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ABSTRACT 
 
In this study, free vibration of elastically supported beams is investigated based on Timoshenko beam theory 
(TBT). The Lagrange equations are used to examine the free vibration characteristics of Timoshenko beams. 
In the study, for applying the Lagrange equations, trial functions denoting the deflection and the rotation of 
the the cross-section of the beam are expressed in the power series form. By using the Lagrange equations, the 
problem is reduced to the solution of a system of algebraic equations. The influence of stiffnesses of the 
supports on the free vibration characteristics of Timoshenko beams is investigated. For this purpose, the first 
three eigenvalues of the Timoshenko beams are calculated for various rigidity values of translational and 
rotational springs, and obtained results are not only tabulated, but also presented in three-dimensional plots. It 
is thought that the tabulated results will prove useful to designers and provide a reference against which other 
researchers can compare their results. 
Keywords: Timoshenko beam theory, Lagrange equations, Power series. 
MSC number/numarası: 53A40, 74H45.     
 
ELASTİK MESNETLİ TİMOSHENKO KİRİŞLERİNİN SERBEST TİTREŞİMLERİNİN 
İNCELENMESİ 
 
ÖZET 
 
Bu çalışmada elastik mesnetli kirişlerin serbest titreşimleri Timoshenko kiriş teorisi (TBT) çerçevesinde 
incelenmiştir. Problemin çözümü için Lagrange denklemleri kullanılmıştır. Lagrange denklemlerinin 
uygulanması için kirişin düşey yerdeğiştirmelerini ve kiriş kesitlerinin dönmelerini ifade eden çözüm 
fonksiyonlarının oluşturulmasında kuvvet serileri kullanılmıştır. Lagrange denklemleri kullanılarak problem 
cebrik denklem sisteminin çözümüne indirgenmiştir. Mesnet rijitliklerinin Timoshenko kirişlerinin serbest 
titreşimleri üzerindeki etkisi araştırılmıştır. Bu amaçla, elastik mesnetli Timoshenko kirişlerinin ilk üç 
özdeğeri, dönme ve çökmeye karşı elastik yaylarının farklı rijitlik değerleri için elde edilmiş ve elde edilen 
sonuçlar hem tablo hem de üç boyutlu grafikler halinde verilmiştir. Tablolaştırılan sonuçların tasarımcılar için 
faydalı olacağı ve diğer araştırmacıların sonuçlarını karşılaştırmada referans oluşturabileceği 
düşünülmektedir.  
Anahtar Sözcükler: Timoshenko kiriş teorisi, Lagrange denklemleri, Kuvvet serileri. 
 
 
 

1. INTRODUCTION 
 
Many studies have been carried out related with the problem of free vibration of beams with 
elastically supports based on the Euler-Bernoulli beam theory (EBT) or Timoshenko beam theory 
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(TBT). The well-known Euler-Bernoulli beam theory (EBT) states that plane sections remain 
plane and perpendicular to the central axis of the beam after deformation, regarding transverse 
shear strain to be neglected. Although this theory is very useful for slender beams and columns, it 
does not give accurate solutions for thick beams. In the Timoshenko beam theory (TBT), the 
normality assumption of the Euler-Bernoulli theory (EBT) is relaxed and a constant state of 
transverse shear strain with respect to the thickness coordinate is included. The Timoshenko beam 
theory requires shear correction factors to compensate for the error due to this constant shear 
stress assumption.  

