

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Sigma 2005/2

FACTORIZATION PROPERTIES IN POLYNOMIAL EXTENSION OF UFR'S

Murat ALAN*

Yıldız Teknik Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümü, Davutpaşa-İSTANBUL

Geliş/Received: 27.01.2005 Kabul/Accepted: 20.04.2005

ABSTRACT

We investigate the factorization properties on the polynomial extension A[X] of A where A is a UFR and show that A[X] is a U-BFR for any UFR A. We also consider the ring structure A + XI[X] where A is a UFR

Keywords: Factorization, Polynomial rings. **MSC number/numarasi:** 13F15, 13A05.

TÇA HALKALARIN POLÎNOM GENÎŞLEMELERÎNDE ÇARPANLARA AYIRMA ÖZELLÎKLERÎ

ÖZET

A bir TÇA halka (tektürlü çarpanlara ayrılabilen halka) olmak üzere A'nın polinom genişlemesi A[X] üzerindeki çarpanlara ayırma özelliklerini araştırıyoruz ve herhangi bir TÇA halka A için A[X]'in U-KÇA halka (U-Kısıtlı Çarpanlarına Ayrılabilen Halka) olduğunu gösteriyoruz. A bir TÇA olmak üzere A + XI[X] yapısındaki halkaları da göz önüne alıyoruz.

Anahtar Sözcükler: Çarpanlara ayırma, Polinom halkaları.

1. INTRODUCTION

One of the main problem in ring theory is to determine whether the polynomial extension of any commutative ring R possesses or not the properties belonging to R. The purpose of this paper is to investigate which factorization properties is exactly satisfied in the polynomial extension R[X] of R where R is a UFR.

Let R be a commutative ring with identity. Any elements $a,b \in R$ are associate, denoted by $a \sim b$, if $a \mid b$ and $b \mid a$, that is, (a) = (b). A nonunit $a \in R$ is an irreducible (or an atom) if $a = bc \implies a \sim b$ or $a \sim c$. Hence 0 is irreducible if and only if R is an integral domain. R is atomic if each nonzero nonunit element of R is a finite product of irreducible elements. A principal ideal ring (PIR) is called a special principal ideal ring (SPIR) if it has only one prime ideal $P \neq R$ and P is nilpotent, that is, P'' = (0) for some integer n > 0. R is said to

e-posta: alan@yildiz.edu.tr, tel: (0212) 449 17 80

M. Alan Sigma 2005/2

be *presimplifiable* if $x = xy \implies x = 0$ or $y \in U(R)$. SPIR's and integral domains are examples of presimplifiable rings.

Classical irreducible decomposition may cause the bad behavior of factorization for some elements in a commutative ring because of nontrivial idempotents. For example $5 = 5^n$ for every positive integer n in \mathbb{Z}_{20} . A U-decomposition which is introduced by Fletcher [9] eliminates this bad behavior of a factorization. A *U-decomposition* of $r \in R$ is a factorization

$$r = (p_1' \dots p_k')(p_1 \dots p_n)$$

such that

- (i) the p_i 's and p_i 's are irreducible
- (ii) $p'_{i}(p_{1} \dots p_{n}) = (p_{1} \dots p_{n})$ for $i = 1, \dots, k$ and
- (iii) $p_{i}(p_{1} \dots p_{i-1}p_{i+1} \dots p_{n}) \neq (p_{1} \dots p_{n})$ for $j = 1, \dots, n$.

Let $r = (p_1' \dots p_k')(p_1 \dots p_n)$ be a U-decomposition of $r \in R$. Then the product $p_1 \dots p_n$ is called the *relevant part* and the other is the *irrelevant part*. Any irreducible decomposition can be rearranged to a U-decomposition. Two U-decompositions

$$r = (p_1' \dots p_k')(p_1 \dots p_n) = (q_1' \dots q_l')(q_1 \dots q_m)$$

are associates if (i) n = m and (ii) p_i and q_i are associates for i = 1, ..., n, after a suitable change in the order of the factors in the relevant parts. R is called *unique factorization ring* (UFR) if each nonunit has a U-decomposition, that is, R is atomic and any two U-decompositions of a nonunit element of R are associates. Fletcher shows that R is a UFR if and only if R is a finite direct product of UFD's and SPIR's [10].

