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ABSTRACT 
 
In the present paper the review of the recent investigations regarding the dynamical problems of the bodies 
with initial stresses are considered. In this case the investigations carried out in the recent six years within the 
framework of the piecewise homogeneous bodies model with the use of the Three-dimensional Linearized 
Theory of the Elastic Waves in Initially Stressed Bodies are considered and the main attention is focused on 
the studies made by the author and his students. The researches on the wave propagation and on the 
dynamical time-harmonic stress-state problems are reviewed separately. The areas of the further 
investigations are presented. 
Keywords: Initial stress, residual stress, wave dispersion, layered material, fibrous material, time-harmonic 
stress field, Lamb’s problem. 
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ÖNGERİLMELİ ELASTİK CİSMİN DİNAMİK PROBLEMLERİ HAKKINDA 
 
ÖZET 
 
Bu çalışmada öngerilmeli cisimlerin dinamik problemleriyle ilgili son araştırmaların değerlendirilmesi ele 
alınmaktadır. Bu durumda öngerilmeli cisimlerde elastik dalgaların üç boyutlu lineerize edilmiş teorisi 
kullanılarak parçalı homojen cisim modeli çerçevesinde son altı yılda yapılmış araştırmalar ele alınmış ve esas 
ilgi, yazar ve öğrencileri tarafından yapılmış olan çalışmalara verilmiştir. Dalga yayılımı ve zamana göre 
harmonik dinamik gerilme durumu problemleri üzerine olan araştırmalar ayrı ayrı ele alınmıştır. İleride 
yapılması öngörülen araştırma alanları gösterilmektedir.  
Anahtar Sözcükler: Öngerilme, dalga dispersiyonu, levhalı malzeme, lifli malzeme, zamana göre harmonik 
değişen gerilme durumu, Lamb problemi. 
 
 
1. INTRODUCTION  
 
Elastodynamic problems arise in almost all areas of natural sciences and engineering. As time 
elapses these problems attract more and more attention of various fundamental and applied areas 
of science. In this case the intensive development of some fields of the dynamics of the deformed 
bodies was stimulated by the engineering requirements of the key industries. According to this 
statement, in the second half of the 20-th century the study of the nonlinear elasdodynamics 
problems become urgent. In this connection during this time the general nonlinear theory of 
elastic waves and its various simplified modifications that were oriented toward problems of 
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natural science and engineering were intensively developed. In this field a lot of  investigations 
were made and the generalized monographs, such as [1 – 3] have already been published. 
 An interesting and urgent problem which also applies to the nonlinear dynamical effects 
in the elastic medium, is the elastodynamics problems for initially stressed bodies. It should be 
noted that initial stresses occur in the structural elements during their manufacture and assembly, 
in the Earth’s crust under the action of geostatic and geodynamic forces, in composite materials, 
etc. Therefore results of the investigations of the afore-mentioned elastodynamics problems for 
initially stressed bodies have a wide range of applications. 

At present, by the theory of elastodynamics of the initially stressed bodies is currently 
meant the linearized theory of the elastodynamics for the initially stressed bodies constructed 
using the linearization principle from the general nonlinear theory of elasticity or its simplified 
modifications. In the construction of the field equations of the linearized theory of 
elastodynamics, one considers two states of a deformable solid. The first is regarded as the initial 
or unperturbed state and the second is a perturbed state with respect to the unperturbed. By “state 
of a deformable solid” are meant both motion and equilibrium (as a particular case of motion). It 
is assumed that all values in a perturbed state can be represented as a sum of the values in the 
initial state and perturbations. The latter is assumed to be small in comparison with the 
corresponding values in the initial state. It is also assumed that both initial (unperturbed) and 
perturbed states are described by the equations of nonlinear deformable solid mechanics. Due to 
the fact that perturbations are small, the relationships for the perturbed state in the vicinity of 
appropriate values for the unperturbed state are linearized and then subtracted from them the 
relationships for the unperturbed state. The result is the linearized equations of the 
elastodynamics. Since equations contain the initial state variables, the linearized equations 
describe the influence of the initial stresses on the perturbations. 

Thus, within the framework of certain limitations the linearized equations obtained by 
the above-described manner give the possibility to investigate all kinds of dynamical problems for 
initially stressed bodies. In this case it is necessary to distinguish, so called, approximate and 
exact approaches. The approximate approaches are based on the Bernoulli, Kirchhoff-Love and 
Timoshenko hypotheses and other methods of reducing three-dimensional (two-dimensional) 
problems to two-dimensional (one-dimensional) ones. It is evident that, the approximate 
approaches simplify the mathematical solution procedure. However, in many cases the results 
obtained by employing these approaches may not be acceptable in the qualitative and quantitative 
sense. For example, the applied theories of rods, plates, and shells describe only few propagating 
waves (modes). Moreover, within the framework of these approaches it cannot be described the 
near-surface dynamical processes for the initially stressed bodies. 

The investigations carried out by employing TLTEWISB can be divided into two 
groups.  In the first group (the second group) investigations the wave propagation (stress 
distribution) problems have been studied. Up to now a lot of investigations regarding the first 
group were made. The review of those was considered in the paper [4-6]. A systematic analysis of 
the first group of investigations was given in [7-9]. It follows from these references that, before 
the beginning of the 21st century the investigations regarding: (i) surface wave propagation 
(except Love waves) in the layered half-space with initial stresses; (ii) the concrete numerical 
investigations on the wave propagation in the unidirectional fibrous composites with initial 
stresses are absent, almost completely. Moreover, it follows from the analyses of the foregoing 
references that until now there are a few studies regarding the above-noted second group 
investigations. During the recent five years the investigations on the wave propagation problems 
(i) and (ii) and the investigations on the dynamical stress distribution in the layered materials with 
initial stresses have been made by the author and his students. The aim of this paper is to consider 
the review of these investigations and to propose directions of further researches. All results 
which will be analyzed below are obtained within the framework of the piecewise-homogeneous 
body model.  
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Taking the above discussions into account it is preferred to use the exact approach, i.e., 
so called, Three-dimensional Linearized Theory of Elastic Waves in Initially Stressed Bodies 
(TLTEWISB) for investigations the dynamical problems of the elastic bodies with initial stresses. 
It should be noted that for determination of the initial (unperturbed) state in the relatively rigid 
materials the classical linear theory of elasticity is used. At the same time, the perturbed state is 
described by the geometrically nonlinear exact equations of the theory of elasticity. By linearizing 
these equations the afore-mentioned equations of TLTEWISB are obtained. This and other similar 
versions of the TLTEWISB are analysed in the monographs [7-9]. 

Below the wave propagation and stress distribution problems will be considered 
separately. 
 
2. WAVE PROPAGATION (DISPERSION) PROBLEMS 
 
In this section we will consider the wave propagation (dispersion problems regarding the pre-
stressed layered half-plane and unidirected fibrous composites. Up to now in this field the results 
related the half-plane covered with a single layer and the compound circular cylinder were 
obtained.  
 
2.1. Pre-Stressed Half-Plane Covered With A Single Pre-Stressed Layer  
 
The results for the considered case within the framework of the piecewise homogeneous body 
model by the use of the Second Version of the Small Deformation Theory  (SVSDT) of the 
TLTEWISB [7-9] were obtained in [10-12]. Here we consider some fragments of these results 
and for this purpose we start with the mathematical formulation of the problems. 

Consider the half-plane covered by the layer with thickness h. With the inter-plane of 
the layer and half-plane we associate the Lagrangian coordinates 321 xxOx  which in the natural 
state coincide with the Cartesian coordinates. Note that the covered layer and half-  
 

 
 

Figure 1. The geometry of the considered stratified half-plane. 
 
plane occupy the regions { ,x1 +∞<<∞− ,hx0 2 << }+∞<<∞− 3x  and  
{ ,x1 +∞<<∞− ,0x 2 <<−∞ }+∞<<∞− 3x  respectively (Fig.1). Below we will use the 
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following notation: the values related with the layer and half plane are denoted by upper indices 
(1) and (2) respectively, the values related to the residual (initial) stresses are denoted by upper 
indices (m),0 where m=1,2. 

As it has been noted above, we assume that the initial deformations are small ones and 
are determined by the use of the classical linear theory of elasticity. Moreover, we assume that 
these deformations in the covering layer and half space appear separately before contacting these 
with each other and are determined as follows. 
 

0const m
0),m(

11 ≠=σ , 2,1m = , 00),m(
ij =σ   for 11ij ≠ .                                      (1) 

 

Note that all investigations in the [10-12] were made in the plane-strain state in the 
21xOx  plane and it was assumed that the stresses arising as a result of the investigated wave 

propagation in the m-th component of the considered system significantly less than the initial 
stress 0),m(

11σ .  Thus, in the [10 -12], within the framework of the foregoing assumptions the 

dispersion of the waves propagated along the 1Ox  axis is studied. These studies are made by the 
use of the following equations of motion of TLTEWISB. 
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In (2) the following notation is used: )m(
ijσ  and )m(

iu are the components of the stress 

tensor and displacement vector respectively which arise as a result of the wave propagation, 
)m(ρ is a material density.    

It is assumed that on the free face plane of the covering layer the following conditions 
are satisfied: 
 

.0
2x

)1(
2i =σ  i=1,2.    (3) 

 

 Moreover, it is supposed that the following decay conditions are also satisfied. 
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Two types of contact conditions between the covering layer and the half plane are 
considered, the first of which being the complete contact conditions which can be written as 
follows: 
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The second type of contact conditions are the following incomplete contact conditions. 
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The mechanical (constitutive) relations of the layer and half-plane materials are given 
by Murnaghan potential [13]. This potential is determined as follows. 
 

( ) ( ) )m(
3

)m(
)m(

2
)m(

1
)m(3)m(

1

)m(
)m(

2
)m(2)m(

1
)m()m( A

3
cAAbA

3
aAA

2
1

+++µ+λ=Φ .               (7) 

S. D. Akbarov                                                                                                Sigma 2006/3 



 
 

 5

In  (7) )m(λ  and  )m(µ  are Lame’s,  )m()m( b,a and )m(c  are the 3rd  order elasticity 

constants. Further, )m(
2

)m(
1 A,A  and )m(

3A  are the 1st , 2nd  and the 3rd algebraic invariants of 
Green’s strain tensor respectively. For the considered case, the expressions of these invariants are 
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From (7)-(9) we obtain the following linearized constitutive relations for the layer and 
half-plane materials. 
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According to [7 -9], for the considered case, i.e. for the case where the initial stress state 
is determined within the framework of the geometrical linear theory of elasticity, for the 

)m(
2

)m(
1 A,A , )m(

3A  and )m(
12µ  we obtain the following expressions. 