The problem of free lateral vibration of an axially loaded Euler-Bernoulli beam with 
intermediate elastic supports and concentrated masses is considered using Green function method 
by Kukla [2]. H. K. Kim and M. S. Kim [3] presented a method to find accurate vibration 
frequencies of beams with elastic supports using Fourier series. Nallim and Grossi [4] presented a 
simple variational approach based on the use of the Rayleigh-Ritz method with the characteristic 
orthogonal polynomial shape functions for the determination of free vibration frequencies of 
beams with several complicating effects within the frame of Euler-Bernoulli beam theory. Lee 
and Schultz [5] applied the pseudospectral method to the eigenvalue analysis of Timoshenko 
beams. Zhou [6] used the Rayleigh-Ritz method for the free vibration of multi-span Timoshenko 
beams. Farghaly [7] has investigated the natural frequencies and the critical buckling load 
coefficients for a multi-span Timoshenko beam. Banerjee [8] investigated the free vibration 
analysis of axially loaded Timoshenko beams by using the dynamic stiffness method. The free 
vibration of Timoshenko beams with internal hinge and subjected to axial tensile load is carried 
out by Lee et. al. [9]. A dynamic investigation method for the analysis of Timoshenko beams 
which takes into acount shear deformation is proposed by Auciello and Ercolano [10]. In [10], the 
solution of the problem is obtained through the iterative variational Rayleigh-Ritz method. The 
free vibration of Timoshenko beams having classical boundary conditions, which was satisfied by 
Lagrange multipliers, was investigated for different thickness-to-length ratios by Kocatürt and 
Şimşek [11].  

In the present study, the free vibration of elastically supported Timoshenko beams is 
analyzed by using the Lagrange equations with the trial functions in the power series form 
denoting the deflection and the rotation of the cross-section of the beam. The convergence study 
is based on the numerical values obtained for various numbers of power series terms. In the 
numerical examples, the first three eigenvalues of the Timoshenko beam are calculated for 
various values of stiffness of  translational and rotational springs. The accuracy of the results is 
established by comparison with previously published accurate results for the free vibration 
analysis of the Timoshenko beams. 
 
2. THEORY AND FORMULATIONS 
 
Consider a straight uniform single-span Timoshenko beam of length L , depth h , width b , 
having rectangular cross-section as shown in Fig. 1, where iK  and iR  are the translational and 
rotational spring constant. A Cartesian coordinate system (X, Y, Z)  is defined on the central axis 
of the beam, where the X axis is taken along the central axis, with the Y axis in the width 
direction and the Z axis in the depth direction. Also, the origin of the coordinate system is chosen 
at the mid-point of the total length of the beam.  
Although, it is possible to take lots of point supports at arbitrary points, in the numerical 
investigations here, it will be considered that the beam is supported at the two end points, where 
the parameters iK  and iR  are taken to have the same values at all the supports denoted by 

iK K=  and iR R= . 
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Figure 1. Considered Timoshenko beams with (a) the first type and (b) the second type of   
translational and rotational springs. 

 
The Timoshenko beam theory is based on the following displacement fields; 

 

U (X,Z, t) = -Z Φ (X, t)  
W (X,Z, t) = W (X, t) ,                  (1) 

 

where W (X, t)  is the transverse displacement of a point on the beam reference plane and Φ (X, t)  
is the rotation of a normal to the reference plane about y-axis. 

According to the Timoshenko beam theory (TBT), the elastic strain energy of the beam 
at any instant is expressed as an integral in Cartesian coordinates as follows 
 

L
2 22

s
L-
2

1 dΦ (X, t) d W (X, t)U = EI(x) + k GA(x) -Φ (X, t) d X
2 d X d X

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∫ ,              (2) 

 

where E is the Young’s modulus, G is the transverse shear modulus, I(X)  is the moment of 
inertia, A(X)  is the area of the cross-section and sk  is a constant that accounts for non-uniform 
shear stress distribution through the thickness.  

Kinetic energy of the beam at any instant is 
 

L
2 22

e
L-
2

1 d W(X, t) dΦ (X, t)K = ρA(X) + ρ I(X) d X
2 d t d t

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∫ ,              (3) 

 

where ρ  is the mass of the beam per unit volume. 
Additive strain energy of the translational and rotational spring is given by the 

following formulas, respectively 
 

2 2

T i Si
i=1

1F = K W(X , t)
2

⎡ ⎤⎣ ⎦∑                 (4a) 
 

