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ABSTRACT 
 
In this paper, refined plastic hinge analysis method which accounts for material and geometric nonlinearities 
of the steel structures is given. For the purpose of determining the realistic steel frame behavior; gradual 
yielding, second order effects, and geometric imperfections are presented. The refined plastic analysis results 
are verified by comparison of the plastic zone analysis results by using a calibration frame. Also, three 
different methods of geometric imperfection modeling are investigated.  
Keywords: Refined plastic hinge, second order, nonlinear analysis. 
  
 
ÇELİK DÜZLEM ÇERÇEVELERİN İKİNCİ MERTEBE KADEMELİ PLASTİK MAFSAL ANALİZİ  
 
ÖZET 
 
Bu çalışmada, çelik yapıların malzeme ve geometri bakımından lineer olmayan davranışını dikkate alan 
kademeli plastik mafsal analizi yöntemi verilmiştir. Çelik çerçeve davranışının gerçekçi biçimde belirlenmesi 
amacıyla; malzemenin kademeli akma davranışı, ikinci mertebe etkiler ve geometrik kusurların hesaplara 
dahil edilmesi sunulmuştur. Kademeli plastik mafsal analizi sonuçları ile plastik zon analizi sonuçları 
kalibrasyon çerçevesi kullanılarak karşılaştırılmıştır. Ayrıca, geometrik kusurların modellenmesi üç ayrı 
yöntem ile incelenmiştir. 
Anahtar Sözcükler: Kademeli  plastik mafsal, ikinci mertebe, doğrusal olmayan analiz. 
 
 
 
 
1. INTRODUCTION 
 
During the past 20 years, numerous analytical models have been developed for second-order 
inelastic analysis of steel frames. In general these models may be categorized into two main 
types: plastic zone (also called distributed plasticity) and plastic hinge (also called concentrated 
plastic hinge) analysis. The plastic zone model follows explicitly the gradual spread of yielding 
throughout the volume of the structure. Plastification in the members is modeled by discretization 
of members into several beam-column elements and subdivision of the cross section into many 
fibers [1]. The effects of residual stress, geometric imperfections, and material strain hardening 
can all be accounted for in a plastic-zone analysis model and generally considered as an “exact” 
method and referred as advanced analysis [2]. However, this type of analysis is too 
computationally intensive for general design use, and because of its complexity and cost, it has 
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not yet found application in ordinary practice [3]. Even if such analysis methods should become 
generally available and reliable, a more efficient procedure to assess the structural performance 
and failure modes of a system would be useful. Plastic hinge based methods of analysis hold the 
promise to fulfill these requirements.  

In conventional plastic hinge based analysis, inelasticity in frame elements is assumed 
to concentrate at zero length plastic hinges. Regions in the frame elements other than at the plastic 
hinges are assumed to behave elastically [4]. If the cross section forces at any particular locations 
in an element are less than the cross-sectional plastic capacity, elastic behavior is assumed. If the 
section plastic capacity is reached, a plastic hinge is formed and the element stiffness matrix is 
adjusted to account for the presence of a plastic hinge. The cross sectional response after the 
formation of a plastic hinge is usually assumed to be perfectly plastic with no strain hardening [5]. 
The conventional elastic plastic analysis does not represent stiffness degradation due to 
distributed yielding and associated P-δ effects within the member. As a result of this problem, the 
elastic plastic hinge analysis method may wrongly predict the strength and stiffness of component 
members in a frame; therefore it can not be classified as advanced analysis in general [3]. Since, 
only the plastic zone analysis has been classified as an advanced analysis technique. Australian 
Standard AS4100 [6] and Eurocode 3 [7] are the only design specifications that explicitly allow 
engineers disregard member capacity checks if a plastic zone analysis is employed. This study 
investigates an improved plastic hinge based method called the refined plastic hinge analysis 
method. The refined plastic hinge analysis method is a practical advanced analysis technique for 
frame analysis [2, 8]. The refined plastic hinge approach adopts a suitable stiffness degradation 
function that presents the distributed yielding behavior of beam columns. The present wok is 
limited to two dimensional steel frames under static loads only and since all members assumed to 
be sufficiently braced such that flexural and lateral torsional buckling is not considered. 
The following basic assumptions are used for modeling of a beam-column element [4, 9]. 

