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ABSTRACT

A Pythagorean fuzzy set is characterized by values satisfying the condition that the square 
sum of the degree of membership and degree of non-membership is less than or equal to 1. 
As a generalized set, Pythagorean fuzzy sets have a close relationship with intuitionistic fuzzy 
sets. In this study, an algorithm is given that can select patients at risk of developing heart 
disease based on cardiovascular data. This given algorithm is created with Pythagorean fuzzy 
soft sets. The new algorithm is offered a medical decision-making method to assist in medical 
diagnosis. A medical case was examined as a real-life application to see if the proposed 
method is applicable. The real dataset which is called the Cleveland heart disease dataset has 
been chosen. In the application, the dataset is arranged as PFSS. In addition, the parameter 
set was determined and calculations were made in accordance with PFSS. A comparison table 
was created with the values obtained from these calculations. By choosing the maximum of 
the values obtained with the score function, the patient with the highest risk of developing 
heart disease was determined.
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INTRODUCTION 

A primary assignment of medicine is to diagnose dis-
eases. However, it is known that diagnosing diseases is not 
a simple task. Because no matter how much information 
physicians’ have about symptoms, diagnosis of the disease 

contains uncertainty. When the diagnosis is made on time 
and closest to accuracy, the patient’s health result will be 
positive. Because clinical decision-making will be tailored 
to a correct understanding of the patient’s health problem. 
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The accurate diagnosis and the most effective treatment 
appropriate for this diagnosis will also positively affect pub-
lic policy. Thus, extravagance in health payments, which 
has an important place in public finance, will be avoided, 
allocated resources will be used accurately, and research 
and development opportunities will increase.

Increasing options in diagnosis and treatment, diver-
sification of biomedical tools that support clinical applica-
tions, common diagnoses in patients cause complexity in 
health care. Many theories have been developed to reduce 
this complexity and uncertainty and still continue to be 
developed. Successful results have been obtained as these 
theories have been developed and applied, and thus, they 
have been widely used in the fields of medical diagnosis.

Cardiovascular disease describes a range of condi-
tions that affect the heart. Diseases under the heart disease 
umbrella include blood vessel diseases, such as coronary 
artery disease, heart rhythm problems (arrhythmias), and 
heart defects born with (congenital heart defects), among 
others. Cardiovascular disease generally refers to condi-
tions that involve narrowed or blocked blood vessels that 
can lead to a heart attack, chest pain (angina), or stroke. 
Other heart conditions, such as those that affect your heart’s 
muscle, valves, or rhythm, also are considered forms of 
heart disease.

Cardiovascular disease is one of the leading causes of 
death for both women and men. The high number of deaths 
from cardiovascular disease in the world makes this disease 
a major concern that needs to be addressed. Identifying 
cardiovascular diseases is difficult because of diabetes, high 
blood pressure, high cholesterol, abnormal pulse rate, and 
many other different risk factors. Recently, modern meth-
ods, such as algorithms, have begun to be used to circum-
vent such constraints and to predict and diagnose heart 
disease.

Decision-making systems created with the help of algo-
rithms enable the processing of very large data produced 
in the health sector and the prediction/diagnosis processes 
to be more effective. The algorithms obtained with the 
Fuzzy Set Theory, which is the basis of these processes, 
have positive effects on the decision-making processes of 
physicians.

The fuzzy sets (FSs) theory [24] brought a paradigmatic 
change in mathematics. However, in some special cases, 
the issue of how to set the membership function of the FSs 
caused problems. To solve these difficulties, Atanassov [2] 
developed the Intuitionistic fuzzy set (IFS) concept, which is 
a generalization of FS. Each element in the IFS is expressed 
by an pair (m,n) satisfying the condition m + n ≤ 1.

There are many theories like the theory of probability, 
theory of FSs, theory of IFSs, theory of rough sets, etc. 
which can be considered as mathematical tools for dealing 
with uncertain data, obtained in various fields of engineer-
ing, physics, computer science, economics, social science, 
medical science, and of many other diverse fields. However, 

all these theories have their own particular difficulties in 
eliminating uncertainties. As a necessary supplement to 
the existing mathematical tools for handling uncertainty, 
Molodtsov [14] introduced the theory of soft sets (SSs) as 
a new mathematical tool to deal with uncertainties while 
modelling the problems in engineering, physics, computer 
science, economics, social sciences, and medical sciences. 
In these various fields, the soft set theory is being used 
very conveniently due to the absence of any restrictions 
on the approximate descriptions. Some developments in 
SSs, FSs, and applications in DM can be found in [1, 9, 10, 
11, 12, 13].