2 2

R i Si
i=1

1F = R (X , t)
2

⎡ ⎤Φ⎣ ⎦∑ ,                (4b) 
 

where 
iSX denotes the location of the i  th support, iK  and iR  are the spring constant of the 

translational and rotational springs at the both ends, respectively. 
By introducing the following non-dimensional parameters 

 

X Wx = , w = ,
L L

φ = Φ ,                  (5) 
 

the potential and kinetic energy of the beam at any instant can be written as 
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2 21/2

s
-1/2

1 E I(x) d (x, t) dw (x, t)U = + k G LA(x) - (x, t) d x
2 L d x d x

⎡ ⎤⎛ ⎞ ⎛ ⎞φ⎢ ⎥φ⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

∫            (6) 

 

221/2
3

e
-1/2

1 d w (x, t) d (x, t)K = ρ L A(x) + ρ LI(x) d x
2 d t d t

⎡ ⎤⎛ ⎞⎛ ⎞ φ⎢ ⎥⎜ ⎟⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∫ .              (7) 

 

Additive strain energy of the translational and rotational springs can be written in terms 
of the non-dimensional quantities in the following equations: 
 

2 2
2

T i Si
i=1

LF = K [w (x , t)]
2 ∑                   (8) 

 

2
2

R i Si
i=1

1F = R [ (x , t)]
2

φ∑ .                  (9) 
 

It is known that some expressions satisfying geometrical boundary conditions are 
chosen for w (x, t)  and (x, t)φ , and by using the Lagrange equations, the natural boundary 
conditions are also satisfied. Therefore, by using the Lagrange equations and by representing the 
transverse displacement w (x, t)  and the rotation of cross-sections (x, t)φ  in terms of a series of 
admissible functions and adjusting the coefficients in the series to satisfy the Lagrange equations, 
approximate solutions are found for the displacement and the rotation functions. For applying the 
Lagrange equations, the trial functions w (x, t)  and (x, t)φ  are approximated by space-dependent 
polynomial terms 0 1 2 M-1x , x , x ,...., x  and time-dependent displacement coordinates ma (t)  and 

mb (t) . Thus 
 

M
m-1

m
m=1

w (x, t) a (t) x= ∑                 (10) 
 

M
m-1

m
m=1

(x, t) b (t) xφ = ∑ .                (11) 
 

The time-dependent generalized coordinates for the free vibration of the beam can be 
expressed as follows: 
 

i ω t
m ma (t) = a e                  (12) 

 

i ω t
m mb (t) = b e .                 (13) 

 

Dimensionless amplitudes of the displacement and normal rotation of a cross-section of 
the beam can be expressed as follows: 
 

M
m-1

m
m=1

w (x) = a x∑ ,                (14) 
 

M
m-1

m
m=1

(x) = b xφ ∑                     (15) 
 

The functional of the problem is 
 

e T RL = K - (U + V + F + F ) .                (16) 
 

The Lagrange equations are given as follows; 
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k k

L d L- = 0
q dt q

⎛ ⎞∂ ∂
⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

, k =1, 2,....,2M                             (17) 

 

where the overdot stands for the partial derivative with respect to time and 
 

k kq = a    k = 1, 2,....,M               (18) 
 

k kq = b    k = M +1, ....,2M .              (19) 
 

By introducing the following non-dimensional parameters 
 

2 4 2 3
2 s i i

i i2

ρAω L k G A L I K L R Lλ = , = , µ = , = , =
E I E I A L E I E I

β κ θ             (20) 
 

and by using Eq. (17), the following simultaneous sets of linear algebraic equations are obtained 
which can be expressed in the following matrix forms; 
 

[ ] [ ]
[ ] [ ]

{ }
{ }

[ ] [ ]
[ ] [ ]

{ }
{ }

{ }
{ }

2
a aA B E 0 0

b b 0C D 0 F

⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪− λ =⎢ ⎥ ⎢ ⎥⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎢ ⎥ ⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎩ ⎭⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭

             (21) 

 

where [ ] [ ] [ ] [ ] [ ] [ ]A , B , C , D , E and F  are the coefficient matrices obtained by using Eq. (17) and 
 

