CHEBYSHEV NETS IN A SUBSPACE OF A GENERALIZED WEYL SPACE

Hakan DEMİRBÜKER, Filiz KANBAY*

Yıldız Technical University, Faculty of Science and Letters, Davutpaşa-ISTANBUL
Geliş/Received: 15.12.2004 Kabul/Accepted: 08.08.2005

Abstract

Let $G W_{m}$ be m dimentional subspace of an n-dimensional subspace of an n-dimentional generalized Weyl space $G W_{n}$ and let $\delta=\left(v_{1}, v_{2}, \ldots, v_{m}\right)$ be a net in $G W_{m}$. In this paper the necessary and the sufficient condition that the net δ is to be a chebyshev net and a geodesic net relative to $G W_{m}$ and $G W_{n}$ is obtained. Keywords: Generalized Weyl Space, Chebyshev Net, Geodesic Net. MSC number/numarasi: 53A40.

\section*{GENELLEŞTİRİLMİŞ WEYL UZAYININ ALT UZAYLARINDA CHEBYSHEV ŞEBEKELERİ}

ÖZET n boyutlu $G W_{n}$ genellleştirilmiş Weyl uzayının m boyutlu $G W_{m}$ alt uzayına ait bir şebeke $\delta=\left(v_{1}, v_{2}, \ldots, v_{m}\right)$ olsun. Bu çalışmada δ şebekesinin $G W_{m}$ ve $G W_{n}$ e göre Chebyshev şebekesi ve jeodezik şebeke olması için gerek ve yeter koşullar elde edilmiştir. Anahtar Sözcükler: Genelleştirilmiş weyl uzayı, Chebyshey şebekesi Geodesic şebeke.

1. INTRODUCTION

An m dimentional $G W_{m}$ is said to be generalized Weyl space if it has an asymmetric conformal metric tensor $g_{i j}$ and an asymmetric connection ∇_{k} satisfying the compatibility condition given by equation
$\nabla_{k} g_{i j}=2 T_{k} g_{i j}$
where T_{k} denotes a covariant vector field and ∇_{k} denotes the usual covariant derivative
Under a renormalization of the fundamental tensor of the form $\bar{g}_{i j}=\lambda^{2} g_{i j}$, the complementary vector field T_{k} is transformed by the law $\breve{T}_{k}=T_{k}+\partial_{k} \ln \lambda$, where λ is a scalar function on $G W_{m}$.

[^0]
Chebyshev Nets in a Subspace of a Generalized ...

Let $L_{j k}^{i}$ be denote the coefficients of the asymmetric connection ∇_{k}. So, a generalized Weyl space is shortly written as $G W_{m}\left(L_{j k}^{i}, g_{i j}, T_{k}\right)$.

