in HBTs and carrier confinement in MODFETs, and has 
received considerable attention over the years [8,9]. 
 

 
 

Figure 3. Typical structure for pseudomorpic modulation doped FETs  (MODFETs). The 
narrowgap InGaAs quantum well forms two dimensional electron gas  

 
Advancement in the nanoscale semiconductor device technologies requires reliable and 

precise predictive process and performance simulation models. Qualitatively reliable and 
quantitatively precise analytic models are essential in investigating the potential of nanoscale 
heterostructures for making novel electronic and optical devices. As with all of the semiconductor 
devices, the key property to understand the impact of heterostructure on the device performance is 
the electronic energy band structure across the interface. Consequently, theoretical studies of 
semiconductor nanostructures is highly crucial in the design and optimization of nanoscale 
devices. In the theoretical studies of nanostructures, the common practice is to use the envelope 
function approximation (EFA  based k.p approach which becomes questionable for nanostructure 
devices such as quantum dots or nanoscale FETs [10]. In this respect, the empirical tight binding 
modeling is viewed as an attractive way of nanoscale device band structure calculations. In 
section II, we give a short review of the tight binding modeling of semiconductor structures for 
nanoscale devices. In section III, the composition and strain effects on bandgaps and  band offsets 
in AlGaAs/GaAs heterostructures are discussed.  
 
2. TIGHT BINDING MODELING OF HETEROSTRUCTURES 
 
In the conventional tight binding theory of semiconductors one assumes that the valence electrons 
are tightly bound to their nuclei as in the free atom [11,12]. Anion and cation atoms are brought 
together until their separations becomes comparable to the lattice constant of semiconductors at 
which their wave functions will overlap. Then the linear combination of basis 

The conducting channel forms two dimensional 
electron gas in the strained InGaAs quantum well. 
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functions ( )j kχ formed by the linear combination of atomic orbitals are used to approximate the 

electronic wave functions kψ  of semiconductors, written as 
. .

( ) ( )
ii k r

k i
i p

eu k b r r
Nα α α

α

ψ χ= = −∑ ∑                                                                (1) 

where r is the electron coordinate, k is the wave vector, Np is the number of atoms, and ri is the 
crystal lattice site. The energy state is given by the eigenvalue of the linear equation  
 

( ) ( ) 0H k S k E uαβ αβ β
β

 − = ∑                                                                                        (2) 

where E is the energy, ( ) ( )H k H kαβ α βχ χ=  is the Hamiltonian matrix and 

( ) ( )S k kαβ α βχ χ=  is the overlap between the atomic-like orbitals. Here α  corresponds 

to a cation s (p) orbital, β  corresponds to an anion s (p) orbital.   Np is the number of the atom 
pairs, equals to the number of bonds of each type.  The position of ri is taken to be the midpoint of 
the corresponding bond. Each eigenstate of the wave number k can be written as a linear 
combination of the eight Bloch sums for that wave number can be written as Eq.(1). 

In the case of orthogonal sp3 tight binding formalism [13,14] in which only the nearest 
neighbor interactions are taken account, the overlap matrix ( )S kαβ  is the identity matrix. 

According to Chadi and Cohen [13,14}, in solving the secular problem given by Eq. (2) one needs 

to evaluate the following Hamiltonian matrix elements ( ) ( )H k H kαβ α βχ χ=  

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0
* * * *
0 1 2 3
* * * *
1 0 3 2
* * * *
2 3 0 1

3

0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

c
s ss sp sp sp

c
p sp xx xy xy

c
p sp xy xx xy

c
p sp xy xy xx

a
ss sp sp sp s

a
sp xx xy xy p

a
sp xy xx xy p

E B E B E B E B E
E B E B E B E B E

E B E B E B E B E
E B E B E B E B E

B E B E B E B E E
B E B E B E B E E
B E B E B E B E E
B

−
−
−

−

* * * *
2 1 0 0 0 0 a

sp xy xy xx pE B E B E B E E

 
 
 
 
 
 
 
 
 
 
 
  

   

where *
iB  is the complex conjugate of iB  matrix element. The diagonal interactions 

between the same p orbitals on each atom yield the symmetric sum, while the off-diagonal 

interactions yield the asymmetric sums, 0 ( )c a
x x xxp H p E B k= , 

3 ( )c a
x y xyp H p E B k= . In Eq.(2) each cs  orbital in the sum making up the state 

( )kαχ  will have matrix elements ssV σ between its four neighboring orbitals as , each of 
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these neighboring orbitals enters the matrix element ssV σ with a phase factor differing from that 

of cs  orbital by . iik de with id  being the vector distance to neighbor. The matrix elements are 

31 2 4. .. . .( ) ( )i
c a

jk d jk rjk r jk r jk r
ss sss s

i
H k V e V e e e eσ σ= = + + +∑                                     (3) 

31 2 4

4
. .. . .

