σ

Sigma 2004/4

CALCULATED OF REGULARIZED TRACE OF A EVEN ORDER DIFFERENTIAL EQUATION IN FINITE INTERVAL

İnci ALBAYRAK^{*}, Fatma AKGÜN

Yıldız Teknik Üniversitesi, Kimya-Metalurji Fakültesi, Matematik Mühendisliği Bölümü, Davutpaşa-İSTANBUL

Geliş/Received: 01.06.2004 Kabul/Accepted: 04.11.2004

ABSTRACT

In this study ,the regularized trace formula of the even ordered differential equation with two terms given on a finite interval is examined

Keywords: Eigenvalue, eigenfunction, asymptotic formula, unitar matrix.

SONLU ARALIKTA ÇİFT MERTEBEDEN BİR DİFERANSİYEL DENKLEMİNİN DÜZENLİ İZİNİN HESAPLANMASI

ÖZET

Bu çalışmada sonlu aralıkta verilmiş çift mertebeden iki terimli bir diferansiyel denklemin düzenli iz formülü incelenmiştir.

Anahtar Sözcükler: Özdeğer, özfonksiyon, asimtotik ifade, unitar matris.

1. INTRODUCTION

As known, trace of n dimensional matrix is the sum of n eigenvalues. The eigenvalues of Sturm-Liouville problem satisfy the following condition

$$\begin{split} \lambda_1 < \lambda_2 < \ldots < \lambda_n < \ldots \\ \text{and} \\ \lim \lambda_n = \infty \end{split}$$

From here, it is seen that it hasn't finite limit of sum of numbers $\{\lambda_k\}_{k=1}^{\infty}$ because of this there is no meaning to say about the trace of the Sturm-Liouville problem directly. Firstly; I.M. Gelfand and B.M. Levitan found the series sum which was formed by numbers

$$\left\{\lambda_{k}-k^{2}\right\}_{k=1}^{\infty}$$

The sum of the series was called regularized trace of the Sturm-Liouville problem. Regularized trace formula which was mentioned was found with more simple method by

Sorumlu Yazar/Corresponding Autor: e-mail: ibayrak@yildiz.edu.tr, Tel: (0212) 449 19 98

L.A. Dikii [12] Later, the articles [5] - [11] and the books [1] - [2] were written about this subject. We calculated the regularized trace of an even order differential equation with Dikii's method.

In this paper, the regularized trace formula for the operator L in $L_2(0,\pi)$ space which is defined with differential equation

$$(-1)^{m} y^{(2m)} + q(x)y = \lambda y \qquad , \qquad 0 < x < \pi$$
(1)

and with boundary conditions

$$y(0) = y''(0) = \dots = y^{(2m-2)}(0) = y(\pi) = y''(\pi) \dots = y^{(2m-2)}(\pi) = 0$$
(2)
is calculated

Here, q(x) is a real valued, continuous function in $[0, \pi]$. Initially, the regularized trace formula of Sturm-Liouville operator was calculated by I.M.Gelfand and B.M.Levitan [1]. Later, this study was generalized for different operators. Excessive informations and references that are given in [2],[4] and [5]-[11], can be shown as recent studies. Trace formula obtained in [1], was proved by an algebric method by L.A.Dikii [12].

We obtained the regularized trace formula of (1)-(2) by Dikii method which was found before in [4]. While q(x) = 0, it is clear that

$$\mu_n = n^{2m}$$
 (*n* = 1, 2,)

are the eigenvalues of operator $\,L\,\,$ and

$$\psi_n(x) = \sqrt{\frac{2}{\pi}\sin nx}$$

are the orthonormal eigenfunctions corresponding to this eigenvalues .

As known from [4](see also[13]) the eigenvalues and the orthonormal eigenfunctions of L have following asymptotic expressions.

$$\lambda_n = n^{2m} + \frac{1}{\pi} \int_0^{\pi} q(x) dx + O\left(\frac{1}{n^2}\right)$$
$$\varphi(x) = \psi_n(x) + O\left(\frac{1}{n}\right)$$

The results which were obtained are given at following theorem.