0 5
k-1 m-1 k-1 m-1 k-1 m-1

km 1 2
-0 5

A = (x ) (x ) d x + κ ( 0 5) ( 0 5) κ (0 5) (0 5)
⋅

⋅

′ ′β − ⋅ − ⋅ + ⋅ ⋅∫  
 

0 5
k-1 m-1

km
-0 5

B = (x ) (x )d x
⋅

⋅

′β∫  
 

0 5
k-1 m-1

km
-0 5

C = (x )(x ) d x
⋅

⋅

′β∫  
 

0 5
k-1 m-1 k-1 m-1 k-1 m-1 k-1 m-1

km 1 2
-0 5

D = ( x )(x ) + (x ) (x ) d x ( 0 5) ( 0 5) (0 5) (0 5)
⋅

⋅

′ ′⎡ ⎤β + θ − ⋅ − ⋅ + θ ⋅ ⋅⎣ ⎦∫  
 

0 5
k -1 m-1

km
-0 5

E (x ) (x )d x
⋅

⋅

= ∫  
 

0 5
k-1 m-1

km
-0 5

F = µ (x ) (x ) d x
⋅

⋅
∫    k, m = 1, 2, ...., M             (22) 

 

The eigenvalues (characteristic values) λ  are found from the condition that the 
determinant of the system of equations given by Eq. (21) must vanish.  
 
3. NUMERICAL RESULTS  
 
In order to investigate the influence of stiffness of the supports on the free vibration 
characteristics of Timoshenko beams, the first three eigenvalues of Timoshenko beam with the 
first and the second type of translational and rotational springs (Fig. 1) are calculated for 
h/L=0.005 and three dimensional plots of Tables 2, 3, 4, 5, 6 and 7 are provided in Figs. 2, 3, 4, 5, 
6 and 7 to illustate how the frequency parameters change with the spring constants. The stiffness 
parameters iκ  and iθ  are taken as having the same values at all the supports denoted by 
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2 1 2,1κ = κ = κ θ = θ = θ  for the beam with the first type of the springs, and by 
8

1 2 1 21 10 , , , 0κ = ⋅ κ = κ θ = θ θ =  for the beam with the second type of the springs. 
It is possible to simulate infinite support stiffness by setting the translational or 

rotational stiffness coefficient equal to 81 10⋅  at all the supports for comparing the obtained 
results with the existing results of the classically supported Timoshenko beams. Therefore, 
comparison study of the pinned-pinned ( 8

2 1 101κ = κ = ⋅ , 1 2 0θ = θ = ) and clamped-clamped 

( 8
2 1 101κ = κ = ⋅ , 8

1 2 1 10θ = θ = ⋅ ) Timoshenko beam with the classical solutions based on the 
Euler-Bernoulli beam theory [1] and the results of the Pseudospectral method given in the Ref. [5] 
is carried out, and the results are given in Tables 1b and 1c. Also, by setting the translational and 
rotational stiffness coefficients equal to zero at all the supports, a completely free beam situation 
can be obtained. Moreover, the convergence is tested in Table 1a by taking the number of terms 
M 6, 8, 10, 12, 14, 16, 18= . 

It is not necessary to give the values of E, G and A of the beam in the calculations. 
Relationship between E  and G  is as follows: 
 

EG =
2(1+ )ν

                 (23) 
 

The dimensionless parameter β  is defined as follows:  
 

2
s

2

6k Lβ =
(1+ ) hν

,                 (24) 
 

where ν  is the Poisson’s ratio. In all of the following calculations, the rectangular cross-sectional 
beams with shear correction factor sk 5 / 6=  are considered and, the Poisson’s ratio is taken 

0.3=ν . 
 