1
( )ijk r jk rjk r jk r jk rc a

ss ss
i

s H s E e E e e e e
=

= = + + +∑                                    (4) 

where 1j = −  and 1 ( / 2)( )x y zr a a a a= + + , 2 ( / 2)( )x y zr a a a a= − − , 

3 ( / 2)( )x y zr a a a a= − + −  and 4 ( / 2)( )x y zr a a a a= − − +  are displacement vectors 

of the nearest neighbors. Interactions between an s orbital of the A atom and , ,x y zp p p orbitals 

of the neighboring B atoms are  
 
 
 

31 2 4

31 2 4

31 2 4

31 2 4

.. . .
0

.. . .
1

.. . .
2

.. . .
3

( ) ( )

( ) ( )

( ) ( )

( ) ( )

jk rjk r jk r jk rc a
ss ss

jk rjk r jk r jk rc a
x sp sp

jk rjk r jk r jk rc a
y sp sp

jk rjk r jk r jk rc a
z sp sp

s H s E e e e e E B k

s H p E e e e e E B k

s H p E e e e e E B k

s H p E e e e e E B k

= + + + =

= + − − =

= − + − =

= − − − =

  

 

0

1

2

( , , ) 4 4
2 2 2 2 2 2

( , , ) 4 4
2 2 2 2 2 2

( , ,

y yx xz z
x y z

y yx xz z
x y z

x y

k a k ak a k ak a k aB k k k Cos Cos Cos jSin Sin Sin

k a k ak a k ak a k aB k k k Cos Sin Sin jSin Cos Cos

B k k

         = −         
         

         = − +         
         

3

) 4 4
2 2 2 2 2 2

( , , ) 4 4
2 2 2 2 2 2

y yx xz z
z

y yx xz z
x y z

k a k ak a k ak a k ak Sin Cos Sin jSin Sin Cos

k a k ak a k ak a k aB k k k Sin Sin Cos jCos Cos Sin

         = − +         
         

         = − +         
         

  

In this matrix, there are nine independent matrix elements, namely the four on-site 
atomic energies, , ,  and sa sc pa pcE E E E , with a=anion and c=cation, and five hopping terms, 

, , ,  and 
a c c ass xx s p s p xyE E E E E . Provided we have reliable on-site atomic energies, 

, ,  and sa sc pa pcE E E E , the realistic TB scheme for determining the off-diagonal matrix 

elements, , , ,  and 
a c c ass xx s p s p xyE E E E E , is to focus on producing the nonlocal 

pesudopotential bands [15] and experimental bandgap data  [16]. First two off-diagonal matrix 
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elements ssE  and xxE  can be obtained from the bandgap data at Γ symmetry point. For 

0 ( 0)x y zk k k k= = = = , the Block sums 1 2 3,  and B B B  are all zero and 0B  is 

nonzero.  The solution of the energy matrix then yields  

2 2
1 /

2 2
15 /

1( ) ( ) [( ) / 2] 16
2
1( ) ( ) [( ) / 2] 16
2

a c a c
c v s s s s ss

a c a c
c v p p p p xx

E E E E E E

E E E E E E

Γ = + ± − +

Γ = + ± − +
                                 (5)  

The lower 15Γ corresponds to the triply degenerate valence band top ( )15( )vE Γ , 

while the upper 1Γ  corresponds to the bottom of the conduction band ( )1( )cE Γ . The two 

unknown parameters ssE  and xxE  can be determined by inverting Eq. (5) provided we have 

accurate s and p energies sE  and pE  for the anion and cation atoms,  bandgap at Γ  and width 

of the valence band. The next three off-diagonal matrix elements ,  and 
a c c as p s p xyE E E  are 

obtained from the bandgap data at X and L high symmetry points. At the X symmetry point 
( 1, 0)x y zk k k= = =  the Block sums 0 1 20, 4 , 0B B i B= = =  and 3 0B =  and 

conduction and valence band energies are 

2 2
3 /

2 2
1 /

2 2
5 /

1( ) ( ) [( ) / 2] 16
2
1( ) ( ) [( ) / 2] 16
2
1( ) ( ) [( ) / 2] 16
2

a c

c a

a c a c
c v s p s p s p

a c a c
c v s p s p s p

a c a c
c v p p p p xy

E X E E E E E

E X E E E E E

E X E E E E E

= + ± − +

= + ± − +

= + ± − +

                                     (6)   

Finally at L symmetry point ( 1, 0)x y zk k k= = =  the conduction and valence band 

energies are 

2 2
3 /

1( ) ( ) [( ) / 2] 4( )
2

a c a c
c v p p p p xx xyE L E E E E E E= + ± − + +                                (7) 

Eqs. (6) can be inverted for ,  and 
a c c as p s p xyE E E interms of the bandgap data at X 

symmetry point with appropriate s and p energies as defined before. Likewise L energy levels can 
be improved. 

In the empirical sp3 tight binding modeling of semiconductor band structures, the 
crucial point is to find the reliable and accurate parameters for the matrix elements that would 
produce the realistic band structure data such as energy gap, effective mass, etc. Such 
parametrization is extremely important when dealing with the electronic and optical properties of 
nanoscale heterostructures. Starting with the original work of Slater and Koster [11] for diamond 
and InSb, many ETB parametrisations of semiconductors have been made (see Ref. 10 for a 
detailed review) where the matrix elements were determined by comparing with bandgap data.  
Simpler form of the ETB parametrization was given by Harrison [12]. In Harrison's approach the 
diagonal matrix elements are proportional to the atomic ionization energies and the off-diagonal 
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elements are approximately universal functions of the interatomic spacing. The form, for the 

simple cubic case, is 2 2
' ' /ll m ll mV mdη=  , where m is quantum number, d the interatomic 

distance with 2 / 7.62m eVA=  . This approach has been used by many to study the 
physical properties of semiconductors since it yields the overall chemical trends and consistency 
between different properties with the same universal parameters. 