Theorem: If
$$\int_{0}^{\infty} q(x) dx = 0$$
, then

$$\sum_{k=1}^{\infty} \left(k^{2m} - \lambda_k \right) = \frac{q(0) + q(\pi)}{4}$$

The series , at the left side of this equality are called regularized trace of operator L. Proof: To prove this theorem , it is sufficient to show that

$$\lim_{N \to \infty} \sum_{n=1}^{N} \left[(\varphi_n, L\varphi_n) - (\psi_n, L\psi_n) \right] = 0$$
(3)

Really, by considering the following equations

$$(\varphi_n, L\varphi_n) = \lambda_n$$
, $(\psi_n, L\psi_n) = n^{2m} + (\psi_n, q\psi_n)$

It can be written as

$$\sum_{n=1}^{N} \left[\left(\psi_{n}, L\psi_{n} \right) - \left(\varphi_{n}, L\varphi_{n} \right) \right] = \sum_{n=1}^{N} \left(n^{2m} - \lambda_{n} \right) + \sum_{n=1}^{N} \left(\psi_{n}, q\psi_{n} \right).$$

Let we write $\sum_{n=1}^{N} \left(\psi_{n}, q\psi_{n} \right)$ summation as below
$$\sum_{n=1}^{N} \left(\psi_{n}, q\psi_{n} \right) = \frac{2}{\pi} \sum_{n=1}^{N} \int_{0}^{\pi} q(x) \sin^{2} nx dx$$
$$= -\frac{1}{4} \sum_{n=2}^{2N} \sqrt{\frac{2}{\pi}} \cos(k.0) \int_{0}^{\pi} q(x) \sqrt{\frac{2}{\pi}} \cos kx dx$$
$$-\frac{1}{4} \sum_{n=1}^{2N} \sqrt{\frac{2}{\pi}} \cos k.\pi \int_{0}^{\pi} q(x) \sqrt{\frac{2}{\pi}} \cos kx dx$$

Here, if the expansion formula of q(x) is considered according to cosinus in $[0, \pi]$,

$$\lim_{N \to \infty} \sum_{n=1}^{N} \left(\psi_n, q \psi_n \right) = -\frac{q(0) + q(\pi)}{4}$$

is seen.

Considering the study [12], we survey the transfer matrix from orthonormal basis $\{\varphi_i\}$ to orthonormal basis $\{\psi_j\}$. U_{ik} is a Unitar matrix. From the formula

$$\sum_{k=1}^{\infty} U_{ik}^{2} = \sum_{i=1}^{\infty} U_{ik}^{2} = 1$$

$$L\psi_{k} = k^{2m}\psi_{k} + q(x)\psi_{k}$$
it can be written as
$$(4)$$

$$(L\psi_k,\varphi_i) = k^{2m}(\psi_k,\varphi_i) + (q\psi_k,\varphi_i).$$

Here, if we consider that

$$(L\psi_{k}, \varphi_{i}) = (\psi_{k}, L\varphi_{i}) = \lambda_{i} (\psi_{k}, \varphi_{i})$$

$$\lambda_{i} (\psi_{k}, \varphi_{i}) = k^{2m} (\psi_{k}, \varphi_{i}) + (q\psi_{k}, \varphi_{i})$$
 and

 $\left(\lambda_{i}-k^{2m}\right)\left(\psi_{k},\varphi_{i}\right)=\left(q\psi_{k},\varphi_{i}\right),$

from the last expression it is found that

$$\sum_{i=1}^{2} \left(\lambda_{i} - k^{2\pi} \right)^{2} \left(\psi_{k}, \varphi_{i} \right) = \left\| \mathbf{q} \psi_{k} \right\|^{2} < const$$

and

$$\sum_{i=1}^{\infty} \left(\lambda_{i} - n^{2\pi}\right)^{2} U_{\mu} < const$$
(5)

Because of $\int_{0}^{x} q(x)dx = 0$, the asymptotic formulas that we mentioned before, obtained as

$$\lambda_{k} = k^{2m} + O(\frac{1}{k^{2}}) , \quad \varphi_{k} = \psi_{k} + O(\frac{1}{k})$$

From the equality (5), by doing similar operations for every natural number N while $\mathbf{k} \leq N$, it is seen that

$$\sum_{i=N+1}^{\infty} \left(\lambda_i - \lambda_k\right) U_{ik}^2 < \frac{const}{\left(N+1\right)^{2m} - k^{2m}}$$
(6)

is true.