 

( ) +σ+
µ

+µ+λ= 0),m(
11

)m()m(
)m(

)m()m()m(
11 cb212A  

( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

µ

λ
+−+

σ
)m(

)m(
)m()m()m()m(

)m(
0

0),m(
11

2
cb2ba

K3

2
, 

( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

µ

λ
+−+

σ
+µ+λ= )m(

)m(
)m()m()m()m(

)m(
0

0),m(
11)m()m()m(

22 2
cb2ba

K3

2
2A , 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

µ

λ
−

σ
+σ

µ
+λ= )m(

)m(
)m()m(

)m(
0

0),m(
110),m(

11)m(

)m(
)m()m(

12 ba
K3

2bA ,   
3

2K
)m(

)m()m(
0

µ
+λ= ,  

              
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ µ+λ

µ

σ
+

σ
+µ=µ

)m(
0

)m()m(

)m(

0),m(
11

)m(

)m(
0

0),m(
11

)m(
)m()m(

12 K34

c

K3

b
.                              (11) 

 

With the above stated the formulation of the problem is exhausted. 
For solution to the formulated problem the displacements are represented as follows 
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The following expressions are obtained for the function )x( 2
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2ϕ  from the equations 
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Using the expressions (13) the other sought values are determined from the equations 
(2), (9) and (10). After doing some mathematical manipulation it is obtained the dispersion 
relation is obtained from the boundary (3) and contact conditions (5) (for complete contact) or (6) 
(for incomplete contact). This dispersion relation can be expressed formally as follows 
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Solving equation (15) the dispersion curve  
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It follows from (14) that to satisfy the conditions (18) the following relations must hold 
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Consequently, in the case (18) the solution (13) corresponds to such a wave propagation 
in the layered half-plane that the layer undergoes an oscillatory motion in the 2Ox  direction 
propagating in the 1Ox  direction with velocity c . According to the above stated, the 

S. D. Akbarov                                                                                                Sigma 2006/3 



 
 

 7

disturbances in the layer decay exponentially with depth in the half-plane and therefore the wave 
can be considered as a generalized Rayleigh wave confined to the pre-stressed covering layer.  

It should be noted that the considered problem in the case where 00),2(
11

0),1(
11 =σ=σ  was 

investigated in [14, 15] and also discussed in [16]. According to [14,15], for the case  
00),2(

11
0),1(

11 =σ=σ  the function (17) has two branches and it was said that they correspond to the 

1M  and 2M  types of propagation. For the 1M  branch the displacement of the layer 
circumscribes the ellipse similar to the ordinary Rayleigh waves. In this case the 2M  branch 
leads to an opposite type of motion. Moreover, in [14-16] it had been shown that, the dispersion 
equation (18) for the case 00),2(

11
0),1(

11 =σ=σ   has infinitely many modes n1M  and n2M  

respectively for the branches 1M  and 2M  unlike ordinary Rayleigh waves, which can propagate 
only in one mode. There exists a cut-off value of )kh(  for each mode, below which unattenuated 
propagation cannot be excited and the values of this )kh(  increase with the mode number.              

In [10-12] the corresponding investigations for a stratified half plane were made within 
the framework of the foregoing statements. In this case the concrete numerical results are 
obtained for the materials given in Table 1. 
 

Table 1. The values of elastic constants (after [5] ) of the selected materials  
 

Materials ρ   
3cm/gr  

410−×λ  
MPa 

410−×µ  
MPa 

510a −×  
MPa 

510b −×  
MPa 

510c −×  
MPa 

Steel 3       7.795 9.26 7.75 -2.35 -2.75 -4.90 
Bronze      7.20 8.16 3.84 1.20 -3.10 4.80 
Brass 59-1 7.20 9.49 4.47 -0.70 2.70 -3.40 
Brass 62    7.20 9.49 4.47 -2.80 -2.10 -3.20 
Acrylic Plastic 
                  

1.16 0.404 0.19 2.68 310−× -3.12 210−× -6.77 210−×  

 
Note that in the paper [11] the above-formulated problem was studied for the case 

where the influence of the third order elastic constants is not taken into account, i.e. it was 
assumed that )m()m( ba = 0.0c )m( ==  in (7) and (11). The influence of these constants on the 
considered wave dispersion was analyzed in the paper [10]. Moreover note that in [10, 11] the 
complete contact conditions (5) were considered. The influence of the incompleteness of the 
contact conditions (i.e. the conditions (6)) on the wave propagation were studied in [12]. Here we 
consider some fragments of these results and for this purpose, as in [10], we introduce the 
parameters )1(0),1(

11
)1( µσ=ψ , )2(0),2(

11
)2( µσ=ψ . Consider two cases: I. 0)1( >ψ , 0)2( =ψ  

and II. 0)1( =ψ , 0)2( <ψ . Moreover, introduce the notation c)cc( −=η , where c is the wave 

propagation velocity under 0)2()1( =ψ=ψ  and c  is the wave propagation velocity under 

0)1( ≠ψ  or 0)2( ≠ψ . Consider the pair of materials bronze(covering layer) + steel (half-plan).  
Fig. 2 shows the dispersion curves for the first and second mode of the 1M  and 2M  branches in 

the case where 0)2()1( =ψ=ψ . The influence of the pre-stretching of the covering layer and the 
third order elastic constants of the layer material on the wave propagation velocity is illustrated 
by the graphs given in Fig. 3. At the same time, Fig. 4 shows the influence of the initial 
compression of the half plane the dispersion of the generalized Rayleigh wave. In these figures 
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the graphs regarding the afore-mentioned first and second branches of the first (second) mode are 
represented by letters a and b  ( c and d ).    

 

 
 

Figure 2. Dispersion curves for the pair of materials bronze + steel. 
  

Note that in [10-12] besides the pair of materials considered here the pairs brass 59-1 + 
steel, brass 62 + steel, acrylic plastic + steel are also considered. The systematic analysis of these 
results was made in [17]. 

According to the numerical results attained in the investigations [10-12, 17] the 
following conclusions were drawn. 

For all the considered materials which are selected for the stratified layer if the 
influence of the third order elastic constants occurring as a result of the initial stretching (tension) 
of this layer is ignored the velocity of the generalized Rayleigh wave propagation increases. 

It was established that as a result of the incompleteness of the contact conditions the 
wave propagation velocity decreases. 

Under taking the third order elastic constants into account the character of the influence 
of the above-mentioned initial stretching (tension) of the stratified layer on the velocity of the 
generalized Rayleigh wave propagation is different for various materials. For example, for the 
pairs of materials such as bronze + steel and brass 59-1 + steel  this influence has only a 
quantitative character, i.e. the accounting of the third order elastic constants causes an increase for 
the pair of the materials bronze + steel , but a decrease for the pair of the materials brass 59-1 + 
steel  in the generalized Rayleigh wave propagation velocity with respect to that obtained under 
the case where these constants are ignored. However, for the pairs of materials brass 62 + steel  
and  acrylic plastic + steel the mentioned influence has not only a quantitative, but also a 
qualitative character, i.e. as a result  of the accounting of the third order elastic constants the 
velocity of the considered wave decreases under initial stretching of the stratified layer. 
Moreover, for the pair of the materials acrylic plastic + steel the character of this influence 
depends also on the values of kh.  
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a                                                                                b  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c                                                                                d  
 

Figure 3. The influence of the pre-stretching of the stratified layer on the dispersion of the 
generalized Rayleigh wave for the pair materials bronze + steel  

 
 With the above-stated we exhaust the consideration of the results attained for the 
surface wave propagation in the stratified half-plane with initial stresses. Furthermore, this kind 
of investigations can be developed for the pre-stressed half plane covered with the many-layered 
pre-stretched plate. Moreover, these investigations can be developed for the finite initial strain 
state. 
 
2.2. Axisymmetric Longitudinal Wave Propagation In Pre-Stresses Compound Circular 
Cylinders  
 
This problem was investigated in the paper [18]. The investigations were made within the 
framework of the piecewise homogeneous body model with the use of the first variant of the 
theory of small initial strains of the TLTEWISB. The problem considered in [18] is of 
significance both from the viewpoint of the wave propagation in the many-layered cylindrical 
bodies and from the viewpoint of the wave propagation in the unidirected fibrous composites 
under low concentration of the fibers. It is evident that the latter case can be realized as the 
thickness of the covering hollow cylinder is more significant than the radius of the inner whole 

On the Dynamical Problems of the Elastic Body ... 



 
 

 10

cylinder. We here consider the formulation of the problem and some fragments of the results 
obtained in [18]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

a                                                                                b 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c                                                                                d 
 

Figure 4. The influence of the initial compression of the half plane on the dispersion of the       
wave for considered pair of materials 

 

 
 

Figure 5. The geometry of the considered compound cylinder. 
 

Assume that in the natural state the inner solid cylinder radius is R (Fig.5) and the 
thickness of the external hollow cylinder is h. In the natural state we determine the position of the 
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points of the cylinders by the Lagrangian coordinates in the Cartesian system of coordinates 
321 yyOy  as well as in the cylindrical system of coordinates 3yOrθ . Assume that the cylinders 

have infinite length in the direction of the 3Oy  axis. We aim that the cylinders (before the 
compounding) be stretched separately along the 3Oy  axis and in each of them the homogeneous 
axisymmetric initial stress state be appear. However, the results which will be discussed below 
can also be related to the case where the cylinders are stretched after the compounding. In this 
case as a result of the difference of Poisson's coefficients of the cylinders' materials the 
inhomogeneous initial stresses acting on the areas which are parallel to the 3Oy  axis arise. But 
the values of these inhomogeneous stresses are much smaller than the values of the homogeneous 
initial stresses acting on the areas which are perpendicular to the 3Oy  axis. Therefore, according 
to [9], the inhomogeneous initial stresses can be neglected under consideration. 