By using the nearest neighbor 3sp scheme described above, with universal tight 
binding parameters [12], or with parameters fitted to band structure data [13,14], we can fit in the 
valence band but not to the conduction bands which is vital in studying the electronic and optical 
properties of nanoscale heterostructures. In this respect we can use the second nearest neighbor 
sp3 ETB models [17,18].  Talwar and Ting [17] incorporate the second nearest neighbor 
interactions of cation and anion atoms in the  sp3 ETB formalism by constructing a nonzero 
symmetrized (8x8) Hamiltonian matrix with 23 two-center second nearest neighbor integrals. The 
tight binding Hamiltonian matrix elements 〉〈= kHkH ,||, βααβ  are expressed as 

 
. ''

0

(0, ) iik r

i
H E I i e Hαβ αβ αβ αβ

≠

= + +∑                                         (8) 

where αβE  represents the intra-atomic integrals ( 41 PP − ) which couple atomic 

orbitals located in the same cell, ),0( iIαβ  represents the nearest neighbor interaction integrals 

( 95 PP − ) which couples atomic orbitals located in different cells. Last term represents the 

second nearest neighbor interaction integrals ( 2310 PP − ).  In this approach there are 23 TB 
parameters to be determined from the fitting of  the ETB bands to the nonlocal pseudopotential 
bands [15] and experimental data at high symmetry points [16].  When compared with nearest 
neighbor sp3 ETB model of Chadi and Cohen [13,14], the 2nn sp3 ETB model  of Talwar and 
Ting [17] yields better valence bands, bandgaps and reasonable conduction bands for group III-V 
compounds. 

Choosing a carefully selected set of tight binding parameters one can use the sp3 ETB 
as the computational scheme to get a good set of energy bands which fit to the experimental data 
and this has been extensively done over the years. However, it should be pointed out that the 
emphasis has been on getting the band structure that fits to the observed band extrema and does 
not pay any attention to getting the charge carrier effective masses at different symmetry points 
that would agree with the existing experimental data. This becomes important in the modeling and 
simulation of the charge transport and performance of nanoscale electronic and optoelectronic 
devices [19-27]. In other words, the nanoscale device performance modeling requires to have 
accurate numerical values for the electron and hole masses since they determine the charge 
transport and device performance.  In aiming this goal, Loehr and Talwar [18] inverted the Γ , L 
and X high symmetry point expressions for energy levels, fitting the electron and hole effective 
masses,  to reduce the number of free tight binding parameters from 23 to 8. With the optimized 
tight binding parameters that reproduce the hight symmetry point energies and effective masses, 
Loehr and Talwar were successful in investigating the band structure of  InAs/InGaSb 
superlattices. In Table 1, we give list of earlier tight binding parameters of Talwar and Ting [17] 
and in Table 2 optimized ones for effective masses given by Loehr and Talwar [18]. Using the 
tight binding parameters of Talwar and his co-workers [17,18], listed in Table 1 and 2 we 
reproduced the energy band structure of AlAs and GaAs and they are shown in Figure 4. As can 
be seen from the comparison, the tight binding parameters of Loehr and Talwar [18] yield much 
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better conduction band energy levels than those of Talwar and Ting [17].  The optimized tight 
binding parameters of Loehr and Talwar reproduce the electron mass at the lowest conduction 
valley and heavy hole effective mass of the valence band at Γ  point, in addition to its ability to 
reproduce the correct values of the critical point energies at Γ , L and X symmetry points.  
 

Table 1.  2nn sp3 ETB model parameters of  Talwar and Ting [17] to obtain the energy           
band structure of bulk AlAs and GaAs 

( , )E α β  at 0K AlAs GaAs  AlAs GaAs 

P1= (000)0ssE  -6.1517 -6.7236 P12= 4 (1,1,0)0xyE  0.7600 0.6000 

P2= (000)1ssE  -1.9922 -3.9783 P13= 4 (1,1,0)1xyE  1.3300 0.9600 

P3= (000)0xxE  1.2107 0.6410 P14= 4 (1,1,0)0xxE  0.5522 0.4445 

P4= (000)1xxE  2.3317 2.8741 P15= 4 (1,1,0)1xxE  1.1054 1.1208 

P5= 4 (0.5,0.5,0.5)0ssE  -7.1600 -6.9000 P16= 4 (1,1,0)0sxE  0.0400 0.0452 

P6= 4 (0.5,0.5,0.5)01sxE  5.2520 5.2400 P17= 4 (1,1,0)1sxE  0.0730 0.0964 

P7= 4 (0.5,0.5,0.5)10sxE  4.0500 4.3210 P18= 4 (1,1,0)0ssE  -0.0256 -0.0474 

P8= 4 (0.5,0.5,0.5)xxE  2.0080 2.0000 P19= 4 (1,1,0)1ssE  -0.0765 -0.0653 

P9= 4 (0.5,0.5,0.5)xyE  4.8500 5.5000 P20= 4 (0,1,1)0sxE  0.5400 0.7800 

P10= 4 (0,1,1)0xxE  -1.1206 -0.3391 P21= 4 (0,1,1)1sxE  -0.1200 -0.0800 

P11= 4 (0,1,1)1xxE  -1.1670 -1.7563 P22= 4 (0,1,1)0xyE  0.00000 0.0000 

   P23= 4 (0,1,1)1xyE  0.00000 0.0000 
 

As a major step for developing more refined matrix element parametrization Vogl et al 