Yager [20, 21] offered a new FS called Pythagorean fuzzy 
set (PFS). PFS attracted the attention of many researchers in 
a short time. In [23], PF subsets and its relationship with IF 
subsets were debated and some set operations on PF sub-
sets were defined. In [17], the properties such as bound-
edness, idempotency, and monotonicity related to the 
Pythagorean fuzzy aggregation operators are investigated. 
Further, to solve uncertainty, multiple attribute group, DM 
problems Pythagorean fuzzy superiority and inferiority 
ranking method was developed in [17]. Peng et al. [16], 
defined the PFSS and investigated its properties. Guleria 
and Bajaj [8] proposed PF soft matrix and its diverse fea-
sible types. Athira et al. [3] have defined new entropy and 
distance measures for PFSSs. They also studied the appli-
cations of PFSSs in decision-making processes and pattern 
recognition problems. In [4], some new entropy measures 
are defined for PFSS to calculate the degree of turbidity of 
the cluster, taking advantage of the fact that PFSS considers 
the parameterized tool of the PFS family. In this study, a 
decision-making algorithm is given to solve decision-mak-
ing problems. Ejegwa [5] presented axiomatic definitions 
of distance and similarity measures for Pythagorean fuzzy 
sets, taking into account the three parameters that describe 
the sets. It is discovered that Hamming and Euclidean dis-
tances and similarities fail the metric conditions in the 
Pythagorean fuzzy set setting whenever the elements of the 
two Pythagorean fuzzy sets, whose distance and similarity 
are to be measured, are not equal. Therefore, new measures 
were needed.

The main feature of the PFS is to relax the condition 
that the sum of the degree of membership functions is 
less than one with the square sum of the degree of mem-
bership functions is less than one. In the work of Garg 
[6], under these environments, aggregator operators, 
namely, Pythagorean fuzzy Einstein weighted averaging, 
Pythagorean fuzzy Einstein ordered weighted averaging, 
generalized Pythagorean fuzzy Einstein weighted averag-
ing, and generalized Pythagorean fuzzy Einstein ordered 
weighted averaging, are proposed. Garg [7] proposed a new 
correlation coefficient and weighted correlation coefficient 
formulation to measure the relationship between two PFSs. 
Kirisci [12] defined the Pythagorean Fuzzy Parametrized 
Pythagorean Fuzzy Soft Set (Ω-Soft Set) and investigate 
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using trapezoidal fuzzy numbers in the FSS method [11], 
the operations are more and more difficult than the opera-
tions of PFSS.

In this study, an algorithm will be given that will 
examine cardiovascular data and compare and select the 
person(s) who suffer from heart disease the most. For the 
numerical application of this algorithm, one of the most 
used datasets, the Cleveland Heart Disease dataset from the 
UCI Repository [26], will be considered. With this algo-
rithm, a new DM method that helps medical diagnosis will 
be obtained by using PFSSs.

MULTI-CRITERIA DECISOIN MAKING (MCDM)

The analysis of the way people makes decisions (pre-
scriptive theories) or the way people ought to make deci-
sions (normative theories) is perhaps as old as the recorded 
history of mankind. Of course, not all these analyses were 
characterized by the rigorous scientific approaches we see 
in the literature today. Therefore, it is not surprising that the 
literature in decision-making is humongous and continu-
ously increasing. At the same time, however, the develop-
ment of the perfect decision-making method for rational 
real-life decision-making still remains an elusive goal. This 
contradiction between the extensiveness of the study on 
this subject and the elusiveness of the final goal of the real-
life applicability of the findings constitutes in a way the ulti-
mate decision-making paradox.