With the initial state of the cylinders we associate the Lagrangian cylindrical system of 
coordinates 3'y''r'O θ  and Cartesian system of coordinates 321 'y'y'y'O . The values related to 
the inner solid cylinder and external hollow cylinder are denoted by upper indices (1) and (2) 
respectively. Furthermore, the values related to the initial state are denoted by the upper index 
"0". Thus, according to the above-stated the initial state in the cylinders can be written as follows: 
 

m
)k(

m
0),k(

m y)1(u −λ= ,  const)k(
m =λ , )k(

2
)k(

1 λ=λ ,  3,2,1m = ;  2,1k = ,                               (22) 
 

where )k(
mλ  is the elongation along the mOy  axis. 
In [18] within the above-stated the wave propagation in the 3'y'O  direction in the 

compound cylinder is investigated. As it has been noted above, this investigation was made by the 
use of coordinates 'r  and 3'y  in the framework, the first variant of the theory of small initial 
strains of the TLTEWISB. According to this variant of the small deformation theory, it is 
assumed that the values )k(

m
)k(

m 1 λ−=δ  and shears are smaller than unity and thus can be 
neglected under linearization procedure. How this theory is constructed was analysed in [7-9] in 
detail. 

It follows from (22) that  
 

i
)k(

ii y'y λ= , r'r )k(
1λ= ,  R'R )1(

1λ= , h'h )2(
1λ= .                                                             (23) 

 

Below the values related to the system of coordinates associated with initial state, i.e. 
with 321 'y'y'y'O  or with 3'y''r'O θ  are denoted by the upper prime.  

Thus, according to [7-9], we write the basic relations of the TLTEWISB for 
axisymmetrical case. 
 The equation of motion: 
 

)k(
'r2

2
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∂
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∂
∂

+
∂
∂

θθ  , 

)k(
32

2
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3
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)k(
'r3 'u

t
''T

'y
'T

'r
1'T

'r ∂

∂
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∂
∂

++
∂
∂ ,                                                              (24) 

 

The mechanical relations: 
 

3
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3)k(
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∂
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∂
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3
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)k(
'r3 ∂
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ω= , 
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∂
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ω= .                                                      (25) 

In (24) and (25) through )k(
'r'r'T ,…, )k(

33'T  the perturbation of the components of 

Kirchoff stress tensor are denoted, notation )k(
'r'u , )k(

3'u  shows the perturbation of the 

components of the displacement vector. The constants )k(
1111'ω , … , )k(

3333'ω , )k(ρ  in (24), (25) are 
determined through the mechanical constants of the cylinders' materials and through the initial 
stress state. Note that for the considered initial stress state the expression of these constants is 
given through the expression of those in the system of coordinates 3yOrθ  (we denote them by  

)k(
1111ω , … , )k(

3333ω ) with the following formulae: 
 

)k(
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1
)k(

1313' ωλλ=ω     (26) 

 

It is assumed that the elasticity relations of the cylinder’s materials are given by 
Murnagan potential (7). For the problem considered in [18] the expressions of the algebraic 
invariants are the following: 

33rr1A ε+ε+ε= θθ , 2
33

22
3r

2
rr2 2A ε+ε+ε+ε= θθ ,  )(3A 33rr

2
3r

3
33

33
rr3 ε+εε+ε+ε+ε= θθ .  (27) 

 

In (27) rrε , θθε , 33ε  and 3rε  are the components of the Green's strain tensor and 
these components are determined through the components of the displacement vector by the 
following formulae: 
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In this case the components ijσ  of the symmetric stress tensor are determined as 
follows: 
 

Φ
ε∂
∂

=σ
rr

rr ,  Φ
ε∂
∂

=σ
θθ

θθ , Φ
ε∂
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=σ
33

33 , Φ
ε∂
∂

=σ
3r

3r .                                (29) 
 

Note that the expressions (25)-(29) are written in the arbitrary system of cylindrical 
coordinate system without any restriction related to the association of this system to the natural or 
initial state of the considered compound cylinders.  
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For the considered case the relations between the perturbation of the Kirchhoff stress 
tensor and the perturbation of the components of the ordinary symmetric tensor of stress can be 
written as follows: 
 

)k(
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)k(
1

)k(
'r'r ''T σλ= ,  )k(
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According to [7-9], by linearization of the equations (29) and taking (25), (30) and (22) 
into account the following expressions are obtained for the constants )k(

1111ω , … , )k(
3333ω  in (25): 
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where 
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Thus, the propagation of wave in the considered compound cylinder was investigated 
by the use of the equations (24)-(25), (31) and (32). In this case it is assumed that the following 
contact and boundary conditions are satisfied. 
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With the above-stated we exhaust the formulation of the problem and the consideration 
of the governing field equations. 
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The solution to the formulated problem is presented as 
 

)t'kysin()'r('u 3
)m(

3
)m(

3 ω−ϕ= , )t'kycos()'r('u 3
)m(

'r
)m(

'r ω−ϕ= .                                                  (34) 
 

After some mathematical manipulations, the functions )'r()m(
3ϕ  and )'r()m(

'rϕ in (34) 
are determined from the foregoing corresponding equations. The expressions of these functions 
contain unknown constants. From the conditions (33) the homogeneous algebraic system of 
equations are obtained for these constants and by the usual procedure, the dispersion equation is 
attained from this system equation. 
 

Table 2. The values of elastic constants of selected materials 
 

Materials Density Young's 
moduli 

Pois.'s 
ratio 

 
Third order elastic constants 

Tungsten 
   (W)  

3

3
W

mkg3.19

10 =×ρ −

 MPa3.34
10E 4

W =× −
 

=ν W  
0.28 

=× −5)1(
W 10a

-10.75 MPa 

=× −5)1(
W 10b

-14.3 MPa 
=× −5)1(

W 10c
-49.6 MPa 

Alumin. 
    (Al) 

3

3
Al

mkg77.2

10 =×ρ −

 MPa28.7
10E 4

Al =× −
 

=νAl  
0.30 

=× −5)2(
Al 10a

0.62 MPa 

=× −5)2(
Al 10b

-0.49 MPa 
=× −5)2(

Al 10c
-3.43 MPa 

 
Here we consider some fragments of the numerical results attained for the case where 

the material of the external hollow cylinder is aluminium (Al), but the material of the internal 
cylinder is tungsten (W). The values of the elastic constants of the selected materials are given in 
Table 2. Introduce the parameters  

 

)1(

0),1(
33)1(

µ

σ
=ψ , )2(

0),2(
33)2(

µ

σ
=ψ                                                                                          (35) 

 

for estimation of the initial stresses. 
 

The first mode

The second mode

The hollow cylinder from Al

The compound cylinder Al+W

The solid cylinder from Tungsten (W)

 
 

Figure 6. The dispersion of the first and second modes of the compound cylinders under Rh  
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In Figs. 6, 7 the dispersion curves for the first and second modes of the compound 
cylinder are given under 0.1Rh = and 5.0 respectively. At the same time, in these figures the 
corresponding dispersion curves for the cylinder of tungsten and for the hollow cylinder of 
aluminium are also given for comparison.  
 

The first mode

The second mode

The solid cylinder from Tungsten (W)

The hollow cylinder from Al

The compound cylinder Al+W

The first poin
of intersection

The second point 
of intersection

The third point 
of intersection

 
 

Figure 7. The dispersion curves of the first and second modes of the compound                        
cylinders under .0.5Rh =  

 

The first branch 
of the first mode

The second branch 
of the first mode

The third branch
of the first mode

The second mode

 
 

Figure 8. The influence of the initial stretching of the internal solid and external hollow cylinders 
on the dispersion curves of the compound cylinders 
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For the determination of the character of the influence of the initial stresses on the 
dispersion curves the following three cases are considered: { ,008.0)1( =ψ }00.0)2( =ψ  (call it 

case I), { ,00.0)1( =ψ }008.0)2( =ψ  (call it case II) and { ,008.0)1( =ψ }008.0)2( =ψ  (call it case 
III). The numerical results obtained in the paper [18] show that in the case I the dispersion curves 
are divided into the branches around only the first intersection point (Fig.7); in case II the 
separation of the dispersion curves from the branches takes place around only the second and 
third intersection point (Fig. 7). However, in the case III the dispersion curves are divided into the 
branches around all the fixed intersection points (Fig. 7). 

 

The part of the second 
branch of the first mode

 
 

Figure 9. The influence of the initial stretching on the part of second branch of the first          
mode of the dispersion curves 

 
It follows from the numerical results presented in [18] that under the absence of the 

initial stresses, 2cc =  is a root of the dispersion equation for the solid cylinder from 
homogeneous materials.  If the considered cylinder consists of a certain number of components 
(materials), then )n(

2cc =  (where n  is the number of components) are roots of the dispersion 
equation under the absence of the initial stresses. But, under the existence of the initial stretching 
in the cylinder the dispersion equation does not have such roots and as a result of both this 
situation and the separation around  the “intersection points” the new branches of the dispersion 
curves arise. Therefore, the influence of the initial stresses on the wave propagation velocity (in 
the quantitative sense) is estimated according to these branches. 

As an example, in Fig. 8 the afore-mentioned branches are shown. Moreover, Fig. 9 
shows the effect of the initial stretching of the components of the compound cylinder on the part 
of the second branches. Moreover, Fig. 9 shows the influence of the initial stretching of the 
components of the compound cylinder on the part of the second branch of the first mode of the 
dispersion curves. At the same time, in the paper [18] it is established that in the case 

0.8Rh = can be related to the infinite body containing a single cylinder, or to the unidirected 
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fibrous composite with low concentration of the fibres. Further, the investigations started in the 
paper [18] can be developed for the unidirected fibrous composites with high concentration of the 
fibres. 

With the above-stated we exhaust the consideration of the recent investigation on the 
wave propagation problems in the pre-stressed bodies.  
 
