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ABSTRACT 
 
Within the framework of the piecewise homogeneous body model with the use of the three-dimensional 
equations of the theory of elasticity for anisotropic body a method that is developed to investigate the stress 
distribution in the infinite elastic matrix containing a periodically curved row fibres having a sine-phase is 
used to investigate related normal stresses. It is assumed that the materials of the fibres are the same and 
midlines of these fibres are in the same plane. Under uniaxial loading along the fibres the normal stresses 
acting along the fibers at interface points are investigated. The influences of the problem parameters on these 
stresses are analyzed. The corresponding numerical results are presented. 
Keywords: Unidirectional fibrous composite, row fibers, curved composite, normal stresses. 
   
PERİYODİK EĞRİLİKLİ SIRALI LİFLER İÇEREN ELASTİK ORTAMDAKİ NORMAL 
GERİLMELER HAKKINDA 
 
ÖZET 
 
Aynı fazlı periyodik eğrilikli sıralı lifler içeren sonsuz elastik matristeki gerilme yayılımını araştırmak için 
parçalı homojen cisim modeli çerçevesinde, izotrop olmayan cisimler için elastisite teorisinin üç-boyutlu 
denklemleri kullanılarak geliştirilen yöntem, ilgili normal gerilmelerin araştırılmasında kullanılmıştır. Lif 
malzemelerinin aynı ve bu liflerin orta çizgilerinin aynı düzlemde yerleştikleri varsayılmıştır. Lifler boyunca 
tek yönlü yüklemeler sonucu, lifler boyunca arayüzey üzerindeki noktalarda etkiyen normal gerilmeler 
incelenmiştir. Problem parametrelerinin bu gerilmeler üzerindeki etkileri analiz edilmiştir. İlgili sayısal 
sonuçlar verilmiştir. 
Anahtar Sözcükler: Tek yönlü lifli kompozitler, sıralı lifler, eğrilikli kompozit, normal gerilmeler. 
 
 
 
1. INTRODUCTION 
 
It is well known that in the structure of the unidirectional fibrous composites in many cases fibres 
have an initial curving caused by design factors or caused by the action of various factors during 
technological process [1-3]. According to a large number of theoretical and experimental 
investigations described in [1-5], this curving can be the cause of the failure (separation of fibres 
from matrix) under uniaxial tension or compression of the composite along the  fibres. Therefore 
the theoretical investigations of the self-balanced stresses arising as a result of fibre curving have 
a great significance in the viewpoint of the theoretical and the application sense. For investigating 
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such a problem within the framework of a piecewise homogeneous body model with the use of 
the three-dimensional linear theory of elasticity, a method is developed in [6] and the 
corresponding numerical results are analyzed in [7]. In [8-10] the method [6] is developed for the 
corresponding problem on the two neighboring fibres in an infinite elastic matrix. Moreover, in 
[8-10] the corresponding numerical results are analyzed. It is evident that the model consisting of 
the two neighbouring  fibres in an infinite matrix allows us to have some information on the 
interaction of the curved fibres under determination of the self-balanced stresses. But, in the real 
cases the interaction of the fibres requires a more complicated model. In connection with this, the 
following step of the modelling of the location of the fibres in an infinite matrix can be taken as 
the row  fibres. For this purpose, in [12] the approach [8-10] is developed for the periodically 
located row fibres in the infinite matrix and the numerical results on the self-balanced stresses 
acting on the interface are analyzed. In the present paper, by the use of the method [12], the 
normal stresses acting along the fibers at interface points are investigated under uniaxial loading 
along the fibres. 
 
2. FORMULATION OF THE PROBLEM 
  
We associate Cartesian 3k2k1kk xxxO  and cylindrical kkkk zrO θ  system of coordinates with 

the midline of each fibre (Figure 1). Here +∞−−−∞= ,...,2,1,0,1,2,...,k  denote the number of 
fibres.  
 

 

 
 

Figure 1. The geometry of the material structure and chosen coordinates 
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According to Figure 1, 
20k2 xx = , 330k3 xxx == , 1012k1 xkRx +=  

ki
k120i

0 erkRer θθ += , zzz 0k ==                                (1) 
The midlines of the fibres are given by the equations 

)x2sin(Lx k3k1
π

= , 0x k2 = ;                                (2) 

and the cross-section of each fibre, which is perpendicular to the midline, is a circle with constant 
radius R along the entire length of the fibres. We assume that, L (curving amplitude of the fibre) is 
smaller than  (curving period) and introduce a small parameter L=ε , ( 10 <<ε< ). 