Table 1a. The convergence study of the first six dimensionless frequency parameters iλ  of           
the pinned-pinned Timoshenko beam for h/L=0.01 

 

M 1λ  2λ  3λ  4λ  5λ  6λ  

6 3.14178 6.29432 11.4465 16.5662 - - 
8 3.14133 6.28110 9.49597 12.8103 - - 

10 3.14133 6.28106 9.41871 12.5577 16.2856 20.0176 
12 3.14133 6.28106 9.41760 12.5494 15.7087 18.8955 
14 3.14133 6.28106 9.41760 12.5493 15.6755 18.7960 
16 3.14133 6.28106 9.41760 12.5493 15.6748 18.7925 
18 3.14133 6.28105 9.41759 12.5493 15.6748 18.7924 

PS [5] 3.14133 6.28106 9.41761 12.5494 15.6749 18.7926 
 

It is shown that the convergence with respect to the number of the power series terms is 
excellent in the considered cases. As it is observed from the Table 1a, the frequency parameter 
decreases as the number of the power series terms increases: It means that the convergence to the 
exact value is from above. Namely, by increasing the number of the polynomial terms, the exact 
value can be approached from above. It should be remembered that energy methods always 
overestimate the fundamental frequency, so with more refined analyses, the exact value can be 
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approached from above.  
From here on, the number of the power series terms M is taken as 16 in all of the 

numerical investigations, namely the size of the determinant is 32 32× . 
 

Table 1b. Comparison study of the first six dimensionless frequency parameters iλ                            
of the pinned-pinned Timoshenko beam 

 

Methods 1λ  2λ  3λ  4λ  5λ  6λ  

Classical 
Solution [1] 3.14159 6.28319 9.42478 12.5664 15.7080 18.8496 

h/L=0.005 

Present 3.14152 6.28265 9.42297 12.5620 15.6996 18.8351 
PS [5] 3.14153 6.28265 9.42298 12.5621 15.6997 18.8352 

h/L=0.02 

Present 3.14053 6.27470 9.39630 12.4993 15.5783 18.6281 
PS [5] 3.14053 6.27471 9.39632 12.4994 15.5784 18.6282 

h/L=0.05 

Present 3.13499 6.23136 9.25536 12.1813 14.9926 17.6809 
PS [5] 3.13498 6.23136 9.25537 12.1813 14.9926 17.6810 

 
Table 1c. Comparison study of the first six dimensionless frequency parameters iλ                          

of the clamped-clamped Timoshenko beam. 
 

Methods 1λ  2λ  3λ  4λ  5λ  6λ  

Classical 
Solution [1] 4.73004 7.85320 10.9956 14.1372 17.2788 20.4204 

h/L=0.005 

Present 4.72962 7.85161 10.9916 14.1292 17.2652 20.3965 
PS [5] 4.72963 7.85163 10.9917 14.1294 17.2651 20.3985 

h/L=0.02 

Present 4.72348 7.82816 10.9340 14.0153 17.0676 20.0845 
PS [5] 4.72350 7.82817 10.9341 14.0154 17.0679 20.0868 

h/L=0.05 

Present 4.68991 7.70350 10.6401 13.4610 16.1589 18.7360 
PS [5] 4.68991 7.70352 10.6401 13.4611 16.1590 18.7318 
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Table 2. Variation of the first frequency parameter of the Timoshenko beam with the first type of  
translational and rotational spring parameters ( 2 1 2,1κ = κ = κ θ = θ = θ ) for h/L=0.005. 

 

1λ  θ  

κ  100 101 102 103 104 105 106 107 108 

100 1.18562 1.18767 1.18829 1.18834 1.18839 1.18839 1.18839 1.18839 1.18839 

101 2.05403 2.08824 2.09871 2.09999 2.10010 2.10013 2.10013 2.10013 2.10013 

102 3.02962 3.36110 3.49767 3.51575 3.51761 3.51780 3.51782 3.51782 3.51782 

103 3.35418 4.04250 4.45913 4.52532 4.53236 4.53306 4.53312 4.53314 4.53314 

104 3.39417 4.14377 4.62208 4.70004 4.70834 4.70917 4.70926 4.70926 4.70926 

105 3.39825 4.15427 4.63905 4.71821 4.72663 4.72749 4.72758 4.72758 4.72758 

106 3.39865 4.15531 4.64074 4.72003 4.72848 4.72932 4.72941 4.72942 4.72942 

107 3.39870 4.15542 4.64092 4.72021 4.72866 4.72951 4.72959 4.72960 4.72960 

108 3.39870 4.15543 4.64094 4.72023 4.72867 4.72953 4.72962 4.72962 4.72962 

 
 