[19] proposed 3 *sp s  ETB model by adding the s excited states (termed s*) to the 3sp  basis 
set*) to account for the high energy orbitals. The general form of sp3s* Hamiltonian matrix is 
[19]: 

*

*

*

* * * *

0 1 2 3

1 0 3 2 1

2 3 0 1 2

3 2 1 0 3

1 2 3

* * * *
0 1 2 3
*
1

0 0 0 0 0
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

c
s ss sp sp sp

c
p ps xx xy xy ps

c
p ps xy xx xy ps

c
p ps xy xy xx ps
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Table 2.  2nn sp3 ETB model parameters of  Loehr and  Talwar [18]to obtain the energy band 
structure of bulk AlAs and GaAs. (Last two digits were ignored.) 

( , )E α β  at 0K AlAs GaAs  AlAs GaAs 

P1= (000)0ssE  -7.649 -9.081 P12= 4 (1,1,0)0xyE  0.739 0.680 
P2= (000)1ssE  -1.094 -2.376 P13= 4 (1,1,0)1xyE  -2.498 -2.244 
P3= (000)0xxE  -0.699 -1.374 P14= 4 (1,1,0)0xxE  0.396 0.510 
P4= (000)1xxE  6.866 7.123 P15= 4 (1,1,0)1xxE  1.071 0.822 
P5= 4 (0.5,0.5,0.5)0ssE  -6.138 -6.146 P16= 4 (1,1,0)0sxE  -1.711 -1.442 
P6= 4 (0.5,0.5,0.5)01sxE  2.289 2.794 P17= 4 (1,1,0)1sxE  0.932 0.509 
P7= 4 (0.5,0.5,0.5)10sxE  4.083 4.624 P18= 4 (1,1,0)0ssE  -0.223 0.048 
P8= 4 (0.5,0.5,0.5)xxE  -0.223 -0.223 P19= 4 (1,1,0)1ssE  0.244 0.094 
P9= 4 (0.5,0.5,0.5)xyE  4.241 4.129 P20= 4 (0,1,1)0sxE  1.279 0.054 
P10= 4 (0,1,1)0xxE  -0.087 0.133 P21= 4 (0,1,1)1sxE  -0.822 0.697 
P11= 4 (0,1,1)1xxE  -4.451 -4.149 P22= 4 (0,1,1)0xyE  0.000 0.000 
 
 
 
 
 
 
 
 
 
 
 
 

  P23= 4 (0,1,1)1xyE  0.000 0.000 
 

 Figure 4.  Band structure of GaAs (left) and AlAs (right) using 2nn sp3 ETB model of  Talwar 
and Ting  [17] (dashed lines) and 2nn sp3 ETB model of Loeher and Talwar [18] (solid lines) 
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where *
iB  is the complex conjugate of iB  matrix element. Vogl et al were able to 

reproduce the conduction and valence band energies of covalently bonded group IV, III-V and II-
VI semiconductors with direct and indirect bandgaps. Their conclusion was that the inclusion of 
the excited s*-state to the sp3 basis on the cation and anion atoms allows one to better simulate the 
conduction bands, which cannot be done with the nearest neighbor sp3 ETB model.  Since the 
proposal of Vogl et al, the nearest neighbor sp3s* ETB theory has been used and in so many ways 
improved by many authors to study the band structure modeling of bulk semiconductors and 
nanoscale heterostructures [20-27]. In order to see the improvement in the band structure 
calculations we compare the 2nn sp3 ETB model of Loehr and Talwar [18] (TB parameters are 
listed in second colums of Table 1) and the nn sp3s* ETB model of Fu and Chao [21] (TB 
parameters listed in first columns of Table 2) in Figure 5 for  GaAs (left) and AlAs (right) at 0 K. 
band structures calculated by. temperature effects on the semiconductor band structure we used 
As shown in Figure 5, the improvement by nn sp3s* over 2nn sp3 is clearly visible, especially its 
ability to predict the temperature effects on the energy levels is apparent at high symmetry points 
and at varying values of the wave vector over the entire first Brillouin zone. 
 