According to Eqs. (2), equations of the contact surfaces kS  between the fibres and the 
matrix and their normal vectors are  
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where 3t  ( ),(t3 +∞−∞∈ ) is a parameter and explicit expression of the functions 

)t,(a 3kkq θ ,…, )t,(f 3kkq θ ,… appearing in Eqs. (3) are given in [3].  

In what follows, the values related to the fibres will be denoted by the superscripts (2k), 
but those related to the matrix by the superscript (1). The materials of the fibers and matrix are 
transversally isotropic with the symmetry axis 3Ox . Thus, in the cylindrical system of 
coordinates, we can write the following governing field equations: 
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Thus, within the frameworks of each fibre and the matrix Eqs. (4)-(6) are satisfied. In 
this case, on the interfaces kS  (Figure 1) perfect cohesion is supposedly valid: 
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In the case considered, it is also assumed that the conditions  
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are satisfied.  
 

3. SOLUTION METHOD 
 
To solve this problem, we use the boundary shape perturbation method developed in [3,6], 
according to which the unknown values are presented in series form in ε : 
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From Eqs. (4), we obtain a set of equations for each approximation (9). In this case, due 
to linearity, Eqs. (4)-(6) are satisfied for each approximation separately. Substituting Eqs. (9) into 
(7) and using Eqs. (3), after some manipulation described in [3,6], we obtain the contact 
conditions at Rrk =  for each approximation. We will present here these conditions for the zeroth 
and for the first approximations. 

According to the investigations carried out and analyzed in [3-5], the main effect of the 
fibres curving on the stress distribution arises within the framework of the first approximation. 
The second and subsequent approximations give only some insignificant quantitative correction to 
these results. So we are here interested in the zeroth and in the first approximations. 

If we write these conditions for the zeroth approximation and solve them by assuming 
that, the materials of the fibers are the same and their Poisson ratios are equal to that of the matrix 
material, then for the zeroth approximation, we have: 
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In Eqs. (13), )1(
3E  and )2(

3E are the elastic moduli of the matrix and fiber materials, respectively, 

along the Oz axis. 
After some calculations (given in [12]), for the first approximation we obtain an infinite 

system of algeabric equations for unknown constants as follows: 
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+∞−−−∞= ,...,2,1,0,1,2,...,k . The prime over the summations means that the case kq =  does 

not enter this summation. The quantities q)1(
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nF  are obtained from the 
above-considered corresponding formulas. Their detailed expressions are rather cumbersome and 
therefore are omitted here. 
It follows from mechanical considerations and from the conditions (8) that 
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Thus, from Eqs. (11) we obtain  
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For numerical investigations, the infinite system of algebraic equations (24) must be 
approximated by a finite system. To validate such a replacement, it must be shown that the 
determinant of the infinite system of equations is of normal type [11]: such is the case if we can 
prove the convergence of the series: 
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For investigating the series (13), we use the following asymptotic estimates of the 
functions )x(In  and )x(Kn : 
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These relations hold for large n and fixed x. Let 
( ) 1212 RRL2RR >− , 2RR12 > ,                                                            (15) 

which means that the fibres do not have contact with each other. Then, taking into account Eqs. 

(14-15) and analysing the expressions of q)1(
nvF , we obtain the following estimate for series (13):  
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As the series on the right hand side converges, so does series (13). Note that such a 
proof was also performed in [2, 8-10]. Consequently, for numerical investigations the infinite 
system of algebraic equations (12) can be replaced by the following one:  
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The values of νN  and qN  in Eq. (17) are determined from the convergence 

requirement of numerical results. 
 It should be noted that in a similar manner we could determine the values of the second 
and subsequent approximations. 
 
4. NUMERICAL RESULTS AND DISCUSSIONS 
 
Let us assume that the materials of the fibers and matrix are isotropic with Young's moduli 

denoted by )2(E  and by )1(E , respectively. For the Poisson ratios ν , we assume that 

3.0)2()1( =ν=ν . We will investigate the normal stresses )1(
ττσ  and )2(

ττσ  which act along the 
fibers at influence points in matrix and in fibers respectively. In view of corresponding symmetry 
and periodicity, we consider the distribution of these stresses only on the surface 0S  (Figure 1). 

If 0=ε  (i.e. the curving is absent), the stresses ττσ  coincide with zzσ . 