  
Figure 2 Plot of the first frequency parameter of the Timoshenko beam with the first type           
of translational and rotational spring parameters ( 2 1 2,1κ = κ = κ θ = θ = θ ) for h/L=0.005 
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Table 3. Variation of the second frequency parameter of the Timoshenko beam with first type     
of  translational and rotational spring parameters ( 2 1 2,1κ = κ = κ θ = θ = θ ) for h/L=0.005 

 

2λ  θ  

κ  100 101 102 103 104 105 106 107 108 

100 2.23329 2.93331 3.14411 3.17028 3.17298 3.17325 3.17326 3.17326 3.17326 

101 2.93324 3.27082 3.40294 3.42020 3.42199 3.42216 3.42218 3.42218 3.42218 

102 4.66386 4.66436 4.66463 4.66467 4.66467 4.66467 4.66467 4.66467 4.66467 

103 6.13445 6.52658 6.85859 6.91869 6.92519 6.92585 6.92591 6.92592 6.92592 

104 6.39693 7.01038 7.61856 7.73905 7.75228 7.75362 7.75375 7.75377 7.75377 

105 6.42369 7.06163 7.69987 7.82646 7.84036 7.84176 7.84190 7.84192 7.84192 

106 6.42637 7.06675 7.70795 7.83512 7.84909 7.85049 7.85064 7.85065 7.85066 

107 6.42663 7.06727 7.70876 7.83599 7.84996 7.85137 7.85151 7.85153 7.85153 

108 6.42666 7.06732 7.70883 7.83607 7.85004 7.85146 7.85160 7.85161 7.85161 

 
 

  
Figure 3 Plot of the second frequency parameter of the Timoshenko beam with the first type         

of translational and rotational spring parameters ( 2 1 2,1κ = κ = κ θ = θ = θ ) for h/L=0.005 
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Table 4. Variation of the third frequency parameter of the Timoshenko beam with the first type 
of translational and rotational spring parameters ( 2 1 2,1κ = κ = κ θ = θ = θ ) for h/L=0.005 

 

3λ  θ  

κ  100 101 102 103 104 105 106 107 108 

100 5.06287 5.84564 6.22670 6.28046 6.28606 6.28662 6.28667 6.28668 6.28668 

101 5.18944 5.90653 6.26595 6.31707 6.32240 6.32293 6.32299 6.32300 6.32300 

102 6.16551 6.46210 6.64841 6.67711 6.68013 6.68043 6.68047 6.68047 6.68047 

103 8.58315 8.66483 8.74316 8.75820 8.75985 8.76002 8.76004 8.76004 8.76004 

104 9.42740 9.90465 10.5435 10.6942 10.7113 10.7130 10.7132 10.7132 10.7132 

105 9.51316 10.0475 10.7730 10.9435 10.9628 10.9647 10.9649 10.9650 10.9650 

106 9.52163 10.0616 10.7952 10.9674 10.9868 10.9888 10.9890 10.9890 10.9890 

107 9.52248 10.0630 10.7974 10.9697 10.9892 10.9912 10.9914 10.9914 10.9914 

108 9.52256 10.0632 10.7976 10.9700 10.9894 10.9914 10.9916 10.9916 10.9916 

 
 

  
Figure 4 Plot of the third frequency parameter of the Timoshenko beam with the first type              
of translational and rotational spring parameters ( 2 1 2,1κ = κ = κ θ = θ = θ ) for h/L=0.005 
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Table 5. Variation of the first frequency parameter of the Timoshenko beam with the second type 
of translational and rotational spring parameters ( 8