1. All elements are initially straight and prismatic. 
2. Plane cross section remains plain after deformation. 
3. Local buckling and lateral torsional buckling are not considered. All members are assumed 

to be fully compact and adequately braced. 
4. Large displacements are allowed, but strains are small. 
5. The element stiffness formulation is based on beam-column stability functions considering 

axial and bending deformations. 
6. Strain hardening is not considered. Plastic hinges can not sustain additional loads. 
7. Reduction of torsional and shear stiffness is not considered in plastic hinge. 

 
2. REFINED PLASTIC HINGE ANALYSIS  
 
The important attributes which affect the behavior of steel framed structures may be grouped into 
two categories: geometric and material nonlinearities. The geometric nonlinearity includes 
second-order effects associated with P-δ and P-∆ effects and geometric imperfections. The 
material nonlinearity includes gradual yielding associated with the influence of residual stresses 
and flexure. 

In the refined plastic hinge approach, the element stiffness is assumed to degrade 
according to a prescribed function after the element end forces exceed a predefined initial yield 
function [2]. Refined plastic hinge analysis incorporates consideration of second order geometry, 
gradual yielding (associated with residual stress and flexure), and geometric imperfections to the 
analysis of steel frames.  
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2.1. Determining Second Order Effects by Using Stability Functions 
 
Stability functions are used to capture second order effects, since they can account for the effect 
of the axial force on the bending stiffness reduction of each member and also used to minimize 
modeling and solution time. Generally only one or two elements are needed per a member [10].  

 
 
 
 
 
 
 
 

Figure 1. Beam-column element 
 

Considering the prismatic beam-column element in Figure 1, the incremental force–
displacement relationship of this element can be written as: 
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Where S1 and S2 are stability functions, AM  and BM are incremental end 

moments, P is incremental axial force, Aθ  and Bθ  are incremental joint rotations, e  is 
incremental axial displacement, A is area, I is moment of inertia, L is length of  beam-column 
element and E is the modulus of elasticity. The stability functions given by equation (1) are 
written as: 
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where ( )22EI/LπPρ = , P is positive in tension. 
The numerical solutions obtained from the equations (2-5) are indeterminate when the 

axial force is zero. To circumvent this problem and to avoid the use of different expressions for S1 
and S2 for a different sign of axial forces, a set of expressions that make use of power-series 
expansions to approximate the stability functions. The power-series expressions have been shown 
to converge to a high degree of accuracy within the first ten terms of the series expansions [11]. 
Alternatively, if the axial force in the member falls within the range 2.0ρ2.0 ≤≤− , the following 
simplified expressions may be used to closely approximate the stability functions [12]: 
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Equations (6) and (7) are applicable for members in tension (positive P) and 
compression (negative P). For practical applications, equations (6) and (7) give an excellent 
correlation to the expressions given by equations (2-5). However, for ρ other than the range of -
2.0< ρ <2.0, the conventional stability functions should be used. The stability function approach 
uses only one element per member and maintains accuracy in the element stiffness terms and in 
the recovery of element end forces for all ranges of axial loads.  
 
2.2. Stiffness Degradation Associated with Residual Stress 
 
The Column Research Council (CRC) tangent modulus is employed here to account for gradual 
yielding effects due to residual stresses along the length of members under axial loads between 
two plastic hinges. The elastic modulus E (instead of moment of inertia I) is reduced to account 
the reduction of the elastic portion of the cross-section since the reduction of the elastic modulus 
is easier to implement than a new moment of inertia for every different section. Also, when this 
model incorporates appropriate geometrical imperfections, it may provide a very good 
comparison with the plastic zone solutions [8]. The CRC Et may be written as [10]: 
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where Py: squash load and E: elastic modulus. 
 
2.3. Stiffness Degradation Associated with Flexure 
 
The CRC tangent modulus model is suitable for the member subjected to axial force, but not 
adequate for cases of both axial force and bending moment. A gradual stiffness degradation of a 
plastic hinge is required to represent the partial plastification effects associated with bending 
actions. The plastic hinge model to represent the gradual transition from elastic stiffness to zero 
stiffness associated with a fully developed plastic hinge the incremental force–displacement 
relationship may be expressed as equation (10) [12]: 
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Where S1 and S2 are stability functions, AM  and BM are incremental end moments, P is 

incremental axial force, Aη  and Bη are element stiffness parameters, Aθ  and Bθ  are incremental 
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joint rotations, e  is incremental axial displacement, A is area, I is moment of inertia, L is length 
of  beam-column element and Et is the tangent modulus. 

