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ABSTRACT 

Apreutesei [1] developed the concept of norm given with the help of the Hausdorff distance 
from a set A to {0} in the almost linear space. This space consists of sets that do not hold the 
inverse element property with respect to the Minkowski sum. In this paper, we first prove that 
the rough Hausdorff convergence of a sequence {An} of sets to the set A requires the rough 
convergence of the sequence of norms. Then we give the necessary and sufficient conditions 
for the rough convergence of the sequence ‖An – A‖ to 0.
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INTRODUCTION 

Hausdorff [7] introduced the concept of the Hausdorff 
convergence of sequences of sets in 1927 by defining a func-
tion that calculates the distance between two sets. Wijsman 
[17,18] defined the notion of Wijsman convergence, which 
corresponds to the pointwise convergence of sequences 
made up of distance functions. Apreutesei [1] gave some 
algebraic properties of the Hausdorff convergence. He [2] 
also showed that Wijsman convergence and Hausdorff 
convergence are equivalent to each other for monotone 
sequences of compact sets. Nuray and Rhoades [9] gener-
alized the concepts of Wijsman convergence and Hausdorff 
convergence using the theory of statistical convergence. 
Talo and Sever [16] extended the notion of Hausdorff con-
vergence to ideal convergence. Hazarika and Esi [8] defined 
the idea of asymptotically equivalent sequences of sets in 
the sense of ideal Wijsman convergence. Nuray et al. [10] 
extended the definition of Wijsman statistical convergence 

to double sequences. Moreover, Dündar and Talo [6] intro-
duced the concept of the Wijsman regularly invariant con-
vergence of double sequences of sets.

In 2001, the idea of rough convergence of a sequence 
was first given by Phu [14] in normed linear spaces. Aytar 
[3] gave a new definition by combining rough convergence
theory with the statistical convergence theory. Debnath and 
Rakshit [5] obtained some results related to the rough limit
set in metric spaces.

Recently, the rough convergence theory has started to be 
applied in set theory as well. Ölmez and Aytar [12] applied 
the rough convergence theory to the theory of Wijsman 
convergence. Ölmez et al. [13] gave the equivalent defini-
tions of rough Wijsman convergence and rough Hausdorff 
convergence. Subramanian and Esi [15] extended the defi-
nition of rough Wijsman convergence to triple sequences.

In this paper, we give the necessary and sufficient con-
ditions for the rough convergence of the sequence ‖An – A‖ 

https://orcid.org/0000-0001-6563-8732
https://orcid.org/0000-0002-4953-4957


Sigma J Eng Nat Sci, Vol. 39, No. 5, Supp 22, ICOMAA 2021, pp. 18–22, December, 202119

and A = {(0,0)} × [–1,1] in the space ℝ² equipped with 
the Euclid metric. The sequence {An} is not Hausdorff 
convergent to the set A. However, this sequence is rough 
Hausdorff convergent to the set A for all 5

2 .r ≥
Let A,B ∈ Pb(X) and λ ∈ ℝ. The Minkowski addition 

and scalar multiplication are defined by

A + B = {a + b : a ∈ A, b ∈ B}

and

λA = {λa : a ∈ A} 

respectively.
Let L be a nonempty set on which two operations (vec-

tor addition and scalar multiplication) are defined. If the 
listed axioms are satisfied, then L is called an almost linear 
space:

1. (x + y) + z = x + (y + z), ∀x, y, z ∈ L (associative
property)

2. L has a zero vector 0 such that x + 0 = 0+ x = x, ∀x ∈
L (additive identity)

3. x + y = y + x, ∀x, y ∈ L (commutative property)
4. λ(μx) = (λμ)x, ∀λ, μ ∈ K, ∀x ∈ L, where K is a scalar

field (associative property)
5. 1 . x = x, ∀x ∈ L (scalar identity)
6. λ(x + y) = λx + λy, ∀λ ∈ K, ∀x, y ∈ L (distributive

property)
7. 0 . x = 0, ∀x ∈ L (zero property) [1].

We note that this space consists of sets that do not 
hold the inverse element property with respect to the 
Minkowski sum and the distributivity with respect to the 
sum of scalars.

Now we will recall the definition of the norm in almost 
linear spaces expressed using the Hausdorff distance.

If A ∈ Pb(X) then we put 

( ,{0}) max sup ( ,{0}), (0, ) sup  [4].
a A a A

A H A d a d A a
∈ ∈

 
= = = 

 

MAIN RESULTS

In this study, inspired by the work of Apreutesei [1], we 
obtained some results for rough Hausdorff convergence.

Proposition 3.1. If ( )
r H

nA A P X
−
→ ∈  then 

r

nA A→ .

Proof. Denote sup
n

n
u A

A u
∈

=  and sup .
v A

A v
∈

=  Let ε > 0. 

Since ,
r H

nA A
−
→  there exists an n0(ε) ∈ N such that

h(An,A) < r + ε and h(A,An) < r + ε for all n ≥ n0. (3.1)

to 0. The proof techniques are similar to that of the classical 
case (see [1]).