 Let us introduce the parameters /R2π=κ  and R/R12=ρ . As it follows from the 

present investigations, the stress ττσ  has a maximum at the point of 0S  which is determined 

from Eqs. (3) for 00 =θ=θ , 2/t3 π=α . 
Let us consider the graphs given in Figure 2. These graphs show the dependencies 

between the values of )1(
33

)1( /σσττ  and the parameter κ . Under obtaining these results it is 

assumed that 50EE )1()2( = , 015.0=ε , 130N =ν , 17Nq = . It follows from these graphs 

that the nonmonotonic character of the considered dependencies occurs for the row fibres. In this 

case the absolute values of )1(
33

)1( /σσττ  increase with increasing ρ . The results obtained for the 
row fibres and for a single fiber approach each other with ∞→ρ .  
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Figure 2. The graphs of the dependencies between )1(

33
)1( /σσττ  and κ  for various values            

of ρ  for the case where 50EE )1()2( = , 015.0=ε  

On the Normal Stresses in the Elastic Body...



 
 

 300

The graphs of the dependencies between )2(
33

)2( /σσττ  and the parameter κ  under 

50EE )1()2( = , 015.0=ε , 130N =ν , 17Nq =  are given in Figure 3. According to the 

results given in Figure 3, we can conclude that the values of )2(
33

)2( /σσττ  increase by decreasing 

ρ . Furthermore, these graphs show that the dependence between )2(
33

)2( /σσττ  and κ  has a 
nonmonotonic character for all the values of ρ . 

Note that, the results given in Figures 2 and 3 agree with the well-known mechanical 
considerations and coincide with the corresponding results obtained for the single fibre under 

∞→ρ  [3]. Consequently, these results validate the correctness of the algorithm and 
programmes used for numerical calculations.  

Now we consider the graphs given in Figurs 4 and 5, which show the dependencies 

among )1(
33

)1( /σσττ , )2(
33

)2( /σσττ  and θ  respectively under 7.0=κ , 50EE )1()2( = , 

2/t3 π=α , 015.0=ε , 130N =ν , 17Nq = . These graphs are constructed for  various 

values of ρ . It follows from these graphs that )2()2( θ′+πσ−=θ′−πσ ττττ , where 

[ ]2,0 π∈θ′ . These equalities agree with the periodicity of the structure of the considered 
material and with the curving form of the fibres. 
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Figure 3. The graphs of the dependencies between )2(

33
)2( /σσττ  and κ  for various values           

of ρ  for the case where 50EE )1()2( = , 015.0=ε  
 

Consider some numerical results for the stresses )1(
33

)1( /σσττ  and )2(
33

)2( /σσττ  tabulated 

in Table 1. Note that these results are obtained for various )1()2( EE , ε  and ρ  under 

130N =ν , 17Nq = . It follows from this table that the absolute values of the considered 

stresses decrease monotonically with )1()2( EE  and ε . 
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Figure 4. The graphs of the dependencies between )1(

33
)1( /σσττ  and θ  for various values             

of ρ  for the case where 50EE )1()2( = , 015.0=ε , 7.0=κ  
 

0 1 2 3
θ

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

σ τ
τ(2

) /σ
33

(2
)

ρ=2.1
ρ=2.2

ρ=2.1ρ=2.2

0 0.1 0.2 0.3 0.4

0.62

0.63

0.64

0.65

0.66
ρ=∞

ρ=10

ρ=5
ρ=4

ρ=3

ρ=2.5

2.8 2.9 3 3.1

1.34

1.36

1.38

ρ=∞ρ=10

ρ=5
ρ=4

ρ=3

ρ=2.5

 
Figure 5. The graphs of the dependencies between )2(

33
)2( /σσττ  and θ  for various values            

of ρ  for the case where 50EE )1()2( = , 015.0=ε , 7.0=κ  
 

The results given in Tables 2 and 3 show the convergence of the numerical results with 
respect to the values of qN  and νN , respectively. Note that the values of qN  and νN  enter 

Eqs. (17). It is assumed that 1.2=ρ , 015.0=ε , 50EE )1()2( = , 130N =ν  (for the results 
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given in Table 2), 17Nq =  (for the results given in Table 3) from which it follows that the 

convergence of the solution method used is adequate. 
 