The parameter η represents a gradual stiffness reduction associated with flexure at 
sections. The partial plastification at cross-sections at the end of elements is denoted by 0<η<1. 
The η may be assumed to vary according to the simple parabolic expression as [11]: 
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Figure 2. Gradual stiffness reduction associated with flexure  
 

where α is the force–state parameter obtained from the limit state surface corresponding to the 
element end as [12]: 
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Where P and M are second order axial force and bending moment at a section, Mp is the 
plastic moment capacity. It should be noted that: 

1. When 1η0 A <<  and 1η0 B << , the equation accounts for the effects of partial 
plastification at both ends of the element. 

2. When 1ηη BA == , both ends are fully elastic and the equation becomes conventional 
stiffness matrix including second order effects. 

3. When  1ηA =  and 1η0 B << , the equation represents the state at which end A is elastic, 
but end B is partially yielded. 

4. When 1η0 A <<  and 1ηB = , end B is elastic, and end A is partially yielded.  
It is important to demonstrate that only simple relationships for η are required to 

adequately describe the degradation in stiffness associated with distributed plasticity effects. 
Although more complicated expressions for η could be developed and proposed, a simple 
expression for η is needed for keeping the analysis model simple and straightforward. Also, the 
element model based on this approach should satisfy many aspects of the desirable attributes for 
inelastic beam-column elements outlined previously.  

In Figure 3, the term α of 1.0 represents the plastic strength surface and α of 0.5 is 
assumed to be the initial yield surface which is assumed to have the same shape as the LRFD 
plastic strength surface [10]. As the α value varies from 0 to 0.5, the element end remains in the 
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elastic state. When the α moves from 0.5 to 1.0, the element stiffness changes with a parabolic 
degradation shape shown in Figure 2. 
 

 
 

Figure 3. Plastic strength surface accounting partial yielding 
 
3. INITIAL GEOMETRIC IMPERFECTIONS 
 
There are two types of initial geometric imperfections for steel members: out-of-straightness and 
out-of-plumbness. Since these imperfections are also geometric nonlinear effects, they cause 
additional moments in the column members and then the member bending stiffness is further 
reduced. Combined with the use of CRC-Et, one of three geometric imperfection models is used 
in the practical advanced analysis method: the explicit imperfection modeling method, the 
equivalent notional load method, or the further reduced tangent modulus method. 
 
3.1. Explicit Imperfection Modeling Method 
 
According to AISC Code of Standard Practice [13], the fabrication and erection tolerance for out-
of-straightness is 1/1000 times the column length between braced points, and the maximum out-
of-plumbness is limited to 1/500 times column length. 

Since the out-of-straightness of a member should vary as a smooth curve, the 
imperfection shape is not known and many elements are needed in the analysis, the initial out-of-
straightness of the column is ignored in this study. In other words, for simplifying the analysis, 
only modeling out-of-plumbness is considered for erection tolerance. The explicit imperfection 
modeling of an unbraced frame member is shown in Figure 4.  
 
3.2. Equivalent Notional Load Method 
 
The geometric imperfections of a frame may be replaced by equivalent notional lateral loads that 
are expressed as a fraction of the gravity loads acting on a story. Figure 5a shows an unbraced 
frame member with an out-of-plumbness of Lc/500. The out-of-plumb moment MIM caused by the 
axial force P is PLc/500 at the base. To determine the equivalent notional load accounting for the 
effects of initial geometric imperfection, consider a cantilever column shown in Figure 5b. The 
column is subjected to an axial force P and a lateral notional load nP at the top of the member. If 
the same out-of-plumbness of Lc/500 is assumed, Figures 5a and 5b must be equivalent and the 
base moment MNL will be equal to MIM. Thus, (NP)(Lc)=PLc/500 or n=0.002  should be used. In 
this study, the proposed equivalent notional load for practical use is 0.002 times the total gravity 
loads applied on the considered story level. The notional load should be applied laterally at the 
top of each story. 
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Figure 4. Explicit modeling method for modeling geometric imperfections of a member 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Equivalent notional load method for modeling geometric imperfections of a member 
 

3.3. Further Reduced Tangent Modulus Method 
 
Although explicit imperfection modeling method and the equivalent notional load method can 
well account for the effects of initial geometric imperfection, tedious work still exists. For both 
methods, the directions of the imperfections or notional loads should coincide with the directions 
of the deflections caused by the bending moments. If the directions of setting the imperfections or 
notional loads are not adequate, they may not weaken the structural system, instead, the structure 
will be strengthened. Usually, a trial and error process is used to determine the directions of the 
imperfections or notional loads for complicated systems. 