1 2 1 21 10 , , , 0κ = ⋅ κ = κ θ = θ θ = ) for h/L=0.005 
 

1λ  θ  

κ  100 101 102 103 104 105 106 107 108 

100 1.53580 1.87927 1.99393 2.00832 2.00981 2.00996 2.00996 2.01000 2.01000 

101 2.32645 2.53882 2.62612 2.63758 2.63876 2.63887 2.63890 2.63890 2.63890 

102 3.10840 3.44112 3.61323 3.63759 3.64013 3.64039 3.64041 3.64041 3.64041 

103 3.25657 3.64214 3.86128 3.89381 3.89723 3.89757 3.89760 3.89760 3.89760 

104 3.27155 3.66227 3.88623 3.91964 3.92314 3.92350 3.92353 3.92354 3.92354 

105 3.27304 3.66427 3.88871 3.92220 3.92572 3.92608 3.92611 3.92611 3.92611 

106 3.27319 3.66447 3.88896 3.92247 3.92598 3.92633 3.92637 3.92637 3.92637 

107 3.27321 3.66449 3.88900 3.92248 3.92600 3.92636 3.92639 3.92640 3.92640 

108 3.27321 3.66451 3.88900 3.92250 3.92600 3.92636 3.92639 3.92640 3.92640 

 
 

 
Figure 5. Plot of the first frequency parameter of the Timoshenko beam with the second type of 
translational and rotational spring parameters ( 8

1 2 1 21 10 , , , 0κ = ⋅ κ = κ θ = θ θ = ) for h/L=0.005 
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Table 6. Variation of the second frequency parameter of the Timoshenko beam with second type 
of translational and rotational spring parameters ( 8

1 2 1 21 10 , , , 0κ = ⋅ κ = κ θ = θ θ = ) for h/L=0.005 
 

2λ  θ  

κ  100 101 102 103 104 105 106 107 108 

100 4.04597 4.41059 4.65930 4.69882 4.70300 4.70341 4.70345 4.70346 4.70346 

101 4.18444 4.51571 4.75112 4.78898 4.79299 4.79340 4.79344 4.79344 4.79344 

102 5.19848 5.40970 5.58280 5.61218 5.61531 5.61563 5.61566 5.61566 5.61566 

103 6.22083 6.53084 6.81736 6.86924 6.87483 6.87539 6.87544 6.87545 6.87545 

104 6.34263 6.67206 6.98507 7.04279 7.04903 7.04966 7.04972 7.04973 7.04973 

105 6.35415 6.68525 7.00058 7.05883 7.06513 7.06576 7.06583 7.06583 7.06583 

106 6.35529 6.68656 7.00212 7.06042 7.06672 7.06735 7.06741 7.06742 7.06742 

107 6.35541 6.68669 7.00227 7.06057 7.06688 7.06751 7.06757 7.06758 7.06758 

108 6.35542 6.68671 7.00229 7.06059 7.06689 7.06753 7.06759 7.06760 7.06760 

 
 

 
Figure 6. Plot of the second frequency parameter of the Timoshenko beam with the second type 

of translational and rotational spring parameters ( 8
1 2 1 21 10 , , , 0κ = ⋅ κ = κ θ = θ θ = ) for h/L=0.005 
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Table 7. Variation of the third frequency parameter of the Timoshenko beam with second type  
of translational and rotational spring parameter ( 8

1 2 1 21 10 , , , 0κ = ⋅ κ = κ θ = θ θ = ) for h/L=0.005 
 

3λ  θ  

κ  100 101 102 103 104 105 106 107 108 

100 7.13608 7.45243 7.78353 7.84774 7.85473 7.85544 7.85551 7.85551 7.85551 

101 7.16108 7.47394 7.80273 7.86661 7.87356 7.87426 7.87433 7.87434 7.87434 

102 7.44088 7.71432 8.01572 8.07553 8.08207 8.08272 8.08279 8.08279 8.08280 

103 8.96347 9.19523 9.48258 9.54329 9.54998 9.55066 9.55072 9.55073 9.55073 

104 9.42953 9.70263 10.0627 10.1424 10.1513 10.1522 10.1523 10.1523 10.1523 

105 9.46878 9.74489 10.1107 10.1920 10.2010 10.2019 10.2020 10.2020 10.2020 

106 9.47260 9.74899 10.1154 10.1968 10.2058 10.2067 10.2068 10.2068 10.2068 

107 9.47298 9.74940 10.1158 10.1972 10.2063 10.2072 10.2073 10.2073 10.2073 

108 9.47301 9.74944 10.1159 10.1973 10.2064 10.2073 10.2074 10.2074 10.2074 

 
 