  
Figure 5. GaAs and AlAs band structures calculated using 2nn sp3 ETB model of Loehr and 
Talwar [18] (dashed lines) and nn sp3s* ETB model of Fu and Chao [21] (solid lines) at 0K 

 
Perhaps the most remarkable improvement in the sp3s* model was made by Boykin and 

his co-workers [22-25]. They were able to optimize the sp3s* ETB tight binding parameters, with 
spin-orbit coupling, to reproduce the band structures of III-V compounds, GaAs, AlAs, InAs, 
GaP, InP, AlP, GaSb, InSb and AlSb, relevant to the simulation of charge carrier transport in 
nanoscale devices operating at 300 K. In this sp3s* ETB view, the better reproduction of charge 
carrier effective masses at the lowest conduction band and the highest three valence bands is 
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essential at the expense of the accuracy of other conduction and valence bands since they are 
considered to be less relevant to the charge transport in nanoscale devices subject to low electric 
fields at room temperature. In order to see the temperature effects on the semiconductor band 
structure we used the 0 K and 300 K tight binding parameters, listed in Tabl 2, of Fu and Chao 
[21] and Klimeck et al [25], respectively, to reproduce the band structure of GaAs and AlAs.  As 
shown in Figure 6, the temperature effects on the energy levels is apparent over the entire 
Brillouin zone, at high symmetry points and at different values of the wave vector. This 
conclusion is important in implementing the full band ETB model in the charge transport 
equations for the reliable performance predictions of nanoscale heterostructure devices (e.g., 
quantum dots, etc). 

 
Table 3. The  nn sp3s* ETB model parameters of  Fu and Chao [21] at 0K (first columns) and of 
Klimeck et al [25] at 300 K  (second colums) for band structure calculations of GaAs and AlAs 

 AlAs GaAs 

( , )E α β  Fu and Chao 
(0K) 

Klimeck et al  
(300 K) 

Fu and Chao 
(0 K) 

Klimeck et al 
(300 K) 

E(s,a) -7.5273 -7.738226 -8.3431 -8.510704 
E(p,a) 0.9833 0.872374 1.0414 0.954046 
E(s,c) -1.1627 -1.101736 -2.6569 -2.774754 
E(p,c) 3.5867 3.475774 3.6686 3.434046 
E(s*,a) 7.4833 7.373508 6.7386 8.454046 
E(s*,c) 6.7267 6.615774 8.5914 6.584046 
V(s,s) -6.6642 -6.664200 -6.4513 -6.451300 
V(x,x) 1.8789 1.878000 1.9546 1.954600 
V(x,y) 4.2919 3.860000 5.0779 4.770000 

V(sa,p,c) 5.1106 5.600000 4.4800 4.680000 
V(sc,pa) 5.4965 6.800000 5.7839 7.700000 
V(s*a,pc) 4.5216 4.220000 4.8422 4.850000 
V(pa,s*c) 4.9950 7.300000 4.8077 7.0100000 

a∆   0.420000  0.420000 

c∆   0.024000  0.174000 
 

One of the drawbacks of the sp3s* ETB model is its inability to fit the transferse 
effective mass at the X conduction valley. This limitation can be eliminated by modifying the 
model to include the second nearest neighbor interactions and/or the number of orbitals. In fact, 
the nearest neighbor sp3d5s* ETB model of Jancu et al [26,27], who added excited d orbitals to 
the sp3s* nearest neighbor approximation with spin-orbit coupling, has been very successful in 
predicting the band structure of tetrahedrally bonded group IV and III-V compounds. Using the 
sp3d5s* scheme Jancu et al were able to reproduce the X-valley transverse masses in diamond and 
zincblende semiconductors, including the III-nitrides. 
 
3. RESULTS AND DISCUSSION 
 
The use of heterostructures in semiconductor device design allows one to locally modify the 
energy band structure of the constituents to control the motion of charge carriers. One can 
artificially change  the energy of the moving conduction band and valence band charge carriers 
across the heterointerface, leading to new device concepts. Consequently, reliable and precise 
determination of heterostructure electronic band structure is essential for design and performance 
predictions of nanoscale electronic and optoelectronic devices. Since most heterostructure devices 
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use alloy/binary combination (e.g., AlGaAs/GaAs ternary/binary) the first step is to reliably and 
precisely determine the composition effects on the band structure of alloy semiconductor. 
Consequently, in the nanoscale device modeling, composition effects on the energy band structure 
of constituent ternary materials is the central issue.  In this respect, the empirical tight binding 
scheme can be used to incorporate the composition effects for a realistic description of the 
composition dependent band structure. The common practice is to employ so called the virtual 
crystal approximation (VCA) to the tight binding Hamiltonian matrix elements and bond length 
with and without the compositional disorder of the alloy semiconductor. Although the detailed 
treatement requires the inclusion of compositional disorder effect on the electronic properties 
[28], we can treat the bond length of alloy semiconductor as nonlinear  functions of composition. 
In the case of ternary 1x xA B C− ternary semiconductor we assume a nonlinear composition 
dependence of  the bond length expressed as 

( ) ( ) (1 ) ( ) (1 )d x xd AC x d BC x x d= + − + − ∆              (10) 
 

 Figure 6. GaAs and AlAs band structures calculated using 0K nn sp3s* ETB model of Fu and 
Chao [21] (dashed line) and the 300 K nn sp3s* ETB model of Klimeck et al [25] (solid line) 

  
where ( ) ( )d d AC d BC∆ = −  represents the deviation form the linearity which is 

a small correction factor in most cases. This allows one to take into account the composition 
variations of the off-diagonal terms in the tight binding Hamiltonian matrix elements. Likewise, 
the tight binding parameters representing the diagonal terms in the Hamiltonian matrix for ternary 

1x xA B C− ternary semiconductor can be taken linear function of composition as 

/ / /( ) ( ) (1 ) ( )E x xE AC x E BCα β α β α β= + −              (11) 

where )()( /// BCEACEE βαβαβα −=∆ , with α  and β  representing the 

fitted energies of the s and p states of the anion and cation atoms forming the AC and BC 
compounds. This approach has had some success but also some limitations because of the 
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difficulty in properly describing the composition disorder. Using the tight binding parameters of 
Loehr and Talwar [18] listed in  Table 2 and those of Fu and Chao [21] listed in the first columns 
of Table 3, we studied the compostion effects on the band structure of AlGaAs ternary 
semiconductor and the results are displayed in Figures 7 for x=20% and 30% of the Aluminum 
fraction.   
 