The main properties of $G W_{m}\left(L_{j k}^{i}, g_{i j}, T_{k}\right)$ can be expressed as follows
$g_{i j}=g_{(i j)}+g_{[i j}$
$\nabla_{k} g_{(i j)}=2 g_{(i j)} T_{k}$
$\nabla_{k} g_{[i j]}=2 g_{[i j]} T_{k}$
$g_{(i k)} g^{(k l)}=\delta_{i}^{l}$
$\nabla_{k} g^{(i j)}=-2 T_{k} g^{(i j)}$
where $g_{(i j)}$ and $g_{[i j]}$ denote symmetric and antisymmetric parts of $g_{i j}$ respectively.
The symmetric part of the connection coefficents $L_{j k}^{i}$ are given as ([1], [2], [3], [4])
$L_{(j k)}^{i}=W_{j k}^{i}=\left[\begin{array}{c}i \\ j k\end{array}\right]-\left(\delta_{j}^{i} T_{k}+\delta_{k}^{i} T_{j}-g_{(j k)} g^{(m i)} T_{m}\right)$
where $\left[\begin{array}{c}i \\ j k\end{array}\right]$ are second kind Christoffel symbols defined by
$\left[\begin{array}{c}i \\ j k\end{array}\right]=\frac{1}{2} g^{(i r)}\left[\frac{\partial g_{(j r)}}{\partial x^{k}}+\frac{\partial g_{(k r)}}{\partial x^{j}}-\frac{\partial g_{(j k)}}{\partial x^{r}}\right]$
A quantity A is called a satellite of weight $\{p\}$ of tensor $g_{i j}$, if it admits a transformation of the form
$\breve{A}=\lambda^{p} A$
The prolonged covariant derivative of a satellite A of the tensor $g_{i j}$ of weight $\{p\}$ is defined by
$\dot{\nabla}_{k} A=\nabla_{k} A-p T_{k} A$
Let $G W_{m}\left(L_{j k}^{i}, g_{i j}, T_{k}\right)$ be a subspace, with coordinates u^{i}, of the Weyl space $G W_{n}\left(L_{\beta \gamma}^{\alpha}, g_{\alpha \beta}, T_{\gamma}\right)$ with coordinates x^{α}. Suppose that the metrics of $G W_{m}\left(L_{j k}^{i}, g_{i j}, T_{k}\right)$ and $G W_{n}\left(L_{\beta \gamma}^{\alpha}, g_{\alpha \beta}, T_{\gamma}\right)$ are elliptic and that they are given, respectively, by $g_{i j} d u^{i} d u^{j}$ and $g_{\alpha \beta} d u^{\alpha} d u^{\beta}$ which are connected by the relations
$g_{i j}=g_{\alpha \beta} x_{i}^{\alpha} x_{j}^{\beta}$
where x_{i}^{α} denotes the covariant derivative of x^{α} with respect to u^{i}.

Let ${\underset{r}{v}}^{i}(r=1,2, \ldots, m)$ be the contravariant components of the m independent vector fields $\underset{r}{v}$ in $G W_{m}$ which are normalized by the condition $g_{i j}{\underset{r}{v}}_{v_{r}^{i}}^{v_{r}^{j}}=1$. The vector fields $\underset{1}{v}, \underset{2}{v}, \ldots, \underset{m}{v}$ determine a net $\left(\underset{1}{v}, \underset{2}{v}, \ldots,{ }_{m}^{v}\right)$ in $G W_{m}$.

Corresponding to the vector fields $\underset{r}{v}$; the covector fields $\stackrel{r}{v}$ are defined by the conditions
$\underset{v_{r}^{i}}{\stackrel{r}{v}}{ }_{j}=\delta_{j}^{i}, \quad \underset{r}{v_{r}^{i}}{ }_{v}^{p}=\delta_{r}^{p}$
Denote by $\underset{\sigma}{n^{\alpha}}(1,2, \ldots, n-m)$, the contravariant components of the $n-m$ linear independent unit vector fields $\underset{\sigma}{n}$ in $G W_{n}$ normal to $G W_{m}$.

The moving frame $\left\{x_{\alpha}^{i}, \stackrel{\sigma}{n_{\alpha}}\right\}$ on $G W_{m}$, reciprocal to the moving frame $\left\{x_{i}^{\alpha}, \underset{\sigma}{n^{\alpha}}\right\} \quad$ is defined by the relations

$$
\begin{align*}
& { }_{n_{\alpha}}^{\mu}{ }_{\sigma}^{\alpha}=\delta_{\sigma}^{\mu}, \stackrel{\sigma}{n_{\alpha}} x_{i}^{\alpha}=0, x_{\alpha}^{i} \underset{\sigma}{n^{\alpha}}=0, x_{i}^{\alpha} x_{\alpha}^{j}=\delta_{i}^{j} \tag{1.13}\\
& (\mu=1,2, \ldots, n-m)
\end{align*}
$$