3. TIME-HARMONIC STRESS-DISTRIBUTION (FREQUENCY-RESPONSE) 
PROBLEMS 
 
One of the first attempts in this field was made in the papers [19-21]. Note that in [19,20] the 
nonstationary Lamb’s problem [22] for incompressible half-plane with finite initial strain was  
considered. But in the paper [21] the investigation [19,20] was developed for compressible half-
plane. These investigations were made by employing the Laplace integral transformation with 
respect to time and some expressions were obtained for the stresses and displacements through 
which the influence of the initial stresses on the dynamical behaviour of the considered half plane 
is analyzed. After these studies, during twenty years (from 1980 till the beginning of the 21st 
century) the investigations in the considered field were absent almost completely. In the 
beginning of the present century the study of the considered type problems was continued with 
the papers [23,24] in which the time harmonic Lamb’s problem was studied for the stratified half-
plane with the initial stresses. The investigations were made in the framework of the piecewise 
homogeneous bodies model by the use of the SVSIDT of the TLTEWISB. According to SVSIDT 
the initial strain-stress state in the layer and half-plane was determined by expressions (1) and the 
equations (2) satisfied within each component of the considered system. It is assumed that on the 
free face plane of the covering layer the following boundary conditions are satisfied. 
 

ti
10

hx

)1(
22 e)x(P

2

ω

=
δ=σ ,   0)1(

hx2
=σ =  .                                                                            (36) 

 

Moreover, it is assumed that between the covering layer and half-plane there exist 
complete contact conditions (5). In this case the decay conditions (4) are replaced by the 
following ones 
 

{ }(2) (2); .ij i M constuσ =<                                                                                                (37) 
 

In other words, it is assumed that as −∞→2x  there is no reflection, which means 

all waves travel in the negative 2x direction (Fig. 1). At the same time, the linearly elastic 
material of the covering layer and the half-plane is supposed to be homogeneous and isotropic 
and the elasticity relations of these materials are written as follows. 
 

)m(
ij

)m(j
i

)m()m()m(
ij 2 εµ+δθλ=σ , )m(

22
)m(

11
)m( ε+ε=θ .                                                  (38) 

 

Thus, within the framework of the afore-mentioned assumptions in the papers [23,24] 
the solution to the boundary value problem determined by the equations (2), (36), (5), (37), (38) 
and (9) the representation 
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u

∂
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+
∂
ϕ∂

= ,  
1
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By direct verification it is proven that the potentials )m(ϕ and )m(ψ  must satisfy the 
equations 
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At 00),m(
11 =σ , the equations (40) coincide with those in the classical linear theory of 

elastodynamics [16].  
According to the problem formulation the sought values are presented as 

=)t,x,x(g 21
ti

21 e)x,x(g ω  and the exponential Fourier integral transformation is applied with 

respect to 1x . The inverse transformation of the amplitude )x,x(g 21  (the over bar is omitted) is 
determined numerically for which the corresponding algorithm is developed.  

Thus, within the framework of the afore-mentioned assumptions and by employing the 
above-described solution method in the paper [22] the distribution of the normal stress  

=σ 0122 P/h)0,x(  =σ 01
)1(

22 P/h)0,x( 01
)2(

22 P/h)0,x(σ  with respect to hx1  was studied for 

various values of the frequency ω  and initial stress )1(0),1(
11 µσ . Note that such an investigation 

for the distribution of the shear stress 0112 P/h)0,x(σ  was made in the paper [24]. Moreover, 
note that in the papers [23,24] the numerical investigations were made for the case where 

0)2(0),2(
11 =µσ  and it is assumed that the stiffness of the covering layer is greater than that of 

the half-plane. Therefore, in the paper [25] the investigation was developed for the case where the 
elasticity modulus of the pre-stretching covering layer is smaller than that of the half-plane. It is 
evident that the case considered in the paper [25] is more complicated than that considered in the 
papers [23, 24] because the case considered in [25] is suitable for considering the propagation of 
the above-discussed generalized Rayleigh wave. In [25] the numerical results are obtained for the 
case where 0)1(0)1(

11
)1( >µσ=ψ , 0)2(0)2(

11
)2( =µσ=ψ  , 25.0)2()1( =ν=ν  ( )( )2()1( νν  is the 

Poisson ratio of the layer (half-plane) material, )2(
0

)1(
0 ρ=ρ , )2()1( EE < . The dimensionless 

frequency )1(
2chω=Ω  was introduced.  In [25] the algorithm for obtaining the numerical results 

is also developed and the numerical results regarding the distribution of the stresses  

0122 P/h)0,x(σ , 0112 P/h)0,x(σ  with respect to hx1  for various values of Ω  and )2()1( EE  
are presented.   

In the paper [26] the investigations were developed for the case where the free face 
plane of the covering layer is subjected to a uniformly distributed harmonic load acting on a strip 
extending to infinity in the direction of 3Ox  axis (Fig. 1) and of width  a2  in the direction of the 

1Ox  axis. The plane strain state in the 21xOx  plane is analyzed. In this case the boundary 
conditions (36) are replaced by the following ones 
 

⎪⎩

⎪
⎨
⎧

>

≤
=σ

ω

= axfor0

axfore
a2

P

1

1
ti0

hx

)1(
22

2

,   0)1(
hx2

=σ =  .                                                                 (41)  

 

For the solution to the considered problem the method proposed in [23-25] is employed. 
In [26] the numerical results are presented within the framework of the assumptions and notation 
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used in [25] and the main attention in these results is focused on the influence of the new problem 
parameter ha  on the dependencies between 0122 Ph)0,x(σ  and hx1  for the various values of 

Ω  and )2()1( EE . Moreover, the parameter 

0
3

0122012222 P/)10))0,x()0,x(((
11

×σ−σ=ψ >η=η  (where )1(0)1(
111 Eσ=η  ) is introduced and 

the distribution of the 22ψ  with respect to hx1  is also studied. The numerical results are 

presented under 0E )2(0)2(
11 =σ  for both 1EE )2()1( ≥  and 1EE )2()1( <  cases. Note that the 

results obtained for the case 1EE )2()1( = , 0E )1(0)1(
111 =σ=η  approach the regarding ones of 

the corresponding static problem [27] as 0→Ω . As an example in Figs. 10 and 11 some 
fragments of the afore-mentioned results are presented.  
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Figure 10. The distribution of 022 Phσ  with respect to hx1  
 

Note that the study [23 – 26] is performed for the case where the time-harmonic lineal-
located or uniformly distributed load is perpendicular to the face plane of the covering layer. 
Moreover, in [23 – 26] the numerical results are given for some selected discrete values of the 
dimensionless frequency Ω . In the paper [28] the investigations started in [23 – 26] were 
developed for the case where on the free face plane of the covering layer the arbitrary inclined 
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lineal located time-harmonic forces act. In other words, in the paper [28] the boundary conditions 
(36) are replaced by the following ones. 
 

αδ−=σ ω

=
cose)x(P ti

10
hx

)1(
12

2

,  αδ−=σ ω

=
sine)x(P ti

10
hx

)1(
22

2

,                                           (42) 
 

where α  is an angle between the 1Ox  axis and the external force vector direction, )x( 1δ is the 
Dirac delta function. 
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Figure 11. The distribution 22ψ  with respect to hx1  
 

In [28] the algorithm for obtaining numerical results was also developed and the 
concrete numerical results were presented for the pair of materials Aluminium (layer) + Steel 
(half-plane) as well as for Steel (layer) + Aluminium (half-plane). These numerical results are 
involved in the normal stress 0122 Ph)0,x(σ . The analyses of the results are made in the 
viewpoint of the new context, namely in the context of the dependencies this stress and frequency 
of the external force and the influence of the pre-stretching of the covering layer on these 
dependencies. As an example, we here present the graphs (Fig. 12) of these dependencies for the 
pair of materials Aluminium (layer) + Steel (half-plane). From these and other graphs constructed 
in [28] it follows that for both pairs of materials the dependence between  0122 Ph)0,x(σ  and 
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Ω  is nonmonotonic. There is such a value of Ω  for which 0122 Ph)0,x(σ has its absolute 
maximum for the considered range of the change of Ω . These values of Ω   and the 
corresponding absolute maximum values of 0122 Ph)0,x(σ  are called the “resonance” frequency 
and the “resonance” values of 0122 Ph)0,x(σ  respectively. The numerical results in [28] show 
that the values of the “resonance” frequency and the “resonance” values of 0122 Ph)0,x(σ  
depend on the selected pair of materials (i.e. on the mechanical properties of the layer and half-
space materials), on the inclination angle (i.e. on α ) and on the initial tension of the covering 
layer. 
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Figure 12. The graphs of the dependencies between 022 Phσ  and Ω  
 

Note that the nonmonotonic character of the dependence between 22σ  and Ω  agrees 
with the well-known results presented in [22, 29 – 31] and others, according to which, the 
behaviour of the half-space under forced vibration is similar to that of the forced vibration of the 
system which comprises a mass, a parallel connected spring and a dashpot. It follows from the 
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results obtained in [28] that the behaviour of the forced vibration of the half-plane covered by the 
layer is also similar to that of the mentioned system.   

The other type of dynamical problems which are related to the above discussed ones 
regard the moving loading of a system comprises a pre-stretched covering layer and pre-strained 
half-plane. The first attempt in this field which was made by the use TLTEWISB in the plane-
strain state had been carried out in [32]. Note that in [32] the dynamical response of the system 
consisting of the layer and pre-strained half-plane was considered. The equation of motion for the 
layer was described by the Timoshenko beam theory, but the equation of motion for the half plane 
was described by the TLTEWISB under finite initial strain state. The solution to the 
corresponding boundary-value problem is found by employing the exponential Fourier integral 
transformation. Concrete numerical investigations were made for the case where the constitutive 
relations for the half-plane material were given by the harmonic type of potential. Moreover, it 
was assumed that the speed of the moving load is constant and the subsonic case is considered. 
As a result of the numerical investigations the influence of the problem parameters on the critical 
velocity is studied. In the paper [33] the problem considered in [32] was studied by the use of 
complex potentials of the TLTEWISB [8]. 

In the paper [34] the investigations carried out in [32, 33] were developed for the case 
where the covering layer has also the initial strain and the equation of motion of this layer was 
also described by the TLTEWISB under SVSIDT. The considered problem is formulated by the 
equations (1), (2), (4), (5) (for the complete contact conditions), (6) (for incomplete contact 
conditions), (9) and (38) under the following boundary condition satisfied on the free face plane 
of the covering layer (Fig. 1). 
 