There are a family of factorization properties which are weaker than unique factorization. For a detailed study of these factorization properties in integral domain see Refs. [4,5,6]. In this paper we consider these factorization properties for a commutative ring with zero divisors. Any commutative ring R is called a bounded factorization ring (BFR) if for each nonzero nonunit $a \in R$, there exist a natural number N(a) so that for any factorization $a = a_1 \dots a_n$ of a where each a_i is a nonunit we have n < N(a). If we replace the condition that p_i 's and p_j 's are irreducible by p_i 's and p_j 's are nonunits in the definition of U-decomposition, we have the definition of U-factorization. A commutative ring R is a U-BFR if for each nonzero nonunit $a \in R$, there exist a natural number N(a) so that for each U-factorization of a, $a = (a_1, \dots, a_n)(b_1, \dots, b_m)$, m < N(a) [1]. R is a UFR $\Rightarrow R$ is a U-BFR. R is called a U-half-factorial ring (U-HFR) if R is U-atomic (that is, every nonzero nonunit has a U-factorization in which all the relevant divisors are irreducible) and if $a = (a_1, \dots, a_n)(b_1, \dots, b_m) = (c_1, \dots, c_i)(d_1, \dots, d_s)$ are two U-factorizations with b_i, d_j irreducible, then m = s. It is clear that UFR \Rightarrow U-HFR. For these factorization properties see [1,7,8].

For an integral domain D it is well known that D is a UFD $\Leftrightarrow D[X]$ is a UFD. But if zero divisors are present the situation is not so clear. In [2] Anderson and Markanda show that R[X] is a UFR if and only if R is a finite direct product of UFD's. In other words R[X] is not a UFR if R is a SPIR. In fact R is not even a U-HFR if R is a SPIR. For example the element $2X^2$ has two distinct irreducible decomposition (and U-decomposition) in \mathbb{Z}_4 which is a UFR, namely

$$2X^2 = 2(2 + X^2) = 2.X.X$$
.

Factorization Properties in Polynomial Extension ...

In here we continue to investigate these factorization properties in R[X] where R is a UFR and give a positive result for the concepts a U-BFR and a BFR. More precisely we show that if R is a SPIR then R[X] is a BFR and if R is a UFR then R[X] is a U-BFR. We also consider these factorization properties in the rings R + XI[X] for any ideal I of R where R is a UFR.

In [12] Gonzalez, Pelerin and Robert show that A + XI[X] is a HFD (half-factorial domain) if and only if I is a prime ideal of A for the domain case where A is a UFD. In here we investigate which factorization properties are satisfied in the rings A + XI[X] for any ideal I of A where A is a UFR and show that A + XI[X] is always a U-BFR for any ideal I of A. For any undefined terminology or notations, see [11].

2. BOUNDED FACTORIZATION PROPERTIES ON A[X]

Suppose A is a SPIR and P = (p) is the unique prime ideal of A, where $P^n = (0)$ and n is the smallest integer which satisfies $P^n = (0)$. If n = 1 then A is a field. So from now on, we assume that n > 1 and A, P and n will be as above unless otherwise stated.

Proposition 2.1: Let A be a SPIR. If $f(X) = a_0 + a_1X + ... + a_mX^m \in A[X]$ is any irreducible element in A[X] then f(X) is one of the following forms up to associate:

- (i) f(X) = p
- (ii) f(X) = X
- (iii) $f(X) = a_0 + a_1 X + ... + a_{k-1} X^{k-1} + X^k + a_{k+1} X^{k+1} + ... + a_m X^m \text{ for some } 1 \le k \le m \text{ where }$ $a_0, a_{k+1}, ..., a_m \in P$
- (iv) $f(X) = 1 + a_1 X + ... + a_{k-1} X^{k-1} + X^k + a_{k+1} X^{k+1} + ... + a_m X^m$ for some $1 \le k \le m$ where $a_{k+1}, ..., a_m \in P$.

Proof: Suppose $a_i \in P$ for all $0 \le i \le m$. We can write $a_i = pa_i' \quad \exists a_i' \in A$. Then $f(X) = p(a_0' + a_1'X + ... + a_m'X^m)$. Since f(X) is irreducible in A[X], $f(X) \sim p$ or $f(X) \sim f'(X)$ where $f'(X) = a_0' + a_1'X + ... + a_m'X^m$.

$$f(X) \sim p \implies p = f(X).c(X) \exists c(X) \in A[X]$$

 $\Rightarrow f(X) = f(X).c(X)f'(X).$

Since A[X] is presimplifiable and $0 \neq f(X)$, c(X)f'(X) is a unit in A[X], and hence f'(X) is a unit in A[X]. So we may take f(X) = p up to associate. If $f(X) \sim f'(X)$ then

$$f'(X) = f(X).d(X) \quad \exists d(X) \in A[X] \implies f(X) = p.f(X).d(X)$$

 $\Rightarrow p.d(X) \in U(A)$.