According to [12], if we consider

$$\sum_{k=1}^{N} (\boldsymbol{\psi}_{k}, \boldsymbol{L}\boldsymbol{\psi}_{k}) = \sum_{k=1}^{N} \sum_{i=1}^{\infty} \lambda_{i} U_{ik}^{2}$$

and

$$\sum_{k=1}^{N} \left(\varphi_{k}, L \varphi_{k} \right) = \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \lambda_{k} U_{ki}^{2}$$

it becomes that

$$\sum_{k=1}^{N} \left[(\psi_{k}, L\psi_{k}) - (\varphi_{k}, L\varphi_{k}) \right] = \sum_{k=1}^{N} \sum_{i=1}^{\infty} \left(\lambda_{i} - \lambda_{k} \right) U_{ik}^{2} + \sum_{k=1}^{N} \sum_{i=N+1}^{\infty} \lambda_{k} \left(U_{ik}^{2} - U_{ki}^{2} \right)$$
According to (6)
(7)

$$\sum_{k=1}^{N} \sum_{i=N+1}^{\infty} (\lambda_{i} - \lambda_{k}) U_{ik}^{2} < \sum_{k=1}^{N} \frac{const}{(N+1)^{2m} - k^{2m}}$$

While $N \rightarrow \infty$, the right side of above inequality is written as

$$\sum_{n=1}^{N} \frac{1}{(N+1)^{2m} - k^{2m}} \le \frac{1}{(N+1)^{2m} - N^{2m}} + \int_{1}^{N} \frac{dx}{(N+1)^{2m} - x^{2m}}$$

$$= \frac{1}{((N+1)^{m} - N^{m})((N+1)^{m} + N^{m})} + \frac{N+1}{(N+1)^{2m}} \int_{1}^{N} \frac{d\frac{x}{N+1}}{1 - (\frac{x}{N+1})^{2m}}$$

$$\le \frac{1}{2N^{m}} + \frac{1}{(N+1)^{2m-1}} \int_{\frac{1}{N+1}}^{\frac{N}{1}} \frac{du}{1 - u^{2m}} = \frac{1}{2N^{m}} + \frac{1}{(N+1)^{2m-1}} \int_{\frac{1}{N+1}}^{\frac{N}{1}} \frac{1}{2} \left(\frac{1}{1 + u^{m}} + \frac{1}{1 - u^{m}}\right) du$$

$$= \frac{1}{2N^{2m}} + \frac{1}{(N+1)^{2m-1}} \left(\frac{1}{2} \int_{\frac{1}{N+1}}^{\frac{N}{1}} \frac{du}{1 + (\frac{1}{N+1})^{m}} + \frac{1}{2} \int_{\frac{1}{N+1}}^{\frac{N}{1}} \frac{du}{1 - u^{m}}\right)$$

(8)

$$= \frac{1}{2N^{2m}} + \frac{1}{\left(N+1\right)^{2m-1}} \frac{1}{2} \left[\frac{1}{1+\frac{1}{\left(N+1\right)^{m}}} \left(\frac{N}{N+1} - \frac{1}{N+1} \right) + \int_{\frac{1}{N+1}}^{\frac{N}{N+1}} \frac{du}{1-u^{m}} \right]$$

$$\leq \frac{1}{2N^{2m}} + \frac{const}{\left(N+1\right)^{2m-1}} + \frac{1}{2} \frac{1}{\left(N+1\right)^{2m-1}} \int_{\frac{1}{N+1}}^{\frac{N}{N+1}} \frac{du}{1-u^{m}} \sim \frac{const}{N^{2m-1}} + \frac{1}{2} \frac{1}{\left(N+1\right)^{2m-1}} \int_{\frac{1}{N+1}}^{\frac{N}{N+1}} \frac{du}{1-u^{m}}$$

for simplicity, by getting m=4, we restrict the last sum as:

$$\frac{1}{2} \frac{1}{\left(N+1\right)^{2m-1}} \int_{\frac{1}{N+1}}^{\frac{N}{N+1}} \frac{du}{1-u^4} = \frac{1}{2} \frac{1}{\left(N+1\right)^{2m-1}} \left(\frac{1}{2} \int_{\frac{1}{N+1}}^{\frac{N}{N+1}} \frac{du}{1+u^2} + \frac{1}{2} \int_{\frac{1}{N+1}}^{\frac{N}{N+1}} \frac{du}{1-u^2} \right)$$
$$= \frac{1}{2} \frac{1}{\left(N+1\right)^{2m-1}} \left(\frac{1}{2} \int_{\frac{1}{N+1}}^{\frac{N}{N+1}} \frac{1}{1+\frac{1}{\left(N+1\right)^2}} du + \frac{1}{2} \int_{\frac{1}{N+1}}^{\frac{N}{N+1}} \frac{du}{1-u^2} \right) \sim$$
$$\sim \frac{1}{4} \frac{1}{\left(N+1\right)^{2m-1}} \cdot \frac{1}{1+\frac{1}{\left(N+1\right)^2}} \left[\left(\frac{N}{N+1} - \frac{1}{N+1} \right) + \ell nN \right]$$
(9)

Thus while m=4, from the (8) and (9), while $N \rightarrow \infty$,

$$\sum_{k=1}^{N}\sum_{i=N+1}^{\infty} \left(\lambda_{i}-\lambda_{k}\right) u_{ik}^{2} \leq \frac{const}{\left(N+1\right)^{2m-1}} \ell n N \to 0$$

is found.