MCDM making models that deal with decision-mak-
ing based on various criteria are a branch of Operations 
Research. Examine complex problems with characteristics 
such as MCDM, high uncertainty, conflicting objectives, 
different forms of information and data, multiple interests, 
and perspectives; it is an operational evaluation and deci-
sion support approach suitable for explaining complex and 
evolving biophysical and socio-economic systems. MCDM 
is also a discipline that encompasses mathematics, manage-
ment, informatics, psychology, social sciences, and eco-
nomics. Since MCDM methods can be used to solve any 
problem where an important decision needs to be taken, 
their applications are expanding even more. These deci-
sions can be tactical or strategic decisions according to the 
time perspective of the results.

A decision-making mechanism is a human activity in 
which the human being, as the decision-maker, can hardly 
escape the effect of multiple conditions that, give shape to 
what will become the winning decision. In order to reach 
this winning decision, Multi-Criteria Decision Making 
(MCDM) has become one of the most important and fast-
est-growing fields today.

Multi-criteria decision-making (MCDM) is one of the 
most well-known branches of decision-making. MCDM 
is divided into multi-objective decision making (MODM) 
and multi-attribute decision making (MADM). However, 
very often the terms MADM and MCDM are used to mean 

some properties of the new set. In [13], new parameter 
reduction methods are given according to Pythagorean 
fuzzy soft sets to help decision-makers facilitate their deci-
sion-making processes. Naeem et al. [15] examined new 
concepts related to PFSSs. Using the richness of linguistic 
variables based on Pythagorean fuzzy soft (PFS) informa-
tion, operations on the properties of PFSSs are presented. 
In this study, a multi-criteria group decision-making algo-
rithm and its application are given. Peng and Yang [18] 
extended linguistic Pythagorean fuzzy sets to cubic linguis-
tic Pythagorean fuzzy sets. In [19], Peng and Selvachandran 
examined the Pythagorean fuzzy sets with an intense and 
comprehensive overview. In [20], the concept of PFSS was 
applied to hypergraphs and the concept of Pythagorean 
fuzzy soft hypergraphs was derived. Yager and Abbasov 
[22] discussed the relation between Pythagorean member-
ship degrees and complex numbers. In [25], Zhang and
Xu propose a score function-based comparison method
to identify the Pythagorean fuzzy positive ideal solution
and the Pythagorean fuzzy negative ideal solution. Then,
they define a distance measure to calculate the distances
between each alternative and the Pythagorean fuzzy posi-
tive ideal solution as well as the Pythagorean fuzzy negative
ideal solution, respectively.

Classical methods cannot be used successfully to solve 
complex problems in the fields of economics, engineering, 
and the environment due to various uncertainties specific 
to these problems. There are three theories for solving these 
problems: probability theory, fuzzy sets theory, and interval 
mathematics, which we can consider as mathematical tools 
for dealing with uncertainties. But all these theories have 
their own difficulties. Uncertainties cannot be addressed 
using conventional mathematical tools but can be 
addressed using a wide variety of existing theories, such as 
probability theory, (intuitionistic) FS theory, interval math-
ematical theory, and theory. However, all these theories 
have their own difficulties. Molodtsov [14] suggested that 
one reason for these difficulties may be the inadequacy of 
the theory’s parameterization tool. To overcome these dif-
ficulties, Molodtsov introduced the concept of soft set(SS) 
theory as a new mathematical tool for dealing with the 
difficulties-free uncertainties that plague usual theoretical 
approaches. Later, Fuzzy Soft Set, Intuitionistic Fuzzy Soft 
Set, Pythagorean Fuzzy Soft Sets were developed. Since FSS 
only calculates with the membership function, even if simi-
lar results are obtained with similar algorithms, the results 
obtained in the PFSS method are clearer and stronger. The 
IFSS uses a membership function and a non-membership 
function, and the sum of these two functions must be less 
than or equal to 1. In this case, if the sum of the values   is 
greater than 1, the result cannot be obtained. Calculations 
with Riesz Mean in the study in [9] were compared with 
IFSS and gave the same results as IFSS. Therefore, the results 
of the PFSS were found to be more general and inclusive 
than the results obtained with the Riesz mean. In the study 
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the same class of models. MODM studies decision prob-
lems in which the decision space is continuous. A typical 
example is mathematical programming problems with 
multiple objective functions. Also known as the “vector-
maximum” problem. On the other hand, MCDM/MADM 
concentrates on problems with discrete decision spaces. In 
these problems, the set of decision alternatives has been 
predetermined.