But this is a contradiction since p is not a unit. Therefore if all $a_i \in P$ then f(X) = p up to unit. Now suppose $f(X) \notin P[X]$. Consider the constant term of f(X):

Case I: Suppose $a_0=0$. Then f(X)=X.f'(X) $\exists f'(X)\in A[X]$. So either $f(X)\sim X$ or $f(X)\sim f'(X)$. $f(X)\sim f'(X)$ gives X is a unit as above which is a contradiction. So $f(X)\sim X$ and f'(X) is a unit in A[X]. Hence we take f(X)=X up to associate. Now $a_0\neq 0$. Then either $a_0\in P$ or $a_0\in U(A)$.

M. Alan Sigma 2005/2

Case II: Let $a_0 \in P$. Then for some $1 \le k \le m$ $a_k \notin P$ since $f(X) \notin P[X]$. So $a_k \notin P \implies a_k \in U(A)$. So we may take $a_k = 1$.

Case III: Let $a_0 \in U(A)$. We know that any element of A[X] is a unit in A[X] if and only if the constant term is a unit in A and all other coefficients are nilpotents in A. Any nonunit element of A is a nilpotent. So a_k must be a unit in A for some $1 \le k \le m$ since f(X) is not a unit in A[X]. So again we may take $a_k = 1$.

Proposition 2.2: If A is a SPIR then A[X] is a BFR.

Proof: Let $f(X) = a_0 + a_1X + ... + a_sX^s \in A[X]$ be a nonzero nonunit element of A[X]. First note that A[X] is presimplifiable since 0 is primary in A [3]. Collecting all the factor p in each coefficient a_i , we can write uniquely each a_i as $a_i = p^{\alpha_i}u_i$ where $0 \le \alpha_i \le n$ and $u_i \in U(A)$. Then $f(X) = p^{\alpha_0}u_0 + p^{\alpha_1}u_1X + ... + p^{\alpha_s}u_sX^s \in A[X]$. Since $f(X) \ne 0$ the number of irreducible factor p in any irreducible decomposition of f(X) is at most n-1. Now we show that in any factorization of f(X) into a product of irreducible elements the number of irreducible factors as in Proposition 2.1 is at most $\deg f(X) = s$. It is obvious that the number of irreducible factor X's are at most s. Let $f(X) = p \dots pX \dots Xf_1 \dots f_s$ be an irreducible decomposition of f(X) where f_i is irreducible as in Proposition 2.1 other than p and X. Let

$$f_1 = a_0 + \dots + a_{k_1-1} X^{k_1-1} + X^{k_1} + a_{k_1+1} X^{k_1+1} + \dots + a_t X^t,$$

$$f_2 = b_0 + \dots + b_{k_r-1} X^{k_2-1} + X^{k_2} + a_{k_r+1} X^{k_2+1} + \dots + a_m X^m$$

where a_{k_1} and b_{k_2} are the last coefficients of f_1 and f_2 which is equal to 1, respectively. Consider the coefficient of $X^{k_1+k_2}$ of the product f_1f_2 :

$$\begin{split} \sum_{j=0}^{k_1+k_2} a_j b_{k_1+k_2-j} \ . \\ \text{If} \ \ j>k_1 \ \Rightarrow a_j \in P \Rightarrow a_j b_{k_1+k_2-j} \in P \ , \\ \text{if} \ \ j< k_1 \ \Rightarrow b_{k_1+k_2-j} \in P \Rightarrow a_j b_{k_1+k_2-j} \in P \ , \\ \text{if} \ \ j=k_1 \ \Rightarrow a_j = b_{k_1+k_2-j} = 1 \Rightarrow a_j b_{k_1+k_2-j} = 1 \ . \end{split}$$

So

$$\sum_{j=0}^{k_1+k_2} a_j k_{k_1+k_2-j} = 1 + pr \; , \; \exists r \in A \; .$$

Since $1+pr \notin P$, 1+pr is a unit in A, and hence not a zero element. Hence by induction on t we can see that the coefficient of $X^{k_1+\dots+k_t}$ in the product $f_1\dots f_t$ is not zero where $k_i \ge 1$. So if t > s then $\deg(f(X)) < \deg(p \dots pX \dots Xf_1 \dots f_t)$ which is a contradiction. Thus $t \le s$ and hence A[X] is a BFR.

Following theorem is in [1]. For a commutative ring R, $a \in R$ is called U-bounded if $\sup\{m \mid a = (a_1, ..., a_n)(b_1, ..., b_m) \text{ is a U-factorization of } a\} < \infty$.

Theorem 2.3: Let $R_1, R_2, ..., R_n$ be commutative rings, n > 1, and let $R = R_1 \times ... \times R_n$. Then R is a U-BFR \Leftrightarrow each R_i is a U-BFR and 0_{R_i} is U-bounded. Hence 0_{R_i} is U-bounded.