 
Figure 7. Plot of the third frequency parameter of the Timoshenko beam with the second type of 
translational and rotational spring parameters ( 8

1 2 1 21 10 , , , 0κ = ⋅ κ = κ θ = θ θ = ) for h/L=0.005 
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It can be deduced that the results obtained from the present study are in good agreement 
with those of Lee and Schultz [5] as given in the Tables 1a-b-c. It should be remembered that, the 
eigenvalues obtained by using first order or higher order beam theories are lower than the 
corresponding eigenvalues obtained by the classical beam theory. It is observed from the Tables 
1b-c that, the difference in the frequencies of the Euler-Bernoulli and Timoshenko beams 
becomes significant with increase of the mode numbers. For example, the value of the frequency 
of the pinned-pinned beam based on the classical theory is 3.14159  and of the pinned-pinned 
Timoshenko beam (for h / L 0.05= ) 3.13499  for the first mode while they are 18.8496  and 
17.6809  for the sixth mode. Also, as it is known and can be deduced from Table 1 that, with 
increase in the ratio of h/L , the dimensionless frequencies of the Timoshenko beams decreases 
compared with the frequencies of Euler-Bernoulli beams. However, the two solutions are very 
close to each other for small values of h/L (i.e. h/L=0.005) as seen from Tables 1a-b-c. 

It is seen from the tables and the figures that, translational springs are much more 
effective on the frequency parameters than rotational springs. For example, in Table 3, when the 
spring parameter κ  is taken constant value of 010  and the parameter θ  is changed from 010  to 

810 , the frequency parameter 2λ  changes from 2.23329  to 3.17326  but, while the parameter θ  

is taken as 010  and the parameter κ  is changed from 010  to 810 , the frequency parameter 2λ  
changes from 2.23329  to 6.42666 .  

Increment in the values of parameters κ  and θ  is more effective on the first frequency 
parameter of the beam than the second and third frequency parameters. For instance, for the beam 
with the first type of the springs, when the parameters κ  and θ  are both changed from 01 10⋅  to 

810 , the first frequency parameter 1λ  changes from 1.18562  to 4.72962 , namely, 1λ  becomes 
four times greater in this change. On the other hand, 2λ  and 3λ  increase approximately 3.5  and 
2.17  times, respectively in the considered change. 

When the values of κ  and θ  are greater than 510κ =  and 510θ = , then, there is no 
remarkable change in the frequeny parameters. This situation can be observed from the flat area 
of the Figs. 2-7. Also, it is evident from the obtained values of frequency parameters that, when 
the parameters κ  and θ  are taken as 81 10κ = θ = ⋅ , then, the beam can be considered as a beam 
fixed at the both ends.  
 
4. CONCLUSIONS 
 
The free vibration of elastically supported Timoshenko beams have been investigated for different 
support stiffnesses. To compare the obtained results with the previously published results, the 
frequency parameters of pinned-pinned and clamped-clamped Timoshenko beams, which are 
special cases of the present problem are calculated. Using the Lagrange equations with the trial 
functions in the power series form and satisfying the constraint conditions by the use of very stiff 
springs is a very good way for studying the free vibration characteristics of the elastically 
supported beams. Numerical calculations have been carried out to clarify the effects of support 
stiffnesses on the free vibration characteristics of the considered beams. It is observed from the 
investigations that, all of the obtained results are very accurate and may be useful to other 
researchers so as to compare their results. 
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