
Sigma J Eng Nat Sci, Vol. 40, No. 1, pp. 108–117, March, 2022

ABSTRACT

Unmanned aerial vehicles (UAVs), more generally known as drones or remotely piloted 
aircraft, h ave b een e xtensively u sed i n b oth c ivilian a ctivities a nd m ilitary m issions b ecause 
of their high mobility and low cost. Multi-UAV systems structured in an ad hoc manner 
called UAVs ad hoc network which is also familiar as flying ad hoc Network (FANET). For 
FANETs, the IEEE 802.11 standard offers Medium Access Control (MAC) layer requirements. 
Optimization of the contention window (CW) size will optimize the output. Three distinct 
meta-heuristic optimization algorithms are used in this paper to improve the efficiency of  
FANETs, which are the Cuckoo Search Algorithm (CUCO), the Differential Evolution 
Algorithm (DEA)\ and the Honey Bee Algorithm (HBA). Optimum CW size is defined 
through meta-heuristic optimization algorithms. Performance comparison among CUCO, 
DEA, HBA, and traditional MAC based on IEEE 802.11 is presented. Relationships among 
parameters are obtained through Markov chain based analytical study. Performance metrics 
such as successful transmission probability, collision probability, channel busy probability, 
throughput, packet dropping rate (PDR), and delay expressions are derived. Simulation 
results reveal that meta-heuristic optimization algorithms improve the quality and reliability 
of communication by increasing throughput and decreasing PDR and latency.
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INTRODUCTION

Drones, also well-known as unmanned aerial vehicles 
(UAVs), offer protection for humans relative to the usage 
of manned vehicle missions. Drones support a wide vari-
ety of applications in military and civil tasks such as 

environmental and meteorological monitoring, forest fire 
management, agricultural monitoring, surveillance sup-
port, search and rescue missions, radar localization, bor-
der surveillance, aerial photography [1-8]. Drone-to-Drone 
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(D2D) communication and Drone-to-Infrastructure (D2I) 
communication are enabled by UAV ad hoc networks, also 
known as flying ad hoc networks (FANETs), as seen in Fig. 
1. Communication in FANETs should be effective in order
to provide useful applications. Due to excessive mobil-
ity and low density, drones are rarely connected, which
can be addressed through an ad hoc network between
drones, resulting in extension of coverage [9]. FANETs
will allow contact with the ground through other drones if
the drone is unable to communicate with the ground. The
IEEE 802.11-2016 standard [10] defines specifications for
physical (PHY) and MAC layers for FANETs. To access the
medium, carrier-sense multiple access with collision avoid-
ance (CSMA/CA) is employed. The Request to send/ clear
to send (RTS/CTS) mechanism is utilized to prevent the
problem of hidden nodes. Performance analysis of FANETs
is challenging [1].

In several areas, such as science, commerce, and engi-
neering; artificial intelligence i.e. nature-inspired intelli-
gence algorithms have recently been commonly utilized as 
straight search and optimization methods. Optimization is 
the method of finding the most effective approach for a par-
ticular intent or target by having certain constraints. A new 
theory has been put forward by scientists, and it has been 
established by optimization. In optimization terminology, 
there is an aspiration to get best every time. The strongest 
interpretation is focused on research, the form of solution 
and allowable tolerance. Many optimization methods have 
been developed and adapted to different fields in order to 
overcome the challenges faced in the past [11]. In the for-
mulation of optimization problems, mathematical methods 
or classical methods are commonly utilized. The disad-
vantages of such methods, such as the inelasticity and the 
necessity to recognize them with mathematical functions, 
attracts scientists to evolve general-purpose as well as high-
performance approaches which have been inspired by natu-
ral phenomena. In optimization problems, Cuckoo Search 
Algorithm (CUCO), Differential Evolution Algorithm 
(DEA) and Honey Bee Algorithm (HBA) are broadly used 
[12–16].

The impact of IEEE 802.11 in FANETs has been stud-
ied recently in [2]. It is apparent that the performance is 
contingent on the size of the contention window (CW) [2, 
17–19]. In this article, in order to optimize performance, 
CW size is optimized using three meta-heuristic optimiza-
tion algorithms. The key goal of the study is to increase the 
efficiency and reliability of communication by improving 
throughput as well as reducing packet dropping rate (PDR) 
and delay. Optimization algorithms such as DEA, CUCO 
and HBA are employed in FANETs. Markov chain based 
theoretical study is sketched to show the association among 
parameters. Crucial performance metrics expressions such 
as collision probability, successful transmission probability, 
channel busy probability, throughput, PDR and delay are 
derived. Simulation results are presented. Comparison with 
IEEE 802.11 based conventional MAC is given. Simulation 
results show that meta-heuristic optimization algorithms 
improve performance.

The reminder of paper is organized as given below: 
Section II shows meta-heuristic optimization algorithms. 
Section III describes system model and an analytical study 
based on Markov chain model. Throughput, PDR and delay 
analysis is carried out in Section IV. Section V demonstrates 
numerical results. Section VI provides conclusion.