An MCDM process is a system, composed of objectives, 
scenarios, alternatives, criteria, actions, resources, and per-
formance values, and consequently, all of them are usually 
connected. It is then important when dealing with a sce-
nario for selecting the best alternative amongst many, and 
all of them subject to criteria, to investigate even summar-
ily if criteria are independent or related between them by 
direct or indirect links. 

Most problems in MCDM refer to the selection of an 
alternative from a given set and subject to a group of evalu-
ation criteria. Normally, in the set of alternatives, all of 
them are of the same type (for instance, select the best place 
to install a car assembly plant, where all alternatives are 
locations) or selection for purchasing a house (all alterna-
tives are houses), etc.  However, in many cases, alternatives 
belong to different classes and apply to different areas, and 
this constitutes a complex scenario, although realistic. In 
this case, the design of the MCDM model is very important. 
This is a complex task that demands not only a profound 
knowledge of the scenario under study but also skills to 
replicate it as close as possible. There is no norm, regulation 
or directive, as to how to model a scenario. Naturally, each 
case is different but there is a principle that should always 
be applied.

METHOD

In this section, a Pythagorean fuzzy soft set-based algo-
rithm is designed for cardiovascular disease diagnosis, 
which can achieve high accuracy. The Pythagorean fuzzy 
set-based algorithm consists of eight steps.

As an intuitionistic fuzzy set(IFS), characterized by the 
degrees of membership and non-membership, the satisfac-
tion of the particular alternative with respect to the criteria, 
such as their sum, is equal to or less than 1. However, there 
may be a situation where the decision-maker may provide 
the degree of membership and non-membership of a par-
ticular attribute in such a way that their sum is greater than 
1. To overcome this shortcoming, Yager introduced a con-
cept of the PFS, generalization of the IFS, under the restric-
tion that the square sum of its membership degrees is less
than or equal to 1. Since PFSs’ appearance, several research-
ers have paid attention to multi-criteria decision-making
(MCDM) problems under the PF environment.

Let’s U denote the initial universe. An Pythagorean 
fuzzy set (PFS) C in U is given by C ={(x,mC(x), nC(x)):x 
∈ U}, where mC(x):U → [0,1] denotes the degree of

membership and nC(x):U → [0,1] denotes the degree of 
non-membership of the element x ∈ U to the set C with 
the condition that 0 ≤ [mC(x)]2 + [nC(x)]2 ≤ 1.  The degree of 
indeterminacy p m x n xC C C= − ( )[ ] − ( )[ ]1 2 2  [20].

Let the initial universe set and parameters set denote 
with U, P respectively. Let ρ(U) denotes the set of all PFSs 
over U. Let C ⊆ P. FC is called Pythagorean fuzzy soft set 
(PFSS) on U, if F is mapping given by FC:C → ρ(U) [16].

Let Pythagorean fuzzy numbers (PFNs) are denoted by 
N = (mN, nN ). Choose three PFNs N = (m,n), N1 = (mN1, 
nN1), N2 = (mN2, nN2). We can give some basic operations as 
follows:
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Firstly, we will give PFSS method:
Choose a set of k objects as U = {p1, p2, …, pk}, and a 

set of parameters {A(1), A(2), …A(i)}. Each parameter set 
A(i) represent the ith class of parameters and the elements 
of A(i) indicates a certain property set. Assumed that the 
property sets can be shown as FSs. Let FC, FD be the PFSSs 
on U [16].

Table 1. Attributes of Cleveland dataset

Attributes Full name
a1 Age in years
a2 Chest pain type
a3 Resting blood pressure (in mm Hg)
a4 Serum cholesterol in mg\dl
a5 Fasting blood sugar >120 mg\dl
a6 Resting electrocardiographic results
a7 Maximum heart rate achieved
a8 ST depression induced by exercise relative to rest
a9 The slope of the peak exercise ST segment
a10 Number of major vessels (0-3) colored by 

flourosopy
a11 3 normal; 6 fixed defect; 7 reversible defect
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This database contains 76 attributes. However, it is 
understood that 14 of these attributes can be used. The 
outcomes are given as degree of disease. It is integer valued 
from 0 (no presence) to 4. Tests with the Cleveland database 
have intensively on simply attempting to distinguish pres-
ence (values 1,2,3,4) from absence (value 0).