 Figure 7.  Band structure of AlGaAs with x=0.20 (left) and x=0.30 (right) calculated using the 
2nn sp3 ETB model of Loehr and Talwar [18] (dashed lines) and using the nn sp3s* ETB model of 

Fu and Chao [21] (solid lines) at 0K 
  

As in the case of binary AlAs and GaAs, in order to see the temperature effects on the 
ternary semiconductor band structure we used the 0 K sp3s* ETB model of Fu and Chao and 300 
K sp3s* ETB model of Klimeck et al [25] with the tight binding parameters of Table 3, allowing 
composition dependence as described by Eqs. (10) and (11). As shown in Figure 8, the 
temperature effects on the energy levels at any alloy composition is different at high symmetry 
points and at different values of the wave vector. Consequently, temperature effects must be 
seriously considered in implementing the full band ETB models in the charge transport equations 
for the reliable performance predictions of nanoscale heterostructure devices.  

The discussion about the temperature effects on the band structure of ally 
semiconductors brings us to the discussion of temperature induced strain and lattice mismatch 
induced interface strain effects on the electronic properties of heterostructures. When two 
semiconductors with different physical and chemical properties and thicknesses are grown upon 
each other, the lattice mismatch and thermal expansion gradient over the growth temperature will 
cause interface strain that will modify the electronic properties of both materials, including the 
band offsets, and influence the device performance. Limiting the discussion on the 
technologically important (001) strained heterepitaxy, the shape of the semiconductor crystal unit 
cell is easily determined by the macroscopic elastic theory. The strain in barrier parallel and 
perpendicular to the interface are equal to that in the well but are different in the barrier so that  
we can write 
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 Figure 8. Band structure of AlGaAs with x=0.2 (left) and x=0.3 (right) calculated using nn sp3s* 
model of Fu and Chao [21] (dashed lines) and nn sp3s* model of Klimeck et al [25] (solid lines)   

 

   
 

Figure 9. 2D growth of strained thin epilayer on a thick substrate along the [001] direction 
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The macroscopic observable consequences of lattice mismatch and/or thermal strains 
are the change in the bandgap energy, effective mass, intrinsic carrier density, and dielectric 
constant with temperature. The uniaxial component of interface strain splits the heavy-hole, light-
hole and split-off valence band edges relative to the average valence band edge and expressed as 

1 1( ) ( )
3 2vh vE E Eε ε δ= + ∆ −                              (12) 

2 21 1 1 9( ) ( )
6 4 2 4vl vE E c E E Eε δ δ δ= − ∆ + + ∆ + ∆ +            (13) 

2 21 1 1 9( ) ( )
6 4 2 4vs vE E c E E Eε δ δ δ= − ∆ + − ∆ + ∆ +              (14) 

where ||2 ( ) 2 ( )zz xxE b bδ ε ε ε ε⊥= − = − and b is the shear deformation 

potential which describes the splitting in the valence band energy due to the [001] uniaxial strain. 
( )vE ε  is the average valence band maximum under hydrostatic component of the biaxial strain. 

On the other hand, the hydrostatic component shifts the position of the conduction and valence 
band edges. The shifts in the conduction and valence band energy levels can be written as [9]: 

2 3
0

0 2

(1 ')( , ) (0, ) (1 ln ) [ ]
2 6

cl
cl cl cP

a P B PE T P E P C T T P
B B B

+
= + − − − −                (15) 

2 3
0

0 2

(1 ')( , ) (0, ) (1 ln ) [ ]
2 6

v
v v vP

a P B PE T P E P C T T P
B B B

+
= + − − − −                   (16) 

where P is the pressure. ( / )cl cla B E P= − ∂ ∂ and ( / )v va B E P= − ∂ ∂  are the 

conduction and valence band deformation potentials, B is the bulk modulus, ' /B B P= ∂ ∂ . The 

coefficients 0 0 0 0 0
0cP nP P pP PC C C C C= − = + ∆ and 0 0

vP pPC C= are the standard heat 

capacities of conduction electrons and valence holes; 0 0 (5 / 2)nP pPC C k= = , where k is the 