On the other hand, if the components of $\underset{r}{v}$ and $\stackrel{r}{v}$ relative to $G W_{n}$, are respectively denoted by ${\underset{r}{ }{ }^{\alpha} \text { and } \stackrel{r}{v}}_{\alpha}$, we have

$$
\begin{equation*}
v_{r}^{\alpha}=v_{r}^{i} x_{i}^{\alpha}, \quad{ }^{r} v_{\alpha}=v_{i} x_{\alpha}^{i} \tag{1.14}
\end{equation*}
$$

The derivation formula for v and $\stackrel{r}{v}$ are given by [3], [5]

Taking the prolonged covariant derivative of $(1.13)_{4}$ with respect to u^{k} and remembering that [5]

$$
\begin{equation*}
\dot{\nabla}_{k} x_{i}^{\alpha}=\sum_{\sigma=1}^{n-m} w_{i k} n_{\sigma}^{\alpha}+A_{i k}^{h} x_{h}^{\alpha} \tag{1.16}
\end{equation*}
$$

where $\mathcal{W}_{i k}$ are the components of second fundemental form related to the normal n of $G W_{m}$ defined by

$$
\begin{equation*}
{\stackrel{\sigma}{w_{i k}}={ }_{n_{\alpha}} \quad \dot{\nabla}_{k} x_{i}^{\alpha}}^{\alpha} \tag{1.17}
\end{equation*}
$$

Chebyshev Nets in a Subspace of a Generalized ...

and $A_{i k}^{h}$ are defined by
$A_{i k}^{h}=x_{\alpha}^{h} \dot{\nabla}_{k} x_{i}^{\alpha}$
From (1.16) ${ }_{4}$, we have
$\nabla_{k} x_{\alpha}^{j}=\sum_{\sigma=1}^{n-m} \Omega_{\sigma}{ }_{k}^{j}{ }_{k}^{\sigma} n_{\alpha}-A_{h k}^{j} x_{\alpha}^{h} \quad, \quad \underset{\sigma}{\Omega}{ }_{k}^{i}=n^{\alpha} \nabla_{k} x_{\alpha}^{j}$
For the definition of the Chebyshev nets of the first and second kind, and that the bnets and c-nets, the reader is refereed to [3].

2. CHEBYSHEV NETS IN A GENERALIZED WEYL SUBSPACE

Consider the net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{m}{v})$ in $G W_{m}$ determined by the vector fields $\underset{1}{v}, \underset{2}{v}, \ldots, \underset{m}{v}$. Let $\underset{r p}{\bar{a}^{\alpha}}$, ${ }_{r p}^{a^{i}} ; \stackrel{r}{b}_{\alpha}^{r}, \stackrel{r}{b_{i}}$ and $\bar{c}_{r}^{\alpha},{ }_{r}^{c} ;$ be the covariant components of the chebyshev vector fields of the first and the second kind and the geodesic vector fields of the given net relative to $G W_{n}$ and $G W_{m}$, respectively.
Theorem 2.1. For the Chebyshev vector fields of the first and second kind and the geodesic vector fields of the net $\left(\underset{1}{v}, v_{2}, \ldots,{ }_{m}^{v}\right)$ in $G W_{m}$ we have
 $\stackrel{\sigma}{w}_{i k}=g_{(\alpha \beta)}{\underset{\sigma}{\beta}}^{\beta} \dot{\nabla}_{k} x_{i}^{\alpha} \quad(r \neq p)$

$$
{\underset{\sigma}{\Omega}}_{{ }_{k}^{j}}^{j}=\underset{\sigma}{n^{\alpha}} \dot{\nabla}_{k} x_{\alpha}^{i}
$$

where the symbol \circledR^{\circledR} indicates that the summation on R will not be made.
Proof. (i) Taking the prolonged covariant derivative of each side of (1.14) ${ }_{1}$ with respect to u^{k} and using (1.15) and (1.16), we get

$$
\begin{equation*}
\dot{\nabla}_{k} v_{r}^{\alpha}=\underset{r}{v^{i}}\left(\dot{\nabla}_{k} x_{i}^{\alpha}\right)+x_{i}^{\alpha}\left(\dot{\nabla}_{k}{\underset{r}{i}}_{r}^{i}\right)=v_{r}^{i}\left(\sum_{\sigma=1}^{n-m} w_{i k}^{\sigma} n_{\sigma}^{\alpha}+A_{i k}^{h} x_{h}^{\alpha}\right)+x_{i}^{\alpha}\left(\underset{r}{p}{\underset{r}{k}}_{v^{i}}^{i}\right) \tag{2.1}
\end{equation*}
$$