For simplify of operations, some patients can be selected 
instead of all patients from the Cleveland dataset. Let’s 
choose patient sets U = {p1, p2, p24, p25, p75, p303} from the 
Cleveland dateset.

The attributes of Cleveland dataset are given in Table 1. 
The outcomes are disease degrees as 1,2,3,4 and 0 (absence).

According to the membership function, the age attri-
bute is taken into account as follows: For age in years’ 
attribute, the values of membership function can be given 
as 0–20 (0.0–0.2), 21–40(0.3–0.5), 41–60 (0.6–0.8); 61 + 
(0.9–1.0) from the dataset. In this dataset, the attributes 
trestbps, chol, thalach, oldpeak are measured as lowest 94.0 
highest 200.0; lowest 126.0 highest 564.0; lowest 71 highest 
195; lowest 0.0 highest 5.6, respectively. We will give values 
between 0.0 and 1.0 to these measurements.

Algorithm
i.  Input the PFSSs FC, FD and FK.
ii.  Input the parameter set P obtained as a result of

observations.
iii.  Compute the corresponding PFSSs FC ∧ FD = FM  

from the PFSSs FC, FD.
iv.  Calculate the corresponding resultant PFSS FK ∧

FM = FS.

i.  The operation FC ∧ FD is called ‘AND’ operator on
FC, FD such that FC ∧ FD = F(G × H) = {min(mC, mH),
max(nC, nH)}.

ii.  The operation FC ∨ FD is called ‘OR’ operator on FC,
FD such that FC ∨ FD = F(G × H) = {max(mC, mH),
min(nC, nH)}.

A square table with equal row numbers and column 
numbers is called a Comparison Table. This table contains 
{p1, p2, …, pn} object names in both rows and columns. The 
entries in Comparison Table are denoted by cij, (i,j = 1, …, 
n). These entries are defined as is the number of parameters 
for which the membership value of pi greater than or equal 
to the membership value of pj and non-membership values 
of pi less than or equal to the non-membership value of pj.

If we take the number of parameters in PFSS as k, then 
it is clear that 0 ≤ cij ≤ k, for all i,j. Further cii = k. From here 
it is understood that cij is an integer number as a numerical 
measure.

The formula ri = ∑n
j=1cij calculates the row sum for an 

object pi. In this calculations, ri indicates the total number 
of parameters in which pi dominates all the members of U. 

In the same way, the formula tj = ∑n
i=1cij yields the col-

umn sum for an object pj. In this summation, the integer 
tj indicates the total number of parameters in which  pj is 
dominated by all the members on U.

The formula Si = ri
2 – tj

2 give the score of an object pi.
Now let’s give information about the dataset:
Input variables are taken from Cleveland dataset [26] 

This data set contains 303 patients, 11 attributes and 5 
outcomes.

Table 2. The PFSS FC

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

p1 (0.9,0.0) (0.2,0.5) (0.5,0.4) (0.3,0.7) (0.1,0.9) (0.1,0.8) (0.6,0.3) (0.3,0.5) (0.7,0.2) (0.1,0.6) (0.5,0.4)
p2 (0.9,0.1) (0.8,0.0) (0.6,0.2) (0.4,0.5) (0.1,0.7) (0.8,0.1) (0.4,0.3) (0.2,0.5) (0.5,0.5) (0.8,0.1) (0.1,0.6)
p24 (0.7,0.2) (0.2,0.6) (0.4,0.4) (0.5,0.3) (0.1,0.6) (0.0,0.9) (0.2,0.7) (0.3,0.6) (0.7,0.1) (0.6,0.5) (0.9,0.1)
p25 (0.1,0.8) (0.8,0.0) (0.5,0.4) (0.6,0.3) (0.1,0.7) (0.9,0.1) (0.3,0.5) (0.5,0.4) (0.5,0.5) (0.6,0.3) (0.9,0.1)
p75 (0.5,0.5) (0.1,0.8) (0.2,0.5) (0.4,0.3) (0.1,0.5) (0.5,0.5) (0.8,0.2) (0.0,0.7) (0.1,0.7) (0.5,0.2) (0.6,0.1)
p303 (0.5,0.4) (0.6,0.2) (0.5,0.4) (0.3,0.6) (0.1,0.5) (0.1,0.5) (0.6,0.2) (0.0,0.8) (0.1,0.5) (0.4,0.4) (0.2,0.6)