Table 1. The values of )1(
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)1( /σσττ  and )2(
33

)2( /σσττ  obtained for various ρ , )1()2( EE             

and ε  under 130N =ν , 17Nq =  
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0.010 0.9365 0.9270 0.8997 0.8826 0.8940 0.8726 
0.015 0.9048 0.8905 0.8496 0.8239 0.8410 0.8090 10 

( κ =1.1) 0.020 0.8730 0.8540 0.7995 0.7653 0.7880 0.7353 
0.010 0.9001 0.8255 0.8603 0.8352 0.8585 0.8255 
0.015 0.8502 0.8278 0.7905 0.7528 0.7878 0.7383 20 

( κ =0.9) 0.020 0.8003 0.7704 0.7207 0.6704 0.7171 0.6511 
0.010 0.8347 0.8105 0.7947 0.7568 0.8008 0.7487 
0.015 0.7521 0.7158 0.6921 0.6353 0.7013 0.6231 50 

( κ =0.7) 0.020 0.6695 0.6211 0.5894 0.5137 0.6017 0.4975 
0.010 0.7685 0.7352 0.7226 0.6711 0.7392 0.6642 
0.015 0.6528 0.6028 0.5839 0.5067 0.6088 0.4964 100 

( κ =0.5) 0.020 0.5370 0.4705 0.4452 0.3423 0.4784 0.3235 
 

Table 2. The convergence of the numerical results with respect to the values of qN in               

the case where 50EE )1()2( = , 015.0=ε , 1.2=ρ , 130N =ν  

The value of qN  
κ  stresses 

12 13 14 15 16 17 
)1(

33
)1( σσττ  0.9534 0.9533 0.9533 0.9532 0.9532 0.9532 

0.1 
)2(

33
)2( σσττ  0.9459 0.9460 0.9460 0.9460 0.9460 0.9460 

)1(
33

)1( σσττ  0.8890 0.8890 0.8890 0.8890 0.8890 0.8890 
0.2 

)2(
33

)2( σσττ  0.8727 0.8728 0.8728 0.8728 0.8728 0.8728 

)1(
33

)1( σσττ  0.8329 0.8329 0.8329 0.8329 0.8329 0.8329 
0.3 

)2(
33

)2( σσττ  0.8087 0.8087 0.8087 0.8087 0.8087 0.8087 

)1(
33

)1( σσττ  0.7926 0.7926 0.7926 0.7926 0.7926 0.7926 
0.4 

)2(
33

)2( σσττ  0.7625 0.7625 0.7625 0.7625 0.7625 0.7625 
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Table 3. The convergence of the numerical results with respect to the values of νN  in the case 

where 50EE )1()2( = , 015.0=ε , 1.2=ρ , 17Nq =  

The value of νN  κ  stresses 
22 34 46 58 70 82 130 

)1(
33

)1( σσττ  0.8706 0.8833 0.8885 0.8894 0.8892 0.8890 0.8890 
0.2 

)2(
33

)2( σσττ  0.8662 0.8709 0.8722 0.8726 0.8727 0.8728 0.8728 

)1(
33

)1( σσττ  0.8103 0.8255 0.8317 0.8330 0.8329 0.8328 0.8329 
0.3 

)2(
33

)2( σσττ  0.7987 0.8058 0.8078 0.8083 0.8086 0.8086 0.8087 

)1(
33

)1( σσττ  0.7685 0.7843 0.7909 0.7924 0.7925 0.7924 0.7926 
0.4 

)2(
33

)2( σσττ  0.7506 0.7591 0.7614 0.7621 0.7623 0.7624 0.7625 

)1(
33

)1( σσττ  0.7442 0.7595 0.7659 0.7675 0.7678 0.7678 0.7679 
0.5 

)2(
33

)2( σσττ  0.7219 0.7306 0.7331 0.7338 0.7341 0.7342 0.7343 

 
5. CONCLUSION 
 
In the present paper, within the framework of the piecewise homogeneous body model with the 
use of the three-dimensional equations of the theory of elasticity for anisotropic body the method 
developed to investigate the stress distribution in the infinite elastic matrix containing a 
periodically curved row fibres having a sine-phase, is used to investigate related normal stresses 
which acting along the fibers at interface points. It is assumed that the materials of the fibres are 
the same and their midlines of the fibres are on the same plane. The numerical investigations have 
been made for the case where the materials of the fibres and matrix are both isotropic and 
homogeneous. According to the obtained numerical results it is established that the considered 
normal stresses related to matrix decrease, but the normal stress related to fiber increase with the 
fibres approaching each other.  
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