In view of

$$
\begin{equation*}
\underset{l}{v_{l}^{k}} \stackrel{\bullet}{\nabla}_{k}={\underset{l}{v}}_{v^{\gamma}}^{\stackrel{\bullet}{\nabla}_{\gamma}} \quad, \quad \stackrel{p}{T}_{k}^{p} v_{l}^{k}=\underset{r l}{\sim} \tag{2.3}
\end{equation*}
$$

the last relation becomes

$$
\begin{equation*}
v_{l}^{v^{k}} \dot{\nabla}_{\gamma} v_{r}^{v^{\alpha}}=\sum_{\sigma=1}^{n-m} w_{i k} \underset{r}{v_{r}^{i}} v_{l}^{v^{k}}{\underset{\sigma}{\alpha}}_{\alpha}^{\alpha}+A_{i k}^{h}{\underset{r}{v}}_{v^{i}}^{v_{l}^{k}} x_{h}^{\alpha}+x_{i}^{\alpha}\left(\underset{r l}{p} v_{p}^{v} v^{i}\right) \tag{2.4}
\end{equation*}
$$

where the functions $\begin{array}{r}p \\ r l\end{array} \quad(r \neq l)$ are the chebyshev curvatures of the first kind of the curves of the net

$$
\begin{equation*}
\underset{r p}{a}=\stackrel{s}{\tau} \underset{r p}{s} v^{i} \tag{2.5}
\end{equation*}
$$

So that (2.4) reduces to

(ii) Differentiating covariantly both sides of $(1.14)_{2}$ with respect to u^{k} and taking (1.19) and $(1.15)_{2}$ into consideration we obtain

$$
\begin{align*}
& =\left(\sum_{\sigma=1}^{n-m}{\underset{\sigma}{k}}_{i}^{i}{ }^{\sigma} n_{\alpha}-A_{h k}^{i} x_{\alpha}^{h}\right) \stackrel{r}{v_{i}}-\stackrel{r}{T_{k}} \stackrel{p}{v_{i}} x_{\alpha}^{i} \tag{2.7}
\end{align*}
$$

Multiplying (2.7) by ${\underset{®}{®}}_{v^{k}}$ and remembering that $\dot{\nabla}_{k} \stackrel{r}{v}_{\alpha}=x_{k}^{\gamma} \dot{\nabla}_{\gamma} \stackrel{r}{v}_{\alpha}$, we have

Since the Chebyshev curvatures $\stackrel{r}{\rho}$ of the second kind of the curves belonging to the net $\left(\underset{1}{v}, \underset{2}{v}, \ldots, v_{m}\right)$ are defined by
$\underset{l}{\underset{l}{\rho}}=\underset{p}{T_{k}} v_{\circledR}^{\circledR}$
The last relation takes the form

or, in terms of the chebyshev vector fields of the second kind, (2.10) becomes

Chebyshev Nets in a Subspace of a Generalized ...

where $\stackrel{r}{b}$ i is defined by $\stackrel{r}{b_{i}}=\stackrel{r}{\rho}{ }_{s} v_{i}$.
(iii) If we multiply (2.1) by ${\underset{r}{k}}_{v^{k}}$ and sum for k, we find

or using (1.14) $)_{1}$ and the fact that $\dot{\nabla}_{k}=x_{k}^{\gamma} \dot{\nabla}_{\gamma}$, we transform the last equation into

where $\underset{r}{p}$ are geodesic curvatures of the curves belonging to the net considered and are defined by $\underset{r}{\underset{S}{p}} \underset{\sim}{T_{k}} \underset{r}{p} v_{r}^{k}$.