Table 3. The PFSS FD

1 2 3 4 0
p1 (0.3,0.6) (0.2,0.7) (0.1,0.7) (0.0,0.9) (0.9,0.0)
p2 (0.8,0.0) (0.9,0.1) (0.8,0.1) (0.5,0.4) (0.0,0.9)
p24 (0.7,0.1) (0.8,0.1) (0.9,0.2) (0.8,0.1) (0.0,0.8)
p25 (0.3,0.6) (0.5,0.5) (0.8,0.1) (0.9,0.1) (0.0,0.8)
p75 (0.9,0.3) (0.8,0.3) (0.4,0.6) (0.2,0.7) (0.5,0.5)
p303 (0.2,0.6) (0.1,0.7) (0.1,0.6) (0.0,0.8) (0.9,0.1)

Table 4. The PFSS FK

1 2 3 4 0
p1 (0.5,0.6) (0.3,0.6) (0.2,0.7) (0.1,0.8) (0.2,0.9)
p2 (0.6,0.2) (0.3,0.6) (0.1,0.7) (0.0,0.6) (0.8,0.1)
p24 (0.5,0.3) (0.6,0.2) (0.8,0.4) (0.9,0.2) (0.0,0.9)
p25 (0.4,0.5) (0.5,0.6) (0.6,0.3) (0.7,0.4) (0.0,0.9)
p75 (0.3,0.6) (0.8,0.2) (0.5,0.4) (0.3,0.8) (0.5,0.4)
p303 (0.3,0.6) (0.2,0.7) (0.2,0.5) (0.1,0.9) (0.8,0.1)
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v.  Set up the Comparison Table of PFSS FR and
compute ri, ti for pi for all i.

vi.  Compute the score of pi for all i.
vii.  If the obtain value of Si is maximum (Sk = maxiSi),

then signify that decision is Sk.
viii.  If k has more than one value then any one of pk

may be chosen.

APPLICATION 

Heart disease is one of the biggest causes of morbid-
ity and mortality among the population of the world. 
Prediction of cardiovascular disease is regarded as one of 
the most important subjects in the section of clinical data 
analysis. The amount of data in the healthcare industry is 
huge. Algorithms for data processing transform the vast 
collection of raw health data into information that can help 
make informed decisions and predictions.

First, the PFSS tables are created and the parameter set 
is set up. In the next step, PFSSs and resultant PFSS are cal-
culated with the AND operator. Score values are obtained 
by creating a Comparison table. Finally, the maximum of 
the obtained score values is selected. The Cleveland data-
set will be used in the application to be made for the new 
algorithm.

The PFSS FC is defined with patients and attributes. The 
PFSS FD is obtained from the measurements of Cleveland 
dataset. In the PFSS FK, there are predicted values of patients 
and disease degrees.

Take the PFSSs FC, FD in Table 2 and Table 3, respectively 
and carry out “FC AND FD” in form eij, where eij = ai ∧ bj. 
Then, we will have 11 × 5 = 55 parameters of the form eij, 
(i = 1, 2, …, 11; j = 1,2,3,4,5). For example, let the PFSS for 
the parameters

 G = {e1,1, e1,5, e2,3, e2,4, e4,2, e5,3, e7,2, e9,5, e10,1, e11,3}.