Now we can state the main result of this paper as a corollary.

Corollary 2.4: If A is a UFR then A[X] is a U-BFR.

Proof: Since A is a UFR, A is a finite direct product of UFD's and SPIR's, say $A = A_1 \times ... \times A_n$. Then $A[X] = A_1[X] \times ... \times A_n[X]$. If A_i is a UFD then clearly $A_i[X]$ is UFD and hence a U-BFR. If A_i is a SPIR then $A_i[X]$ is a U-BFR by Proposition 2.2. Hence by Theorem 2.3, A[X] is U-BFR.

Lemma 2.5: Let $A \subset B$ be an extension of commutative rings. If B is a BFR and $U(B) \cap A = U(A)$ then A is also a BFR.

Proof: Let $a \in A$ be a nonzero nonunit and let $a = a_1 \dots a_n$ be any factorization of a into nonunits. Then $a_i \notin U(B)$ for $i = 1, \dots, n$. Hence $a = a_1 \dots a_n$ is a factorization of a in B. Since B is a BFR, $n \le N(a)$ for some positive integer N(a). So A is a BFR.

Proposition 2.6: If A is a UFR then A + XI[X] is a U-BFR for any ideal I of A.

Proof : Let $A = A_1 \times ... \times A_n$, a finite direct product of UFD's and SPIR's. Then I is of the form $I = I_1 \times ... \times I_n$ where each I_i is an ideal of A_i . So

$$A + XI[X] = (A_1 \times ... \times A_n) + X(I_1 \times ... \times I_n)[X]$$
$$= (A_1 + XI_1[X]) \times ... \times (A_n + XI_n[X])$$

If A_i is a UFD then by Lemma 2.5 $A_i + XI_i[X]$ is a BFR since $A_i + XI_i[X] \subseteq A_i[X]$ and $U(A_i + XI_i[X]) = U(A_i[X]) = U(A_i)$. If A_i is a SPIR then $A_i + XI_i[X]$ is again a BFR since $A_i[X]$ is a BFR by Proposition 2.2 and $U(A_i[X]) \cap (A_i + XI_i[X]) = U(A_i + XI_i[X])$. Clearly 0_{A_i} is always U-bounded in each case. Hence A + XI[X] is a U-BFR for every ideal I of A by Theorem 2.4.

3. RESULTS AND DISCUSSION

In this paper we concentrate on polynomial extension of a UFR with zero divisors to investigate factorization properties related to it. We show that if A is a UFR then A[X] is always a U-BFR and A + XI[X] is always a U-BFR for any ideal I of A. We do not know these results are remain valid if the term "U-BFR" is substituted for "UFR".

REFERENCES

- [1] Ağargün A.G., Anderson D.D. ve Valdes-Leon S., "Factorization In Commutative Rings With Zero Divisors, III", Rocy Mountain J. of Math., 31, 1-21, 2001.
- [2] Anderson D.D., Markanda R., "Unique Factorization Rings With Zero Divisors", Houston J. Math., 11, 15-30, 1985.
- [3] Anderson D.D., Valdes-Leon S., "Factorization In Commutative Rings With Zero Divisors", Rocy Mountain J. of Math., 2, 2, 439-480, 1996.
- [4] Anderson D.D., Anderson D.F., Zafrullah M., "Factorization In Integral Domains", J. of Pure and App. Algebra, 69, 1-19, 1990.
- [5] Anderson D.D., Anderson D.F. ve Zafrullah M., "Factorization in Integral Domains II", J. Algebra, 152, 78-93, 1992.
- [6] Anderson D.F. ve El Abidine D.N., "Factorization In Integral Domains, III", J. of Pure and App. Algebra, 135, 107-127, 1999.
- [7] Axtell M., "U-Factorizations in Commutative Rings With Zero Divisors", Comm. Algebra, 30, 2002.

M. Alan Sigma 2005/2

[8] Axtell M., Forman S., Roersma N. et. al., "Properties of U-Factorizations", Int. J. of Comm. Rings, 3, 2003.

- Fletcher C.R., "Unique Factorization Rings", Proc. Camb. Phil. Soc., 65, 579-583, 1969. Fletcher C.R., "The Structure Of Unique Factorization Rings", Proc. Camb. Phil. Soc., 67, [10]
- [11]
- Gilmer R., (1972), Multiplicative Ideal Theory, Marcel Dekker, New York. Gonzalez N., Pelerin, Robert R., "Elasticity Of A+XI[X] Domains Where A Is UFD", J. [12] of Pure and App. Algebra 160, 183-194, 2001.