0
hx

)1(
12

2

=σ
=

,  )Vtx(P 1
hx

)1(
22

2

−δ−=σ
=

,                                                                            (43)  
 

where V is a constant and shows the loading velocity. It is assumed that  
 

( ))2(
2

)1(
2 c,cminV < , )m()m()m(

2c ρµ= .                                                                         (44) 
 

The problem is solved by the use of the moving coordinate system 22 x'x = , 

Vtx'x 11 −=  and the exponential Fourier transformation ∫
+∞

∞−

−= 1
'isx

212F 'dxe)x,'x(f)x,s(f 1 . 

The Fourier transformation of the sought values can be expressed as follows: 
 

⎜
⎝
⎛ ββ

α
),...s(det,...,)s(det

)s(det
1 k

nm
1
nm

nm
.                                                                         (45) 

 

where )s(nmα  are the coefficients of the unknowns in the algebraic system of equations obtained 
from (43), (5) for the complete contact conditions or from (43), (6) for the incomplete contact 

conditions. Note that the expressions for )s(k
nmβ  are obtained from the )s(nmα   by replacing 

the k -th column in )s(nmα  with the right side of the above-noted  algebraic equation system. 
Consequently, according to (45) the original of the sought values can be expressed as  
 

∫
+∞

∞−
⎜
⎝
⎛ ⎟

⎠
⎞ββ

απ
dse),...s(det,...,)s(det

)s(det
1

2
1

1'isxk
nm

1
nm

nm
.                                                    (46) 

 

It follows from (46) that the singular points of the integrated expression in (46) coincide 
with the roots of the equation 
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0)s(det nm =α .                                                                                                             (47) 
 

Consequently, the order of the singularity (denoted by r ) of the integrated values 
coincide with the order of the roots of equation (47). It is known that in the case where 1r0 <≤  
the integral can be calculated by the use of the well-known algorithm. In this case where 1r =  the 
calculation of the integral (46) is performed in the Cauchy’s principal value sense. But in the case 
where 1r >  the integral does not have any meaning and under the velocity corresponding to this 
case the resonance type of phenomenon takes place. It is obvious that the critical velocity 
corresponds to the local minimum (or maximum) of the function )sh(VV =  which satisfy the 
equation (47). One of the main questions of the moving loading problems for layered materials in 
the subsonic state (44) is the determination of this critical velocity (denoted by crV ) and 
investigation of the influence of the problem parameters on its values. The other question of the 
moving loading problem is the determination of the stress-strain in the considered mechanical 
system under crVV < . Namely these questions were analyzed in the paper [34] with the use of 

the parameters )1(
2cV=υ , )2(

2
)1(

212 ccυ=υ , )2()1( EEe = , )1(0)1(
111 Eσ=η , 

)2(0)2(
112 Eσ=η .   

As an example, in Tables 3 and 4  some parts of the numerical results obtained in [34] 
for the case where 5.0)1()2( =ρρ , e5.012 =υ  are given. Moreover, in [34]  many other 

numerical results regarding )1(
2crcr cV=υ  and the stress distribution acting on the interface 

plane between the half-plane and covering layer are also presented.  
 
Table 3. The values of the critical velocity )1(

2crcr cV=υ  for various 2η under complete (upper 
numbers) and incomplete (lower numbers) contact conditions for the case 0.01 =η  

 

     2η       
e  

      000.0   
005.0  

 
0.010 

 
030.0  

 
   2 
 

7093.0
8414.0  

7123.0
8437.0  

7153.0
8454.0  

7266.0
8541.0  

 
   10 
 

3730.0
4284.0  

3754.0
4307.0  

3777.0
4329.0  

3868.0
4415.0  

 
So far, in this section the 2D – two- dimensional (plane-strain state) problems has been 

reviewed. Now we consider the corresponding 3D – three – dimensional problems which have 
been investigated in the papers [35–38]. In these papers the time-harmonic three-dimensional 
(3D) Lamb’s problem for the half-space covered bi-axially pre-stretched layer is considered. The 
investigations are carried out within the framework of the piecewise homogeneous body model by 
the use of the SVSIDT  of the TLTEWISB and it is assumed that a time harmonic point located 
normal force acts on the free face plane of the covering layer. We here describe briefly the 
problem formulation and solution method used in [35–38].  

Consider the half-space covered by a bi-axially pre-stretched layer. With the covering 
layer we associate a Lagrangian coordinate system 321 xxOx , which in the undeformed state, 
would coincide with a Cartesian coordinate system. Note that the covering layer and the half-
space occupy the regions { 1x−∞ < < +∞ , 2 0h x− ≤ ≤ , }3x− ∞ < < +∞  and 
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{ 1x−∞ < < +∞ , 2x h− ∞ < ≤ − , }3x− ∞ < < +∞  respectively (Fig.13). We assume that, 

before contact, the layer and the half-space are stressed separately in the directions of 1Ox  and 

3Ox  axes, and homogeneous initial stress states appear in both materials. 
 

Table 4. The values of the critical velocity )1(
2crcr cV=υ  for various 2η  under complete  

(upper numbers) and incomplete (lower numbers) contact conditions for the case 0.02 =η  
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030.0  
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7093.0
8414.0  

7154.0
8468.0  

7214.0
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7442.0
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   10 
 

3730.0
4284.0  
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4319.0  

3833.0
4348.0  

3995.0
4358.0  

 

 
 

Figure 13. The geometry of the structure of the half-space covered by the layer  
 

The values related to the layer and the half-space are denoted by upper indices (1) and 
(2), respectively. The values related to the initial stresses are denoted by upper indices (m),0 
where m=1, 2. Moreover, below repeated indices will indicate summation over their ranges. 
However, underlined repeated indices are not to be summed.  

The linearly elastic material of the layer and the half-space are to be taken as 
homogeneous and isotropic. The initial stresses in the layer and the half-space are determined 
within the framework of the classical linear theory of elasticity as follows 
 

( ),0
11 1.m constσ = , 3

( ),0
33 .m constσ = , ( ),0 0m

ijσ =  for 11; 33ij ≠                                               (48) 
 

For the considered case the equation of motion are  
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For an isotropic compressible material one can write the following mechanical 
relations. 
 

)m(
ij

)m(
ij

)m()m()m(
ij 2 εµ+δθλ=σ , )m(

33
)m(

22
)m(

11
)m( ε+ε+ε=θ ,                                           (50) 

 

and  the following geometrical relations 
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It is assumed that the following complete contact conditions exist between the layer and 
the half-space. 
 

hx

)2(
ihx

)1(
i

22
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−=−=

=  ,
hx

)2(
2ihx
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In the free face plane of the covering layer, the following conditions are satisfied 
 

0
0x

)1(
120x

)1(
32

22

=σ=σ
==

, ti
310

0x

)1(
22 e)x()x(P

2

ω

=
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In addition to these, it is also assumed that as −∞→2x  there is no reflection, which 

means all waves travel in the negative 2x  direction. In other words, we assume that  
 

)2(
iu , =<σ M)2(

ij constant, as −∞→2x .                                                                         (54) 
 

This completes the formulation of the problem. It should be noted that in the case where 
)2,1m(0,0 0),m(

33
0),m(

11 ==σ=σ , the problem transforms to the corresponding formulation of the 
classical linear theory.  

Now we stop briefly on the solution method of the above-formulated problem. Note that 
the method of solving the Lamb’s problem has been developed intensively since Lamb [22]. 
Reference to various investigations is presented in papers [39, 40] and others. However, these 
developments have been made using the classical linear theory of elastic waves with 
homogeneous, isotropic or anisotropic half-spaces. Attention was focused on the construction of 
the integral expressions for the sought functions. Being attractive cases for numerical 
applications, these expressions were examined in some numerical study.  

The afore-mentioned studies and those listed therein have a considerable significance in 
elastodynamics problems. These studies are based on various types of integral transformations 
with respect to space and time variables. For time harmonic excitations, the resulting multi-
integrals were evaluated only in the far field by the method of stationary phase.   

Recently, a semi-analytical FE technique called Spectral Finite Element Method 
(SFEM) has been developed in the papers [41-43] and others for investigation of elastodynamics 
problems in multilayered media. This method can also be applied to the investigation of the 
Lamb’s problem for the multilayered half-space. However, until now, this method has only been 
developed for and applied to the investigation of the two-dimensional (spatial) elastodynamics 
problems. As in conventional semi-analytical FE methods, in SFEM, the sought expressions are 
represented in coordinates along the layer and time in series form. The kernels (i.e. the unknown 
coefficients of these series) depend on the coordinates changing through the thickness of the 
layer. These kernels are determined by employing one dimensional finite element modelling. In 
this case, the nodal displacements are related to the generalized nodal forces through the 
frequency and wavenumber dependent dynamic element stiffness matrix. The advantage of 
SFEM appears in cases where the considered body contains a large number of  layers. 
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In the investigations considered in the present section the studying model is composed 
of a layer and half-space only. Moreover, the SFEM has not yet been developed for 3D time-
harmonic Lamb’s problem. Therefore in the reviewed investigations the integral transformation 
method was preferred. In connection with this in the papers [35-38] for the solution to the above 
formulated problem the double integral (Fourier) transformation method was employed. In this 
case the Lamé representations for displacements are used. These representations can be presented 
as follows. 
 

ψu ×∇+φ∇= , 0. =∇ψ                                                                                                         (55) 
 

where  
 

( )321 u,u,u=u  , ( )321 ,, ψψψ=ψ .                                                                                     (56) 
 

In (55), the symbols  ×   and  .  show the vector and scalar products of vectors, respectively. 
From Eqs. (55), (56) we can write  
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After some manipulation, the following equations for the functions φ , 1ψ , 2ψ  and 3ψ  
from equations (49)-(51):  
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 where  ( ) )m(
0

)m()m()m(
1 /2c ρµ+λ=  is the speed of the dilatation wave. Under the conditions 

00),m(
11 =σ  and 00),m(

33 =σ , the equation (58) coincide with the corresponding ones derived in 
the classical linear theory of elastodynamics [16].  

By replacing, 22 t∂∂  with  2ω−  , the same equations and conditions for the 
amplitude of the sought quantities are obtained. For the solution of these equations the double 
Fourier transformation 
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with respect to the coordinates 1x  and 3x  is employed.  
The original unknowns that were sought can now be represented as  
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It should be noted that in the investigations [35-38] the main difficulties arise under 
calculation of the integrals (59). For this purpose the algorithm used under studying the 
corresponding two-dimensional problems is developed for the considered three-dimensional 
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problems. Taking the high significance of this algorithm in these investigations into account we 
here briefly consider its principal moments.  