Thus, while $N \rightarrow \infty$, it is showed that the first sum of the right side of (7) approachs to zero. The second sum in (7) is restricted as below. If the below equation

 $u_{ik} + u_{ki} = -\left(\varphi_i - \psi_i, \varphi_k - \psi_k\right)$

and the asymptotic expression of eigenfunctions of L is considered

$$\left|u_{ik}+u_{ki}\right| \leq \left\|\varphi_{i}-\psi_{i}\right\| \cdot \left\|\varphi_{k}-\psi_{k}\right\| \leq \frac{const}{i.k}$$

is obtained.

If the similar operations are done according to [12],

$$\sum_{k=N+1}^{\infty} \left| u_{ik}^{2} - u_{ki}^{2} \right| < \frac{const}{k\sqrt{N+1} \left[\left(N+1 \right)^{2m} - k^{2m} \right]}$$

is found.

Here, from the second sum of (7)

$$\sum_{k=1}^{N} \lambda_{k} \sum_{i=N+1}^{\infty} \left| u_{ik}^{2} - u_{ki}^{2} \right| < const \sum_{k=1}^{N} \frac{k^{2m}}{k\sqrt{N+1} \left[\left(N+1 \right)^{2m} - k^{2m} \right]} < const \left(N+1 \right)^{2m-1-\frac{1}{2}} \sum_{k=1}^{N} \frac{1}{\left(N+1 \right)^{2m} - k^{2m}} \sim const \left(N+1 \right)^{2m-1-\frac{1}{2}} \frac{\ell nN}{\left(N+1 \right)^{2m-1}} \underset{N \to \infty}{\to} 0$$

is obtained.

Thus, it satisfies the equality (3) and according this accuracy, the theorem is proved. As an acknowledgement we want to express our gratitude to M.Bayramoğlu for his support to this work.

REFERENCES

- Gelfand, I. M. and Levitan B.M. "On a simple identity for the eigenvalues of a differential operator if the second order" Dokl. Akad. Nauk SSSR, M.T. 88, No:4, 593-596 (1953).
- [2] Sadovnichi V.A., Trace formulas of the higher order differential operators, Matem.sb. T.72, vip.2, 293-317 (1967).
- [3] Levitan, B.M. and Sargasyan, I.S., Sturm-liouville and Dirac Operators, Kluwer, Dordrecht, (1991).
- [4] Sadovnichi V.A. Theory of Operators, Consultants Bureau, New-York, 1991.
- [5] Fulton, C.T. and Pruesses, S. "Eigenvalue and eigenfunctions asymptotics for reguler Sturm-Liouville problems, J. Math. Anal. Appl. 188, 297-340 (1994).
- [6] Bayramoğlu, M. and Adıgüzelov, E.E. "On a regularized trace formula for the Sturmliouville operator with a bounded operator coefficient and with a singularity. Differential Equations, no.12, 1581-1585 (1997).
- [7] Albayrak I., Bayramoğlu M. and Adıgüzelov, E.E. "The second regularized trace formula for the Sturm-Liouville problem with spectral parameter in a boundary condition. Methods of Functional Analysis and Topology V.6, No:3, 1-8, (2000).
- [8] Albayrak, I., Baykal, O. and Gul E., "Formula for the Highly Regularized Trace of the Sturm-Liouville Operator with Unbounded Operator Coefficients Having Singularity, Turk J Math 25 (2001), 307-322.
- [9] Adıgüzelov, E.E., Avcı, H. and Gul E. The trace formula for Sturm-Liouvile operator with operator coefficient. J. Math. Phys. Vol.42, 1611-1624 No:6, (2001).
- [10] Adıgüzelov, E.E. Baykal O., Bayramov A., On the spectrum and regularized trace of the Sturm-Liouville problem with spectral parameter on the boundary condition and with the operator coefficient, International Journal of differential equations and applications, V:2, no:3, page 317-333 (2001).

- [11] Adıgüzelov, E.E. and Bakşi Ö. On the regularized trace of the differential operator equation in a finite interval, Sigma Journal of Engineering and Natural Sciences Issue 1 (2004).
- [12] [13] Dikii, L.A. About a formula of Geltand-Levitan, Usp. Math. Nauk, 8(2), 119-123 (1953).
- Naimark, M.A. Linear differential operators, part I. Harrap, London (1968).