PRELIMINARIES

Throughout this paper, let (X,‖.‖) be a normed linear 
space. Let P(X), Pb(X) and K(X) be all nonempty subsets, 
nonempty bounded subsets and compact subsets of X, 
respectively.

The purpose of the present section is to recall some 
basic concepts.

Let A ⊂ X. For x ∈ X, the distance from x to the set A is 
defined by

( , ) inf
a A

d x A x a
∈

= − [7].

The open ball with centre a ∈ X and radius r > 0 is the set

S(a,r) = {x ∈ X : ||a – x|| < r}.

Let r be a nonnegative real number. The sequence {xn} is 
said to be rough convergent to x with the roughness degree 
r, denoted by ,r

nx x→  if for each ε > 0 there exists an n0(ε) 
∈ N such that ||xn – x|| < r + ε for each n ≥ n0 [14].

Throughout this paper, we assume that An ⊂ X for each 
n ∈ N. The sequence {An} of sets is said to be r – Hausdorff 
convergent (or rough Hausdorff convergent with the rough-
ness degree r) to the set A if for every ε > 0 there exists an 
n0(ε) ∈ N such that

H(An,A) = max{h(An,A),h(A,An)} < r + ε for all n ≥ n0,

where ( , ) sup ( , )
n

n
a A

h A A d a A
∈

=  and ( , ) sup ( , ).n n
a A

h A A d a A
∈

=

In this case, we write 
−
→
r H

nA A  [13].
 An alternative definition of the rough Hausdorff con-

vergence can be given by the following:

( )0

0

for every 0 there exists an  such that

( , ) sup ( , ) ( , )  for all

 [13].

r H

n

n n
x X

A A n

H A A d x A d x A r

n n

ε ε

ε

−

∈

→ ⇔ > ∈

= − < +

≥

N

If a sequence is Hausdorff convergent, then this 
sequence r – Hausdorff converges to the same set for each 
r. However, there are some sequences of sets which are r –
Hausdorff convergent, but not Hausdorff convergent as can
be seen in the following

Example 2.1. Define

1 1 5: , 1,1
2 2nA

n
   = + × −    
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First we show that the sequence {An} is rough Hausdorff 
convergent to the set A. Let ε > 0 and (x*,y*) ∈ ℝ². Then we 
calculate

2 2

2 2

2 2

2 2

(( , ), )

( 2) ( 2) ,  if 2 and 2

2 ,  if 2 and 2 2

( 2) ( 2) ,  if 2 and 2

( 2) ( 2) ,  if 2 and 2

2 ,  if 2 and 2 2

( 2) ( 2) ,  if 2 and 2

d x y A

x y x y

x x y

x y x y

x y x y

x x y

x y x y

∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗ ∗

=

− + − > >

− > − ≤ ≤

− + + > < −

+ + − < − >

+ < − − ≤ ≤

+ + + < − < −

.

2 ,  if 2 2 and 2

2 ,  if 2 2 and 2

0 ,  if 2 2 and 2 2

y x y

y x y

x y

∗ ∗ ∗

∗ ∗ ∗

∗ ∗














 − − ≤ ≤ >

 + − ≤ ≤ < −

 − ≤ ≤ − ≤ ≤

Similarly, d((x*,y*),An) can be easily calculated. Then 
there exists an n0 = n0((x*,y*),ε) such that it can be easily 
obtained 

2( *, *)
sup (( , ), ) (( , ), ) 4n

x y
d x y A d x y A ε∗ ∗ ∗ ∗

∈
− ≤ +

�

for each n > n0 using the inequality 

2 2( ) ( ) .x x y y x x y y∗ ∗ ∗ ∗− + − ≤ − + −

Hence, it is proved that 
r H

nA A
−
→  for every r ≥ 4. On the 

other hand, since

20  and 8

20 8 4
n

n

A A

A A ε

= =

− = − < +

we have 
r

nA A→  for every r ≥ 4.
We note that the r value at the norm convergence may 

be smaller than the r value that provides the Hausdorff con-
vergence of the sequence.

Following proposition shows that the sum of rough 
Hausdorff convergent sequences is also rough Hausdorff 
convergent.

Proposition 3.2. [11] Let A, An, B, Bn, ∈ K(X). If 
r H

nA A
−
→  

and ,
r H

nB B
−
→  then 

2
.

r H

n nA B A B
−

+ → +

If A is an unbounded set and 
r H

nA A
−
→  then we also 

obtain that An are unbounded sets for all n ≥ n0. This implies 

that ||An|| → ||A||. Thus, we have 
r

nA A→  for each r ≥ 0. 
Now we assume that ||A|| < ∞. If we get the infimum for all 
v ∈ A and then the supremum for all u ∈ An on both sides 
of the inequality

||u|| – ||v|| ≤ ||u – v||, 

we obtain

( )sup inf sup inf sup inf .
n n n

v A v A v Au A u A u A
u v u v u v

∈ ∈ ∈∈ ∈ ∈
− = − ≤ −

From sup inf
v Av A

v v
∈∈

≥  for all v ∈ A, we get

sup sup sup inf sup inf .
n n n

v A v Au A v A u A u A
u v u v u v

∈ ∈∈ ∈ ∈ ∈
− ≤ − ≤ −

Thus, we have

( , ).n nA A h A A− ≤  

Similarly,

( , )n nA A h A A− ≤

can be easily calculated. From (3.1), we obtain 

.nA A r ε− < +  This proves that 
r

nA A→ .
Let us give an example to explain the Proposition 3.1.