To simplify the matters, we consider the calculation of the integral for )m(
22σ , that is the 

integral 
 

∫ ∫
+∞

∞−

+∞

∞−

+σ
π

=σ 31
)xsxs(i

321
)m(

F22132
)m(

22 dsdse)s,x,s(
4

1 3311 .                                                         (60) 

 

Introduce the following notation 
 

)x,x,x()x,x,x( 321
)m(

22321 σ=ϕ , )s,x,s()s,x,s( 321
)m(

F2213321F13 σ=ϕ , 

∫
+∞

∞−
ϕ

π
=ϕ 1

xis
321F13321F3 dse)s,x,s(

2
1)s,x,x( 11                                                          (61)  

 

Using symmetry and Eq. (61), the integral (60) can be represented as follows: 
 

∫ ∫
∞∞

ϕ
π

=ϕ
0 0

313311321F132321 dsdsxscosxscos)s,x,s(1)x,x,x(                                           (62) 

 

The following explains how the reduced integral (62) is calculated. First, the integral 
(62) is replaced by a corresponding definite integral, by using the following approximation  
 

∫ ∫∫ ∫ ϕ≈ϕ
+∞ +∞ *3 *1s

0

s

0
313311321F13

0 0
313311321F13 dsdsxscosxscos)s,x,s(dsdsxscosxscos)s,x,s(  (63) 

 

The values of *1S  and *3S  in Eq. (63) are defined from the convergence requirement. 
For the calculation of the definite integral in Eq. (63), first, the interval [ ]*3S,0  is 

subdivided into shorter intervals  [ ]1i3i3 S,S + , i=0,1,2,...,N, 0S30 = , *3N3 SS = , where  

[ ] [ ]*31i3i3
N

0i
S,0S,S =∪ +

=
 and  ( ) ∅=∩ +

=
1i3i3

N

0i
S,S . Then, the definite integral becomes  

 

3
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S

0
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0i
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S
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0
131 dsds(.)dsds(.)
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∫ ∫ ∑ ∫ ∫
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+
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⎜
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⎝

⎛
= ,                                                                         (64) 

 

where (.) denotes the integrand. 
Consequently, we obtain from Eqs. (64) and (62) that  

 

∫ ∫ ∑ ∫
=

+

ϕ=
*3 *1 1i3

i3

S

0

S

0

N

0i

S

S
333321F331 dsxscos)s,x,x(dsds(.) .                                                          (65) 

 

For calculations of the integrals (65) in the intervals [ ]1i3i3 S,S + , we use the Gauss 
integration algorithm, which is necessary to find the values of )s,x,x( 321F3ϕ  at certain nodal 

points /
k33 ss = . Thus, the calculation of the integral (64) is reduced to the calculation of the 

integral  
 

∫ ϕ=ϕ
*1S

0
111

/
k321F13

/
k321F3 dsxscos)s,x,s()s,x,x(                                                           (66) 
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Now we consider the calculation of the integral (66). Numerical investigations show 
that the function )s,x,s( /

k321F13ϕ  has a singular point for each selected /
k3s  and the location of 

these singular points in the intervals [ ]*1S,0  depends on /
k3s . 

It should be noted that, as in the two-dimensional problems analyzed above, the 
expressions of the Fourier transformations of the sought values contain the unknowns which are 
determined from the contact (52) and boundary conditions (53), (54). In this case the closed linear 
system of algebraic equations with respect to these unknowns are obtained from the (52)-(54), 
according to which, the unknowns can be expressed as follows.  
 

)s,s(;...det;;det;det
)s,s(det

1 /
k31

k
ij

2
ij

1
ij/

k31ij
⎟
⎠
⎞⎜

⎝
⎛ βββ

α
K   .                                                  (67) 

 

Consequently, the afore-mentioned singular points coincide with the roots of the 
equation 
 

0)s,s(det /
k31ij =α , i; j = 1, 2, 3, ..., 9                                                                                        (68) 

 

in 1s , where )s,s( /
k31ijα  are the coefficients of the unknowns in the afore-mentioned algebraic 

equation system. Note that the expressions for k
ij

1
ij ,, ββ K  are obtained from )s,s( /

k31ijα  by 

replacing the corresponding column of )s,s( /
k31ijα  with the right side of the algebraic equation 

system. 
A numerical analysis shows that the order of the roots of the equation (68) is one. 

Therefore, the order of all singular points is also one. Taking this situation into account in the 
solution to equation (68), we employ the well-known bisection method. 

Let us denote the roots of the equation (68) as  
 

)s(s)s(s)s(s)s(s /
k3M1

/
k3k1

/
k312

/
k311 <<<<< KK .                                                          (69) 

 

The number M in (69) depends mainly on the values of /
k3s , the dimensionless 

frequency )1(
2chω=Ω , and the mechanical and geometrical parameters of the layer and half-

space. 
After determining the roots (69), the interval of integration [ ]*1S,0  in (29) is partitioned 

as follows 
 

∫∫∫∫
ε+

ε−

ε+

ε−
+++=

*1

/
k3M1

/
k312

/
k311

/
k311*1 S

)S(S
1

)S(S

)S(S
1

)S(S

0
1

S

0
1 ds).(ds).(ds).(ds).( L                                                           (70) 

 

Then, the calculation of the integral (70) is performed in the Cauchy’s principal value 
sense. Here ε  is a very small value determined numerically from the convergence requirement 

of the integral (70). Each interval [ ]ε−ε+ + )s(s,)s(s /
k31n1

/
k3n1  is further divided into a certain 

number of shorter intervals, which are used in Gauss integration algorithm. All these procedures 
are performed using the programmes written in C++.  Note that all numerical investigations 
carried out in the papers [35-38] were made by the use of the foregoing algorithm. In the paper 
[35] these investigations were made for the case where 00),1(

11 >σ , 0)1(
33 >σ , =σ 0),2(

11  
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00),2(
33 =σ , 3.0)2()1( =ν=ν , 2EE )2()1( =  and )2(

0
)1(

0 ρ=ρ . At the same time, the parameters 
)1(0),1(

1111 µσ=η , )1(0),1(
3313 µσ=η  were introduced and the distribution of the stresses 

=σ 2i =σ
−= hx

)1(
2i

2 hx

)2(
2i

2 −=
σ )2,1i( =  with respect to hx1  was analyzed. However, in the 

papers [36,37] the numerical results are obtained for the following two materials: Rubber (shortly 
Rb) with properties 3

0 10x93.0 −=ρ 3m/kg , 49958.0=ν , 1040c1 = s/m , 30c2 = s/m ; 

Aluminium (shortly Al) with properties 3
0 10x7.2 −=ρ 3m/kg , 35.0=ν , 6420c1 = s/m , 

3110c2 = s/m , where 0ρ , ν , 1c  and 2c  denote the density, Poisson’s ratio, the speed of 
dilatation and distortion waves, respectively. The numerical investigation is carried out for the 
following two cases: Case I: (Rb+Al), Layer=Rubber, Half-space = Aluminium, Case II: 
(AL+Rb), Layer=Aluminium, Half - space=Rubber. In [37] the analysis was made  for the stress 

=σ )x,x( 3122 )x,h,x( 31
)1(

22 −σ )x,h,x( 31
)2(

22 −σ= . It is assumed that 00),1(
11 >σ , 

=σ 0),2(
11 =σ 0),1(

33  00),2(
33 =σ , 0.20 ≤Ω<  and the influence of the parameters 11η  and Ω  the 

distribution of the stress )x,x( 3122σ  with respect to hx1  and hx3  is studied.  In the paper 
[37] this study is developed for the other stresses acting on the interface plane and for the stresses 

=σ )x,x( 3111 )x,h,x( 31
)1(

11 −σ , =σ )x,x( 3133 )x,h,x( 31
)1(

33 −σ .  

In the paper [38] the main attention is focused on the dependencies between )0,0(22σ  
and Ω  for the pair of materials Aluminium (layer) + Steel (half-space) and Steel (layer) + 
Aluminium (half-space). The graphs of these dependencies are given in Figs. 14 and 15 
respectively.  
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Figüre 14. The graphs of the dependencies between 0
2

22 Phσ and Ω  for Aluminium       
(layer) + Steel (half-space). 
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It follows from these graphs that the analyzed dependencies are nonmonotonic. 
Consequently, as in the plane-strain state, the dynamical behaviour of the stratified half-space is 
similar to that of the system composed by a mass, a spring and a dashpot. Moreover, these graphs  
show that with 11η  the “resonance” values of the 22σ  decrease, but the “resonance” frequency 

*Ω=Ω  increase (decrease) for the pair of materials St + Al ( Al + St).  
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Figure 15. The graphs of the dependencies between 0
2

22 Phσ and Ω  for Steel                  
(layer) + Aluminium (half-space) 

 
All investigations considered above and regarding the time-harmonic stress state 

analyses were made within the framework of the following two basic assumptions: 
1) the initial strain state is determined by employing of the linear theory of elasticity; 
2) the materials of the layer and half-space are the linear elastic ones. 

It is known that the mechanical effects caused by the initial stresses (see, for example, 
Ref. [5,9]) in the qualitative and in the quantitative sense depend significantly on the values of the 
third order elastic constants. This situation requires the modelling of the stress-strain law of the 
layer and half-space materials by the nonlinear mechanical relations. The investigations reviewed 
and considered in [4-9] and in many others show that for this purpose it is suitable to use the 
Murnaghan potential [13] and to refuse from the foregoing first assumption. Moreover, it is also 
necessary to refuse from the foregoing second assumptions under consideration of the rubber-like 
materials which are employed widely in the key industries.  

Taking the above discussions into account in the papers [44 - 46] the axisymmetric 
time-harmonic Lamb’s problem for the system composed by the pre-strained layer and half-space 
are studied without the foregoing two basic restrictions. Instead of these restrictions in the paper 
[44] it is supposed that: 1) the initial strain state in the layer and half-space is determined by 
employing geometrical nonlinear theory of elasticity; 2) the linearized mechanical relations of the 
components are described by the Murnaghan potential. In this case the problem formulation is 
written through the equations (22)-(29) and it is assumed that the parameters )k(

iλ in (22) are 
determined as follows.  
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where 0),k(0),k(
rr

0),k(
θθσ=σ=σ . Moreover, the components )k(

ij' αβω  in (25) in the paper [44] are 

determined by the following expressions. 
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The following boundary and contact conditions are satisfied 
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Note that in (74) the index 'z  and the notation 'z  are used instead of the index 3  and 
notation 3'y  respectively in (24) and (25).  