Boltzmann’s constant.   0 0 0 0
0P nP pP PC C C C∆ = + −  is called the heat capacity of reaction for 

the formation of free conduction electrons and valence holes. 0
lPC∆  is obtained from fitting the 

bandgap energy ( , ) ( , ) ( , )gl cl vE T P E T P E T P= −  to the experimental data at constant 

pressure. Substituting 
||

2
ff fP B C ε= −  for heterolayer and ||3 s sP B ε= −  for substrate for a 

[001] growth direction one obtains strain dependent conduction and valence band energies. Here 

|| ||( ) /f f f fa a aε ε= = −  is the parallel strain in the epilayer, with lattice constant 

||f sa a= with sa  being the substrate lattice constant and 11 12 11( ) /fC C C C= −  is a 

constant, with elastic constants 11C  and 12C .  
The composition effects on the alloy semiconductor band structure at any temperature 

can also be obtained by combining the Vegard’s rule and Kane’s three level k.p analysis at 
k=(2π /a)(0; 0; 0) and k=(2π /a)(1; 0; 0) high symmetry points one writes [9]: 
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2 ( )1 1 2 11 [ ]
( ) ( ) ( ) 3 ( ) ( ) ( )n nA nB g g

P xx x
m x m x m x E x E x x

Γ

Γ Γ Γ Γ Γ

−
= + = + +

+ ∆
          (17) 

21 1 2 11 ( )[ ]
( ) ( ) ( ) ( ) ( ) ( )L

ntL ntLA ntLB gL gL L

x x P x
m x m x m x E x E x x

−
= + = + +

+ ∆
         (18) 

where ( )nAm xΓ  and ( )nBm xΓ  are the electron effective masses at Γ  conduction 

band valley and ntLAm  and ntLBm  are the transverse electron effective masses at L conduction 

valley of binaries AC and BC. ( ) (1 )A BP x xP x PΓ Γ Γ= + − and 

( ) (1 )L LA LBP x xP x P= + − are the momentum matrix elements 

( ) (1 )A Bx x x∆ = ∆ + − ∆  and ( ) (1 )L LA LBx x x∆ = ∆ + − ∆  are the spin-orbit energies. 

, ,  and A b AL BLP P P PΓ Γ of binaries AC and BC are obtained from Eqs. (12) and (13) with 

measured ( )nm x , ( )ntLm x , ( )x∆  and ( )L x∆ for x=0 and 1. Inverting Eqs. (12) and (13) 

one obtains quadratic equations for bandgaps ( )gE xΓ  and ( )gLE x  and solving the resultant 

equations yields  
1/ 223/ ( ) ( ) 1( ) ( ( ) 3 / ( )) 8 ( ) / ( )

2 2g
y x xE x x y x x y xΓ

Γ Γ Γ

− ∆  = + ∆ − + ∆          (19) 

1/ 221
1 1

2 / ( ) ( ) 1( ) ( ( ) 2 / ( )) 4 ( ) / ( )
2 2

L
gL L L

y x xE x x y x x y x− ∆  = + ∆ − + ∆    (20) 

where 2( ) 3(1 ( )) / ( ) ( )n ny x m x m x P xΓ Γ Γ Γ= − and 
2( ) (1 ( )) / ( ) ( )L nt nt Ly x m x m x P xΓ Γ= − . The indirect gap ( )gXE x of 1x xA B C−  ternary 

is determined from the following expression 
( ) ( ) [ ] [ ](1 )gX g gXA g A gXB g BE x E x E E x E E xΓ Γ Γ= + − + − −            (21) 

,, ,  and gXA gXB g A g BE E E EΓ Γ  are the indirect bandgaps of AC and BC binaries. 

As with all of the semiconductor devices, the key property to understand the impact of 
heterostructure on the device performance is the electronic energy band structure across the 
interface. When the semiconductor composition changes abruptly at interface between 
constituents, the difference in their energy bands is accommodated by the discontinuities in the 
conduction and valence bands, shown in Figure 1. The spike cE∆  in the conduction band and 

step in the vE∆  valence band influences the carrier injection and current transport in 
heterojunction devices. Since band offsets influence the motion of  carriers in the conduction and 
valence bands (electrons and holes) across the heterointerface, reliable and precise determination 
of their formation and magnitude is essential for performance predictions of nanoscale 
heterostructure devices. The magnitude of valence and conduction band offsets at AC/BC 
heterointerface are determined from the following equations [9]: 
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( ) ( ) ,      v v
v B A ci ciA ciB gi v

E EE E E E E E
ε ε∞ ∞

∆ = − ∆ = − = ∆ − ∆                     (22) 

     

  
Figure 10. Composition effects on band gaps and band offsets in AlGaAs/GaAs heterostructure 
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where 
6 6 6

,  and 
c c cci L XE E E EΓ= conduction bands and ,  and gi g gL gXE E E EΓ= are the 

lowest bandgaps at k=0( 2 / aπ )(0; 0; 0), k=( 2 / aπ )(1; 0; 0), and k=( 2 / aπ )(1/2; 1/2; 1/2) 

in the Brillouin zone. ( ) ( )gi gi giE E A E B∆ = − . ( ) and ( )gi giE A E B are the bandgaps 

and ( )Aε∞  and ( )Bε∞  are the optical dielectric constants of AC and BC compounds. Valence 
band energies are obtained by either using the (a) empirical sp3 or sp3s* tight binding theories 
described above or (b) using the nonortogonal sp3 tight binding theory [9].  Figure 10 shows the 
composition effects on bandgaps and band offsets in AlGaAs/GaAs at room temperature. Results 
are in good agreement for bandgaps [16] and band offsets [8]. 
 