In terms of the geodesic vector fields of the net, (2.13) reduces to
$\bar{c}_{r}^{\alpha}=\sum_{\sigma=1}^{n-m} w_{i k}{\underset{r}{v}}_{r}^{i} v_{r}^{k} n^{\alpha}+x_{h}^{\alpha} c_{r}^{h}+A_{i k}^{h} v_{r}^{i} v_{r}^{k} x_{h}^{\alpha}$
where ${\underset{r}{c}}^{i}$ is the geodesic vector field, relative to $G W_{m}$, of the r-th family of the net defined by $c_{r}^{i}={\underset{r}{p}}_{p}^{p} v_{p}^{i}$.

The relations (2.6), (2.11), (2.14), allow us to state the following theorem:
Theorem 2.2. (i) A neccessary and the sufficient condition the net $\delta=\left(\underset{1}{v}, \underset{2}{v}, \ldots,{ }_{n}\right)$ in $G W_{m}$ which is a chebyshev net of the first kind with respect to $G W_{n}$ to be a chebyshev net of the first kind with respect to $G W_{m}$ is that

$$
\sum_{\sigma=1}^{n-m} w_{i k}^{\sigma} v_{l}^{i}{\underset{l}{v}}_{v}^{i}=0 \text { and } A_{i k}^{h} v_{r}^{i} v_{l}^{v_{l}^{k}}=0
$$

(ii) A neccessary and the sufficient condition the net $\delta=\left(\underset{1}{v}, \underset{2}{v}, \ldots,{ }_{n}^{v}\right)$ in $G W_{m}$ which is a chebyshev net of the second kind with respect to $G W_{n}$ to be a chebyshev net of the second kind with respect to $G W_{m}$ is that

$$
\sum_{\sigma=1}^{n-m} \Omega_{\sigma}^{i}{ }_{\sigma}^{\circledR} v_{i}{ }_{\circledR}^{v^{k}}=0 \text { and } A_{h k}^{i} v_{i}^{\circledR} v_{\circledR}^{k}=0
$$

(iii) A neccessary and the sufficient condition the net $\delta=\left(\underset{1}{v}, \underset{2}{v}, \ldots,{ }_{n}\right)$ in $G W_{m}$ which is a geodesic net relative $G W_{n}$ to be a geodesic net relative to $G W_{m}$ is that

$$
\sum_{\sigma=1}^{n-m} w_{i k} v_{r}^{i} v_{r}^{k}=0 \quad \text { and } \quad A_{i k}^{h} v_{r}^{i} v_{r}^{k}=0
$$

REFERENCES

[1] Murgescu, V, "Sur les espaces a connection Affine", a tenseur recurrent, Bul. Inst. Pol de Jassy, VII (XII) 1-2, 65, (1962).
[2] Murgescu, V, "Espaces deWeyl generalises", Bul. Inst. Pol de Jassy, (1970).
[3] Uysal S Aynur and Özdeğer, Abdülkadir; "On the Chebyshev nets in a Hypersurface of a Weyl Space",J. Geom. 51,171-177, 1994.
[4] Özdeğer, Abdülkadir; "Chebyshev nets in a subspace of a weyl space and the generalized Dupin Theorem", Webs and Quasigroups 97-105, 1995.
[5] Zeren, Leyla; "On Generalized Weyl Space", Bull. Cal. Math Soc. 91(4), 267-278 (1999).
[6] Norden, A; "Affinely connected spaces", GRFML, Moscow, (1976).

[^0]: *Sorumlu Yazar/Corresponding Autor: e-posta: fkanbay@yildiz.edu.tr, tel: (0212) 4491804