For the solution to the considered problem, according to [7,9], the following 
representation  for displacements is used. 

 

)k(
2

)k(
'r 'z'r

'u Χ
∂∂

∂
−= ,  ⎜

⎜

⎝

⎛
Χ⎟

⎟
⎠

⎞

∂

∂
ρ−

∂

∂
ω+∆ω

ω+ω
= )k(

2

2
)k(

2

2
)k(

31131
)k(

1111)k(
1313

)k(
1133

)k(
'z t

'
'z

'''
''

1'u ,         (75) 

 

On the Dynamical Problems of the Elastic Body ... 



 
 

 32

where )k(Χ  satisfies the following equation. 
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In (75) and (76) the following notation is used.  
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By replacing 22 t∂∂ , 44 t∂∂  with 2ω−  and 4ω  respectively the same equations 
and conditions are obtained for the amplitude of the sought quantities. For the solution to these 
equations the Hankel integral representation is used for the function )k('Χ : 
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where )x(J0 is the Bessel function with zeroth order. By the employing of the above–detailed 
algorithm the numerical results are obtained for the concrete selected materials. As an example, 
here we consider the dependencies between 0

2
zz Phσ and Ω  for the pairs Steel (layer) + Al 

(half-space) (Fig. 16) and Acrylic Plastic (layer) + Al (half-space) (Fig.17).  
In the papers [45, 46] the investigations carried out in the paper [44] was developed for 

the case where the initial strain state in the components of the considered system is a finite one. It 
is assumed that the material of the layer and half-space are incompressible and elastic relations 
for those are given through the Treloar’s potential and the initial strain state in the components is  
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Figure 16. The dependencies between 0
2

zz Phσ and Ω  for the pairs Steel (layer) + Al       
(half-space)  

S. D. Akbarov                                                                                                Sigma 2006/3 



 
 

 33

0.00 0.50 1.00 1.50 2.00

-1.20

-1.00

-0.80

-0.60

-0.40 σ

Ω

/Pzz 0

=0.000

=0.004

=0.008

=0.010

a =b =c =0
a b c=/ 0; =/ 0; =/ 0

Ψ

Ψ

Ψ

Ψ

 
 

Figure 17. The dependencies between 0
2

zz Phσ and Ω  for the pairs Acrylic Plastic          
(layer) + Al (half-space) 

 
determined as (22). In this case the incompressibility condition in the initial state taking through 
the relation 1)k(
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1 =λλλ   ( 2,1k = ) into account the notation )k()k(
2

)k(
1 λ=λ=λ , 

2)k()k(
3 )( −λ=λ  is introduced. Thus, the mathematical formulation of the problems considered in 

[45, 46] is reduced to the following boundary value problem.  
The equations of motion are  
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The mechanical relations are 
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In (79) and (80) through the )k(
'r'r'Q ,…, )k(

'r3'Q  the perturbations of the components of 

Kirchhoff stress tensor are denoted. The notation )t,'y,'r('p'p 3
)k()k( =  is an unknown function 

(a Lagrange multiplier). The constants )k(
1111'χ ,…, )k(

3333'χ  in (79), (80) are determined through the 
mechanical constants of the layer and half-space materials and through the initial stress state.  

As it has been noted above it is assumed that the elasticity relations of the layer and 
half-space materials are given by Neo-Hooken type (Treloar’s) potential. This potential is written  
as follows: 
 

),3I(C 110 −=Φ   11 A23I += , 33rr1A ε+ε+ε= θθ ,                                                          (81) 
 

where 10C  is an elastic constant; 1A  is the first algebraic invariant of the Green’s strain tensor, 

rrε , θθε  and 33ε  are the components of this tensor. For the considered axisymmetric case the 
components of the Green’s strain tensor are determined through the components of the 
displacement vector by the expressions (28). In this case the components ijS  of the Lagrange 

stress tensor are determined as follows: 
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Note that the expressions (81), (28) and (82) are written in the arbitrary system of 
cylindrical coordinate system without any restriction related to the associated of this system to the 
natural or initial state of the considered layer and half-space. 

For the considered case the relations between the perturbation of the Kirchoff stress 
tensor and the perturbation of the components of the Lagrange stress tensor can be written as 
follows:  
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It should be noted that the incompressibility condition of the layer and half-space 
materials must be added to the above equations. This condition for the considered case can be 
written as follows: 
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Thus, the stress state in the considered system will be investigated by the use of the 
equations (79)-(84). In this case it is assumed that the following boundary and contact conditions 
are satisfied. 
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With the above-stated we exhaust the formulation of the problem which were 
investigated in [45, 46].  It should be noted that in the case where 1)k( =λ  ( 2,1k = ), this 
formulation transforms to the corresponding ones of the classical linear theory of the elasticity for 
an incompressible body. For the solution to the formulated problem, according to [7,9], the 
following representation for the displacement and unknown function )k('p  is used: 
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The function )k('Χ  in (86) satisfies the following equation: 
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where the constants )k(
2'ξ  and )k(

3'ξ  are determined through the mechanical constants and the 
initial strain state. The explicit form of the expressions for determination of these constants are 
given in the reviewed papers. 

Thus, applying the presentation ti
33 e)'y,'r(g)t,'y,'r(g ω= and applying the Hankel 

integral transformation (78) to the equations (79) – (87) the analytical expressions of the Hankel 
transforms of the sought values are determined. To determine their origin the above-discussed 
numerical algorithm is employed. The numerical investigations in the paper [45] were made for 
the case where eCC )1()2(

10
)2()1(

10 =ρρ  and )1(
10

)2(
10 CCe = . Here )C(C )1(

10
)2(

10  is a mechanical 
constant of the half-space (covering layer) material. This constant enters the expression of the 
Treloar’s potential (81). Note that the case considered in [45] corresponds to 2)1()2( eρ=ρ  which 
find various applications in many branches of modern engineering fields one of which, for 
example, is the bio-engineering. Moreover, note that the numerical investigations in [45] were 
made for 1CCe )1(

10
)2(

10 ≥= , 40 ≤Ω≤ , where ( ) ( ))2(
10

)2(22 C2'h ρω=Ω . According to these 
numerical results, in [45] the influence of the initial finite strains on the dependencies between 

0
2

33 Ph'Q ( ) ⎟
⎠
⎞

⎜
⎝
⎛ λ−= )/h,0('Q'Q

2)1()1(
3333  and Ω  is studied. In particular, it is established that the 

pre-stretching (pre-compressing) of the layer (half-space) causes to decrease (increase) of the 
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“resonance” frequency *Ω  and of the “resonance values of  0
2

33 Ph'Q . This result is also 
illustrated by the graphs given in Fig. 18.  

In the paper [46] the investigations were made for the case where 
=ρ )1()1(

10 'C )2()2(
10 'C ρ , 1CC )2(

10
)1(

10 ≥ . Note that the results which are similar in the qualitative 
sense to those obtained in [45] were also attained in the paper [46]. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                        (a)                                                                              (b) 
 

Figure 18. The influence of the pre-stretching of the covering layer (a) and the initial           
strains of the half-space (b) on the dependencies between 0

2
33 Ph'Q  and Ω  for the                    

case where 0.2CCe )1(
10

)2(
10 ==  

 
In the foregoing investigations [23-26, 28, 35-38, 44-46] it was assumed that the region 

occupied by the body is semi-infinite. Therefore, the results obtained in these investigations 
cannot be applied, for example, in the cases where the afore-mentioned dynamical stress field is 
studied for the layered material, which rests on the rigid foundation. Nor these results can be 
applied for the structural elements whose basic material is covered with the layered ones. If the 
stiffness of the basic material (modulus of elasticity) is significantly greater than those of the 
covering layers, then the basic material can be modelled as a rigid foundation. It is well known 
that as a result of the covering procedure the residual (initial) stresses arise in the covering layers 
and it is almost inevitable to alert these stresses. Therefore, under studying the dynamical stress 
field in such structural members it is necessary to take the foregoing initial stresses into account.  

Because of the above discussions in the papers [47, 48] the investigations carried out in 
the references [45, 46] were developed for systems, which comprise bilayered infinite slab and 
rigid foundation. It was assumed that the layers of the slab are finite pre-strained (stretched) 
radially. Moreover, it was assumed that the materials of the layers are incompressible neo-
Hookean materials and the stress-strain relation for those are given through the Treloar potential. 
The investigations were made by applying the assumptions and notation used in [45, 46]. At the 
same time, the notation as 1h  and 2h  is also introduced, where 1h  ( 2h ) is a thickness of the 
upper (lower) layer of the slab, and the contact conditions in (85) were written at 

( )2)1(
13 h'y λ−= , and the last condition in (85) was replaced by the following one. 
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It was also introduced the notation 
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In [47] it was assumed that 1e ≥ ,  )2()2(
10

)1()1(
10 'C'C ρ=ρ   and the numerical 

investigations on the influence of the parameters H , e , )1(λ  and )2(λ  on the character of the 

dependencies among )1(
33q , )2(

33q  and Ω  were made. Such numerical investigations for the case 

where 1e ≤ , )2()1( '' ρ=ρ  were made in the paper [48]. The similar investigations for the 
bilayered slab resting on a rigid foundation in the case where the elasticity relations of the layer’s 
material are described by the Murnaghan potential was made in the paper [49]. Note that this 
investigation was made within the framework of the assumptions and notation used in the paper 
[44]. 