Table 5. The resultant PFSS FM

e1,1 e1,5 e2,3 e3,4 e4,2 e5,3 e7,2 e9,5 e10,1 e11,3

p1 (0.3,0.6) (0.9,0.0) (0.1,0.7) (0.0,0.9) (0.2,0.7) (0.1,0.9) (0.2,0.7) (0.7,0.2) (0.1,0.6) (0.1,0.6)
p2 (0.8,0.1) (0.0,0.9) (0.8,0.1) (0.5,0.4) (0.4,0.5) (0.1,0.7) (0.4,0.3) (0.0,0.9) (0.8,0.1) (0.1,0.6)
p24 (0.7,0.2) (0.0,0.8) (0.2,0.6) (0.4,0.4) (0.5,0.3) (0.1,0.6) (0.2,0.7) (0.0,0.8) (0.6,0.5) (0.9,0.2)
p25 (0.1,0.8) (0.0,0.8) (0.8,0.1) (0.5,0.4) (0.5,0.5) (0.1,0.7) (0.3,0.5) (0.0,0.8) (0.3,0.6) (0.8,0.1)
p75 (0.5,0.5) (0.5,0.5) (0.1,0.8) (0.2,0.7) (0.4,0.3) (0.1,0.6) (0.8,0.3) (0.1,0.7) (0.5,0.3) (0.4,0.6)
p303 (0.2,0.6) (0.5,0.4) (0.1,0.6) (0.0,0.8) (0.1,0.7) (0.1,0.8) (0.1,0.7) (0.1,0.5) (0.2,0.6) (0.1,0.6)

Table 6. The resultant PFSS FR

e1,1 ∧ c1 e1,5 ∧ c3 e2,3 ∧ c4 e3,4 ∧ c2 e4,2 ∧ c5 e5,3 ∧ c1 e7,2 ∧ c3 e9,5 ∧ c2 e10,1 ∧ c4 e11,3 ∧ c1

p1 (0.3,0.6) (0.2,0.7) (0.1,0.8) (0.0,0.9) (0.2,0.9) (0.1,0.9) (0.2,0.7) (0.1,0.6) (0.1,0.8) (0.1,0.7)
p2 (0.6,0.2) (0.0,0.9) (0.0,0.6) (0.3,0.6) (0.4,0.5) (0.1,0.7) (0.1,0.7) (0.0,0.9) (0.0,0.6) (0.1,0.6)
p24 (0.5,0.3) (0.0,0.8) (0.2,0.6) (0.4,0.5) (0.0,0.9) (0.1,0.6) (0.2,0.7) (0.0,0.8) (0.6,0.5) (0.5,0.3)
p25 (0.1,0.8) (0.0,0.8) (0.7,0.4) (0.5,0.6) (0.0,0.9) (0.1,0.7) (0.3,0.5) (0.0,0.8) (0.3,0.6) (0.4,0.5)
p75 (0.5,0.5) (0.5,0.5) (0.1,0.8) (0.2,0.7) (0.4,0.4) (0.1,0.6) (0.5,0.4) (0.1,0.7) (0.3,0.8) (0.4,0.6)
p303 (0.2,0.6) (0.2,0.5) (0.1,0.9) (0.0,0.8) (0.1,0.7) (0.1,0.8) (0.1,0.7) (0.1,0.7) (0.1,0.9) (0.1,0.6)

Table 7. Comparison Table

p1 p2 p24 p25 p75 p303

p1 10 3 4 3 2 5
p2 5 10 2 3 2 6
p24 7 8 10 7 6 7
p25 5 8 6 10 4 6
p75 9 6 5 6 10 10
p303 4 4 3 4 1 10

Table 8. ri, ti, Si

ri ti Si

p1 28 40 –816
p2 28 39 –737
p24 45 30 1125
p25 39 34 365
p75 46 25 1491
p303 26 44 – 1260
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Then, the resultant PFSS for the PFSSs FC, FG will be FR 
(Table 5).

Take the PFSSs FC, FD, FK, in Table 2,3,4, respectively. 
Consider that 

E = { e1,1∧c1, e1,5∧c5, e2,3∧c2, e3,4∧c4, e4,2∧c3, e5,3∧c2, e7,2∧c5, 
e9,5∧c1, e10,1∧c3, e11,3∧c2}.

The tabular representation of resultant PFSS FK is 
depicted Table 6.

The Comparison Table of the above resultant PFSS is as 
Table 7. Later on compute the row-sum (ri), column-sum 
(ti), and the score (Si) for each pi, as Table 8.

Now, we construct the tables for medical decision-mak-
ing by algorithm in previous section:

From the Table 8, it is clear that the maximum score 
is 1491 and p75 has the maximum score. Therefore, we can 
decide the accuracy of selection of p75.