To eliminate this tedious work, the further reduced tangent modulus approach was 
proposed [8]. By including the effects of stiffness degradation due to geometric imperfection, the 
reduction factor of 0.85, which is determined by calibrating the plastic-zone solutions [2], is used 
to further reduced CRC-Et as given in equations (14-15). The same reduction factor of 0.85 is 
used for both braced and unbraced structures. The further reduced tangent modulus curve is 
shown in Figure 6. 
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Where '
tE is reduced tangent modulus, iξ  is reduction factor for geometric 

imperfection. 

 
 

Figure 6. Further reduced tangent modulus method for modeling geometric imperfections  
 

Although the reduction factor should be a function of the axial force in a column, a 
constant is used instead, because it allows for simplicity in the practical design process. Since the 
further reduced tangent modulus method can avoid the determination of the directions of the 
geometric imperfections and greatly reduce the input work that is necessary for the explicit 
imperfection modeling method and equivalent notional load method, it is recommended for 
practical steel frame design. 
 
4. NUMERICAL EXAMPLE  
 
A six story two bay frame has been proposed by Vogel [1] as a European calibration frame for 
nonlinear inelastic analysis. In this study, the refined plastic hinge analysis of the Vogel’s 
calibration frame is investigated by using three different types of geometric imperfection models. 
Also, the refined plastic hinge analysis results are compared with the previous plastic zone 
analysis results. 
 
4.1. Analyses of Vogel’s Six Storey Calibration Frame 
 
Both gravity and lateral loads are applied proportionally until failure occurs. All beams are 
continuously braced about their weak axes and all connections are assumed to be rigid. Columns 
are bent about the strong axes. The frame imperfection is assumed as 1/450 of story height. The 
modulus of elasticity is 205 kN/mm2 and the yield stress is 235 N/mm2. All frame members and 
loadings are given in Figure 7. 

The plastic zone analyses results of the previous studies are given in Table 1 and the 
refined plastic hinge analysis of explicit imperfection modeling, notional load modeling and 
further reduced tangent modulus modeling methods are given in Table 2. 
 

Table 1. Collapse load parameter of plastic zone analysis of Vogel’s calibration frame 
 

Reference Analysis Type Collapse Load 
Parameter, λu 

Vogel [15] 
Ziemian [16] 
Clarke et al. [9] 
Avery & Mahendran [3] 

Plastic Zone (Fiber Element) 
Plastic Zone (Fiber Element) 
Plastic Zone (Fiber Element) 
ABAQUS (Shell Element) 

1.11 
1.18 
1.17 
1.23 
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Figure 7. Vogel’s six storey two bay calibration frame 
 
4.2. Refined Plastic Hinge Analysis Results 
 
Applied load ratio versus lateral displacement at roof level curves of explicit imperfection 
modeling, notional load modeling and further reduced tangent modulus modeling methods are 
given in Figure 8. 
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Figure 8. Comparison of load ratio - lateral displacement curves for different imperfection 
modeling by refined plastic hinge analysis of Vogel’s two bay six storey calibration frame 
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Table 2. Refined plastic hinge analysis results for different imperfection modeling types 
 

Analysis Type Imperfection Modeling Type Collapse Load 
Parameter, λu 

Refined Plastic Hinge 
Refined Plastic Hinge 
Refined Plastic Hinge 

Explicit  Imperfection Modeling 
Notional Loads Modeling 

Further Reduced Tangent Modulus Modeling 

1.09 
1.09 
1.10 

 
5. CONCLUSIONS 
 
It can be seen that the present results are in close agreement with the prediction by the plastic 
zone theory, implying the structure behavior can be accurately predicted by the simpler and more 
efficient method based on refined plasticity concept.  

Each of three imperfection model give errors no more than 2% with respect to Vogel’s 
plastic zone analysis results. Also, explicit imperfection modeling and notional load imperfection 
modeling detects equal ultimate load factors while further reduced tangent modulus imperfection 
modeling detects better result when compared with the plastic zone analysis results.  
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