 

 
 
 

Figure 19. The structure of the many-layered slab resting on the rigid foundation 
 

In the papers [50, 51] the investigations carried out in [47, 48] were developed for the 
many-layered slab. It is assumed that in the natural state the thicknesses of the layers are 

,h,h 21 …, Nh  (Fig.19). The problem formulation given in [47, 48] is generalized for the many-
layered slab and in this case  the equations (79)-(84) are satisfied for each layer shown in Fig. 19 
and the conditions (85) are replaced by the following ones. 
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For numerical investigations the cases where =N 2, 4 and 6 are considered and it is 
assumed that the slab consists of the alternating layers of two materials, i.e., for example, for 

6N = : )5(
10

)3(
10

)1(
10 CCC == ;  )6(

10
)4(

10
)2(

10 CCC == , )5()3()1( ''' ρ=ρ=ρ , )6()4()2( ''' ρ=ρ=ρ , 

531 hhh == , 642 hhh == , )5()3()1( λ=λ=λ , )6()4()2( λ=λ=λ . In [50] the notation 
)1(

10
)2(

10 CCe = , 12 hhH =  is also introduced and the case where 1e ≥  is considered. But in the 

paper [51] these investigations were made for the case 1e ≤ . Note that in [50] the concrete 

numerical results were obtained under 0.3e =  for the dependencies among the )1(
33q , )2(

33q (89) 

and Ω  for the various N , )1(λ , )2(λ  and H . As an example, in Fig. 20 the graphs of these 

dependencies are given for the case where 0.1)2()1( =λ=λ  (i.e. for the case where the initial pre-
stretching in the layers is absent). The influence of the pre-stretching on these dependencies under 

6N =  is given in  Fig.21.  The similar results for the case where 31e =  were obtained in the 
paper [51]. According to the analyses of the numerical results, the common character of the 
considered dependencies can be described as follows: 
• the “resonance” frequency and the “resonance” values of the stresses decrease with 
increasing the number  of the layers in the slab; 
• for ( ]*,0 Ω∈Ω  the absolute values of )1(

33q , )2(
33q  increase monotonically with Ω  and have 

the first local maximum under  *Ω=Ω ; 

• for ( ]j* ,ΩΩ∈Ω  the absolute values of )2(
33

)1(
33 q,q  decrease with Ω  and have the first jump 

(discontinuity) under jΩ=Ω ; 

for jΩ>Ω  the values of  )2(
33

)1(
33 q,q  have the following jumps (discontinuities) for certain values 

of Ω . 
It should be noted that in [50, 51] it was assumed that the thickness of the slab increases 

with the increasing number of layers contained by the slab. In a practical as well as theoretical 
sense the case where the number of layers in the slab increases under constant thickness of the 
slab, i.e. the case where the number of layers in the slab increases by decreasing the thickness of 
the layers, has also a great significance. This situation is shown schematically in Fig.22. In 
connection with this, in the paper [52] the investigations [50, 51] were developed for the case 
shown in Fig. 22. It is assumed that in the natural state the thicknesses of the layers are 

N21 h,...,h,h  and .constHh...hh N21 ==+++  Here H is a whole thickness of the slab which 
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remains constant for any number of the layers ( N ) from which the slab is composed. The 
notation is introduced   
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Figure 20. The influence of the number of the layers ( N ) on the dependencies  

among the )1(
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33q  and Ω  
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Figure 21. The influence of the pre-stretching of the layers on the dependencies 
 among the )1(

33q , )2(
33q  and Ω  under 6N =  
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Figure 22. The structure of the many-layered slab with constant thickness 
 

The numerical results were obtained for the case where NHhi = , 

( ) 1'C'C )2()1(
10

)1()2(
10 =ρρ . As it follows from Fig.22 that the cases 1., 2. and 3. ( '1 ., '.2  and '.3 ) 

correspond to 1e >  )1e( < . As in [50, 51] the numerical investigations were made for the 
dependencies between 33q  and Ω  under 4,2N =  and 6 for various values of the problem 
parameters. As a result of this investigation, in particular, the following conclusions were 
established. 
• the location sequence of the soft and stiff layers in the slab can change significantly the 
character of the frequency response of that; 
• the absolute values of  

*
33q Ω=Ω (91) decrease but the values of *Ω  (for which  

0ddq33 =Ω  ) increase with the pre-stretching of the stiff layers, but the pre-stretching of the 
soft layers causes the case where 0ddq33 =Ω  to disappear and to appear the resonance jumping 
in the values of 33q  (91) under considered change range of Ω . 

It is known that the dynamical behaviour of the elements of constructions is very 
sensitive to a violation of the completeness of the contact conditions. Namely, by the use of this 
sensitivity the ultrasonic nondestructive methods were developed for determination of the various 
types of defects in structural members. In connection with this, the theoretical investigation of the 
influence of the violation of the completeness of the contact conditions on the frequency response 
of the many-layered slab on a rigid foundation has a great significance in both theoretical and 
practical sense. According to these discussions,  in the paper [53] the investigation carried out in 
[52] is developed for the case where the incomplete contact conditions are satisfied between the 
slab and rigid foundation. In other words, in [53] the last condition in (90) is replaced by the 
following one. 
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Numerical investigations were made for the case 1 and '1  (Fig. 22) under 
( ) 1'C'C )2()1(

10
)1()2(

10 =ρρ . These investigations show that the incompleteness of the contact 

conditions the absolute maximum values of 33q  , *Ω   and jΩ  decrease. The influence of the 

incompleteness on the values 33q  becomes more significant as jΩ→Ω . 
It follows from the foregoing review that in the considered papers the investigations of 

the dynamical problems for the initially stressed bodies by the use of the TLTEWISB were made 
for the homogeneous or piecewise homogeneous medium. Moreover, in these investigations the 
concrete results are obtained for the cases where the afore-mentioned initial strains are 
homogeneous ones. Consequently, in these papers there is not any investigation of dynamical 
problems for initially stressed continuously inhomogeneous medium. At present such problems 
become more urgent in connection with arising and applications of a new class of materials called 
“Functionally Graded Materials” (FGM). These materials are multi-phase ones with volume 
fractions of the constituents varying gradually in a pre-determined profile. In recent years a large 
number of theoretical, computational and experimental studies have been carried out to 
understand the mechanical behaviour of structural members from FGM (see references [54-58] 
for review and further references). In these investigations FGM is modelled as continuously 
inhomogeneous materials. As usual, it is assumed that the elastic modulus of these materials is a 
function of the coordinate directed along the thickness and this function is taken as a polynomial. 
According to the theoretical results obtained for various values of the coefficients and power of 
this polynomial FGM with required properties can be determined. Among these results the 
dynamical ones have a special importance because two of the main application fields of the FGM 
is the aerospace and mechanical engineering.  

It should be noted that in many cases FGM are used as a shielding (covering) layer for 
the basic materials of the structural members. As it has been noted above, as far as the 
manufacturing procedure of this layer is concerned the initial (or residual) strains and stresses 
arise in that. Therefore the theoretical investigations of the dynamical behaviour of the afore-
mentioned covering FGM layer with initial stresses has a high significance in both fundamental 
and applied sense. Taking the above discussions into account in the paper [59] the attempt was 
made to study the frequency response (amplitude-frequency relation) of the axisymmetrically 
finite pre-stretched slab from incompressible FGM on a rigid foundation by the use of the 
TLTEWISB. The elasticity relations of the slab material were given through the Treloar potential. 
Moreover, it was assumed that on the free face plane of the slab the time-harmonic point-located 
force acts and the mechanical properties of the slab material properties are continuous functions 
of a coordinate directed along the thickness of that only. According to this situation, the equations 
of the TLTEWISB become the equations with variable coefficients even under homogeneous 
initial strain state and therefore to find an analytical solution to these equations for the 
corresponding boundary and contact conditions becomes more complicated. In the paper [59] the 
discrete-analytical method was proposed for the solution to the considered boundary value 
problems and the like. According to this method the continuously inhomogeneous material is 
replaced by the piecewise homogeneous (layered) material and the mechanical properties of each 
layer is determined through its geometrical location along the thickness and by the function 
describing the change of the mechanical properties of the slab material. The analytical solution to 
the equations written for each layer is determined by employing the method discussed above. In 
this case a number of the layers by which the slab is modelled, are determined from the 
convergence requirement of the numerical results. Numerical results on the influence of the 
function describing inhomogeneous mechanical properties of the slab material and the pre-
stretching of the slab on the frequency response of that are presented and analyzed. 

It is evident that the initial stresses in the members of constructions in many cases, 
specially, in the cases where these members contain a source for stress concentration, are 
inhomogeneous. In such cases the investigations of the time-harmonic stress-state problems 
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within the framework of the TLTEWISB has also a great significance in the theoretical and 
practical sense. However, in the mentioned cases as a result of the inhomogeneous distribution of 
the initial (or residual) stress state the corresponding boundary value problems cannot be solved 
by employing of the above-described analytical method. Consequently, for the solution to such 
problems it is necessary to develop the corresponding numerical method. In connection with this 
in the paper [60] the FEM was developed and applied for the investigation of the stress 
distribution in the pre-stretched simply supported strip containing two neighbouring circular holes 
under forced vibration. The numerical results on the influence of the initial stretched static forces 
on the stress concentration around the holes under forced vibration are presented. Note that the 
related static problem was investigated in the paper [61]. 

Thus, with the above-stated we exhaust the consideration of the investigations regarding 
the dynamical stress field in the initially stressed bodies.  
 
4. CONCLUSIONS: AREAS OF FURTHER RESEARCH  
 
In the present paper the review of the recent investigations regarding the dynamical problems of 
the bodies with initial stresses was considered. In this case the investigations carried out in the 
recent six years within the framework of the piecewise homogeneous bodies model was 
considered with the use of the TLTEISB and the main attention was focused on the studies made 
by the author and his students. The researches on the wave propagation and on the dynamical 
time-harmonic stress state problems were reviewed separately.  

In the opinion of the author, in view of the increased requirements of applied and 
theoretical problems, future investigations on the dynamical problems for the initial stressed 
bodies in following areas are necessary.  
1. The wave propagation (dispersion) in the unidirected fibrous composites with initial stresses 
for the high concentrations of the fibers therein. 
2.  The wave propagation (dispersion) in the packet of layers with initial stresses under various 
boundary conditions satisfied on the face planes of the packet. 
3.  Nonstationary Lamb’s problems for the layered half-space with initial stresses. 
4.  Nonstationary dynamical problems on the stress-state  in the packet of the layers under 
various boundary conditions satisfied on the face planes of the packet. 

At the same time, it is also necessary to develop the investigations regarding the time-
harmonic stress-state in the elements of constructions with initial (residual) stresses.  
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