Example 3.1. Define

[ 4, 2] [ 2,2] ,  if   is an odd integer
:

[2,4] [ 2,2] ,  if   is an even integern
n

A
n

− − × −=  × −

and

A = [–2,2] × [–2,2] 

in the space ℝ² equipped with the Euclid metric. Then 
the sequence {An} is rough Hausdorff convergent to the set 
A for r = 4. Moreover, 

 for 4.
r

nA A r→ =
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Since

29,13  and [17,20],n nA B A B
n

 + = − + =  

we also have

2
.

r H

n nA B A B
−

+ → +

Moreover,

sup (13,1) 170

sup (20,1) 401

8 .

n n

n n
u A B

v A B

n n

A B u

A B v

A B A B ε

∈ +

∈ +

+ = = =

+ = = =

+ − + < +

Thus, we obtain 
2r

n nA B A B+ → +  for r =4.

Theorem 3.1. Let An,A ∈ P(X). If

0,
r

nA A− →  

then for every ε > 0 there exists n0(ε) ∈ N such that 

0( , ) for all .nA S A r n nε⊂ + ≥

Proof. The condition 0
r

nA A− →  is equivalent with: for
every ε > 0 there exists n0(ε) ∈ N such that

sup

n n

n
a A

a A

a a r ε
∈
∈

− < +

for all n ≥ n0. This implies that An ⊂ S(A,r + ε) for all 
n ≥ n0.

Apreutesei [1, Theorem 4.11] proved that A is a sin-
gletone {a} by assuming the similar condition of the 
Theorem  3.1. However, this situation does not hold for 
the theory of rough convergence as can be seen following 
example. 

Example 3.3. Define 

An = {(–1)n}ℝ and A = {3,4} ⊂ ℝ.

Then we have

0 for 5.
r

nA A r− → =

Proposition 3.3. Let A, An, B, Bn ∈ K(X). If 
r H

nA A
−
→  and  

,
r H

nB B
−
→  then 

2
.

r

n nA B A B+ → +

Proof. Denote

sup  and sup .
n n

n n
u A B v A B

A B u A B v
∈ + ∈ +

+ = + =

Let ε > 0. Since 
2r H

n nA B A B
−

+ → +  from Proposition 3.2,
there exists an n0(ε) ∈ N such that

h(An + Bn, A + B) < 2r + ε and  
h(A + B, An + Bn) < 2r + ε for all n ≥ n0. (3.2)

 Now we assume that ||A + B|| < ∞. If we get the infi-
mum for all v ∈ A + B and then the supremum for all u ∈ An 
+ Bn on both sides of the inequality

,u v u v− ≤ −

we obtain 

( )sup inf sup inf

sup sup sup inf .
n n n n

n n n n

v A B v A Bu A B u A B

v A Bu A B v A B u A B

u v u v

u v u v

∈ + ∈ +∈ + ∈ +

∈ +∈ + ∈ + ∈ +

− ≤ −

− ≤ −

Thus, we have

( , ).n n n nA B A B h A B A B+ − + ≤ + +  

Similarly,

( , )n n n nA B A B h A B A B+ − + ≤ + +

can be easily calculated. From (3.2), we obtain 

2 .n nA B A B r ε+ − + < +

This proves that 
2

.
r

n nA B A B+ → +

Example 3.2. Define

1: 1,3 0,1nA
n

   = − × ⊂    
 ℝ² and

1: 8,10 0,1nB
n

   = − × ⊂    
 ℝ².

Then we have

[5,6]  and [12,14] for 4.
r H r H

n nA A B B r
− −
→ = → = =
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Here A is not a singletone set.
Since there is no inverse element property with respect 

to the Minkowski sum in almost linear spaces, now we give 
a necessary condition to be the sequence ||An – A|| rough 
convergent to zero.

Theorem 3.2. Let An,A ∈ P(X). If A is a singletone {a} and 
for every ε > 0 there exists n0(ε) ∈ N such that

An ⊂ S(a, r + ε) for all n ≥ n0

then 

0.
r

nA A− →

Proof. Given ε > 0. Assume that A is singleton 
{a} and An  ⊂ S(a, r + ε) for all n ≥ n0. Then we have

sup .
n n

n
a A

a a r ε
∈

− < +  This is equivalent to 0.
r

nA A− →  So,

the proof is completed.

CONCLUSION

Although the norm definition given on the Pb(X) class 
satisfies the norm axioms, S(A,ε) does not specify a neigh-
borhood for A since there is no inverse element property in 
the almost linear space. For this reason, while expressing 
convergence according to this norm, it is studied on suffi-
ciently small sets. In this paper, it has been shown that in 
the rough convergence theory, contrary to Apreutesei [1, 
Theorem 4.11], the limit set does not need to be a singleton 
for convergence with respect to the norm.
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