DISCUSSON

The attributes given in Table 1 were first converted to 
PFNs. The PFNs in Table 2 shows the relationship between 
patients and disease characteristics. In other words, values 
related to cardiovascular disease parameters in selected 
patients are shown in Table 2. For example, for attribute a1, 
patient 2’s values were (0.9, 0.1) while patient 25’s values 
were (0.1, 0.8).

In Table 3, the disease degrees of the patients are shown 
as PFN. For example, Patient 1’s state of 4th-degree disease 
was determined as (0.0, 0.9), while the state of not being 
sick was determined as (0.9, 0.0). In other words, it can be 
thought that patient 1 is not sick by looking at these values.

The relationship between 11 attributes and 5 disease 
degrees is established with eij values. The AND operator 
is used for this relationship. The eij values in this example 
are 55. The table obtained here is the resultant PFSS FM and 
these values are seen in Table 5.

Since it would take a long time to process all the values 
in Table 5 and would take up a lot of space in the study, 
some values were selected in a sample G set. The resultant 
PFSS FR was obtained by using the AND operator between 
the values of the FC and FG sets. These values are shown in 
Table 6.

The Comparison Table of the above resultant PFSS is as 
Table 7. Later on compute the row-sum (ri), column-sum 
(ti), and the score (Si) for each pi, as Table 8. From the Table 
8, it is clear that the maximum score is 1491 and p75 has the 
maximum score. Therefore, we can decide the accuracy of 
selection of p75.

CONCLUSION 

Since the emergence of IFS [2], it has received a lot of 
attention in field of science and technology. Unlike FS, IFS 

does not only have a membership function but also has a 
non-membership function. The sum of these functions is 
less than or equal to 1. Having two functions and having 
totals less than or equal to 1 makes IFS stronger and more 
decisive than FS. However, in some real-life situations, 
the total of membership and non-membership functions 
may be greater than 1 and this creates difficulties in solv-
ing problem. That is, IFS fails to cope with such a situa-
tion. For this reason, PFS, initiated by Yager to deal with 
uncertainty, has entered the literature as a very effective 
tool. Problems that cannot be solved in IFS are more easily 
solved with PFS and the necessary modelling can be made 
easier. Therefore, it is claimed that PFS, which is frequently 
used in the literature about decision-making problems, is a 
superior model. IFS is PFS, but the opposite does not have 
to be true.

The concept of PFSS has been defined by Peng et al 
[18]. This new definition adds the generalization param-
eter to the pool of PFNs and extends PFS to PFSS. The 
concept of PFSS, which emerged from PFS, functions to 
evaluate the information obtained with a parameter that 
reflects the views of an expert. It is important that the 
uncertainty associated with an observer be verified by 
an expert in the choice of degree of membership, and 
this is the main motivation for developing the PFSS con-
cept. That is, the Pythagorean fuzzy soft sets are general-
ized by introducing the generalization parameter given 
by an expert to validate the original Pythagorean fuzzy 
values. The role of the expert is to refine PFNs with his 
domain-specific knowledge. It may be noted that infor-
mation of any sort often gets misinterpreted during its 
presentation. This usually happens as the presenter has 
no domain-specific knowledge or lacks the standard 
terminologies and this is sought to be corrected by the 
proposed PFSS. An expert can be viewed as a domain 
professional having years of experience. The expert’s 
opinion indicates the credibility of the evaluation of the 
alternative by the experts. This opinion coming from 
the expert constitutes the generalization parameter. The 
severity of symptoms as reported by the patients in the 
linguistic form as membership grades can be used in the 
PFSS.

In this study, PFSS, resultant PFSS, entries of Comparison 
Table, and score measures were given for PFSSs according 
to the PFNs. In decision-making processes, the criteria 
that determine the decisions are not of equal importance. 
Therefore, the properties are determined as PFN and shown 
in the tables.

In this paper, a new decision-making method is given 
using the PFSS. The proposed algorithm for the decision-
making process has been successfully implemented with 
the help of a numerical example. The method proposed 
by the study can be easily used to solve MCDM problems 
where data describing the performance of alternatives are 
characterized by PF values.
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