4. SUMMARY  
 
In this paper we have presented the materials theory based modeling technique for the calculation 
of band structure properties of heterostructures. We showed that the empirical sp3s* tight binding 
model has a considerable potential in the prediction of electronic band structure of 
heterostructures for nanoelectronic devices. When a widegap ternary semiconductor is grown on a 
narrowgap binary semiconductor, strain will develop across the interface, caused by the lattice 
mismatch and thermal expansion gradient over the crystal growth temperature as a function of 
ternary composition. Any increase in interface strain will modify the heterostructure energy band 
structure that determines the carrier transport in nanoscale devices. Consequently, reliable and 
precise determination of the effects of interface strain on the heterostructure electronic band 
structure is essential for design and performance predictions of nanoscale electronic and 
optoelectronic devices. The empirical sp3s* tight binding model can be used to determine the 
strain effects on the heterostructure energy bands. The particular advantage of the proposed 
modeling approach is that it can proceed relatively independently of experiment to provide the 
potential assessment of new heterostructures at any temperature, strain, alloy composition. 
 
ACKNOWLEDGEMENT 

 
The author acknowledges the financial support by the Research Foundation of Istanbul Technical 
University: P.NO 965, and by the Scientific and Technical Research Council of Turkey 
(TÜBITAK): TBAG-1842 (199T061). 
 
REFERENCES 
 
[1] H. Morkoç, H.Ünlü, and G. Ji, Principles and Technology of MODFETs, Vols. 1, 2, 

Wiley (1991). 
[2] H. Ünlü and H. Morkoç, Solid State Technology, 31, 83  (1988). 
[3] H. Morkoç and H.Ünlü, in Semiconductors and Semimetals, 24 (R. Dingle, editor), 135 

(1987). 
[4] H. Ünlü, H. Morkoç, and S. Iyer, in GaAs Technology, 2(D. K. Ferry, ed.) 231 (1990). 
[5] H. Morkoç, H.Ünlü, H. Zabel, and N. Otsuka, Solid State Technology, 31, 71 (1988). 
[6] J.H. Davies ,The Physics of Low Dimensional Semiconductors (Cambridge: Cambridge 

Univ. Press) (1998) 
[7] Z. I. Alferov and J. A. Lott IEEE J. Sel. Top. In Quantum Electron., 6, 439 (2000). 
[8] E. T.Yu,  J. O. McCaldin and T. C. McGill, in Solid State Physics, Vol. 46, 1 (1992). 
[9] H. Ünlü, Phys. Stat. Sol. (B), 216, 107 (1999);  223, 195 (2001);  229, 581 (2002); 235, 

248 (2003, and Comp. Mater. Sci, 21, 453  (2001). 
[10] A. Di Carlo, Semicon. Sci. and Technol.,18, R1 (2003).  
[11] J. C. Slater and G. F. Koster, Phys. Rev. 94 (1954) 1498 

Modeling of Heterostructures for Nanoelectronic... 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


 20 

[12] W. A. Harrison,  Electronic Structure and the Properties of Solids (San Francisco: 
Freeman) (1980) 

[13] D.J. Chadi and M.L. Cohen, Phys. Status Solidi, 68 405 (1975). 
[14] D.J. Chadi, Phys. Rev. B, 16 790 (1977). 
[15] M.L. Cohen and J. R. Chelikowsky,Electronic Structure and Optical Properties of 

Semiconductors (2nd edition), Springer-Verlag (1989). 
[16] O. Madelung}(editor), Numerical Data and Functional Relationships in Science and 

Technology, Part a of Vol. 17, Springer-Verlag (1982) and Part d of Vol. 17, (1984). 
[17] D.N. Talwar and C.S. Ting, Phys. Rev. B, 25 2660 (1982). 
[18] J.P. Loher and D.N. Talwar, Phys. Rev. B, 55 4353 (1997). 
[19] P. Vogl, H. P. Hjalmarson and J. D. Dow, J. Chem. Solids 44 (1983) 365 
[20] T.B. Boykin, L.J. Gamble, G. Klimeck and R.C. Bowen, Phys. Rev. B, 59 7301 (1999). 
[21] Y. Fu and K. A. Chao,  Phys. Rev. B, 43, 4119 (1991). 
[22] T.B. Boykin, Phys. Rev. B, 54 8107 (1996). 
[23] J.G. Menchero and T.B. Boykin, Phys. Rev. B, 59 8137 (1999). 
[24] G. Klimeck R.C. Bowen and T.B. Boykin, Superlattices Microstruct, 29 187 (2001). 
[25] G. Klimeck, F. Oyafusoi T. B. Boykin, R. C. Bowen and P. von Allmen l, CMES, 601 

(2003) 
[26] J.M. Jancu, R. Sholz, F. Beltram and F. Bassani, Phys. Rev. B, 57 6493 (1998). 
[27] J.M. Jancu, F. Bassani, F. Della Sala and R. Schols, Appl. Phys. Lett, 81, 4838 (2002). 
[28] K. Shim and H. Rabitz, Phys. Rev. B, 57 12874 (1998). 
 
 
 
 
 

H. H. Gürel, Ö. Akıncı, H. Ünlü                                                                  Sigma 2004/1 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