META-HEURISTIC OPTIMIZATION ALGORITHMS 

Cuckoo Search Algorithm (CUCO)
Basically, CUCO is an algorithm focused on herd intel-

ligence. It is observed that there are drones operating in ad 
hoc networks. The CUCO algorithm is focused on exchang-
ing social information among drones. Depending on the 
number of generations in the genetic algorithm, the search 
is completed. Each CW size uses previous experience to 
adjust its size to the best size on the system. The CUCO 
algorithm is mainly based on approximating the position 
of drones in ad hoc networks to drones with the best posi-
tion in ad hoc networks. CW size is random and drones in 
the herd are better positioned in their new moves than the 
previous position, and this process carries on until the goal 
is achieved. In several optimization problems, the CUCO 
algorithm has been used effectively [19–21]. 

Algorithm 1. Cuckoo Search Algorithm

1. Initiate CW size
2. Calculate the CW size value of all drones in FANETs
3. Compare all CW size to have the better of previous in

FANETs
4. IF CW size is better,
5. Then take the CW size place
6. End IF
7. Compare values of best CW size among FANETs and

select the best one as the global bestFigure 1. A basic FANETs structure.
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Eq. 2 is invariant rotationally [22]. Under the initial 
CW size limits, a DEA population is generated arbitrarily. 
FANETs experience perturbation in each G generation. 
The solution vectors are arbitrarily chosen, shown by three 
separate CW sizes or x. C coefficient xr3 denotes association 
level between G and current CW size x1,G. Coefficient V rep-
resents step size scaling from difference of vectors xr1,G-xr2,G. 

Honey Bee Algorithm (HBA)
The actions, understanding, knowledge exchange and 

memorization of Bee’s food search attribute have recently 
turned one of the most important herd intelligence research 
fields. In a natural bee colony, there is a role shared between 
bees. The bees do this job without a central unit, sharing 
it on their own which is similar to ad hoc networks. Two 
major aspects of herd intelligence are the exchange of busi-
ness and self-organization. 

In the minimal CW size search model, there is a simple 
aspect that enables common intelligence to appear. To get 
optimum throughput, bees i.e. drones take the CW size. 
There are two styles of bees (drones and network system), 
based on an internal instinct or an external influence, like 
random bees looking for arbitrary opportunities, beekeep-
ers (system) waits for bees (drones) in the FANETs, observ-
ing bees (drones), and utilizing the knowledge exchanged 
by bees (drones) and switching to a new size of the CW. 
Sharing details among drones is the most significant ele-
ment in the creation of common knowledge. Honey bee 
algorithm (HBA) is the latest algorithm generated by mod-
eling the behavior (CW size) of bees (drones). By trying to 
find the CW size with the higher throughput, HBA tries to 
get the result by the maximum or minimum in the set [23]. 
Algorithm 3 presents the algorithm of HBA.

Algorithm 3. Honey Bee Algorithm

1. Initiate CW size
2. A CW size is defined

8. Update values of CW size
9. Discard

Algorithm 1 presents algorithm of CUCO for FANETs. 
Basically, the algorithm comprises of the steps below:

i. A starting swarm is created with an arbitrarily gener-
ated initial CW size.

ii. Exchange of values of all drones in FANETs.
iii. There is a local best of the present generation for each 

drone (pbest). The best in pack are as many as the drones.
iv. The global best (gbest) is taken from local best in cur-

rent ad hoc networks.
v. The CW size has been updated as follows.
Here, Xid is position and CWid is CW size values, while

rand1 and rand2 values are arbitrarily generated numbers. 
The value of inertial weight is w and c1, c2 are scaling factors.

vi. Until requirement for stopping is satisfied, repeat
steps 2, 3, 4, 5.

V wCW c P X rand
c P X rand

id id id id

gd id

= + −
+ −

1 1

2 2

0 1
0 1

( ) ( , )
( ) ( , ),

 (1)

X X CWid id id= + . (2)

Differential Evolutionary Algorithm (DEA)
A popular population-based algorithm is the DEA that 

is commonly utilized in different optimization problems 
[22]. These algorithms are also utilized with numerical 
optimization algorithms for general purposes. Through 
utilizing advanced throughput efficiency, DEA differs from 
genetic algorithms. The output of the task, which is cen-
tered on variation between target vector pairs, is calculated 
by its own distribution of target vectors. It is often utilized 
for generating a reference vector from a parental vector in 
combination with mutation and crossover. Algorithm 2 
presents algorithm of DEA. 

Algorithm 2. Differential Evolutionary Algorithm

1. Initiate CW size
2. Get awareness of two arbitrarily chosen CW size values

from ad hoc networks
3. Gather the difference vector as third CW size
4. Compare target vector with the total vector
5. IF new value of CW size is better than the target vector
6. Then replace it
7. End If
8. Discard

DEA varies in the efficiency of throughput and recombi-
nation phases from other optimization algorithm. DEA uti-
lizes weighted variations between solution CW size to mix. Figure 2. Mobility of a drone in 3D.



Sigma J Eng Nat Sci, Vol. 40, No. 1, pp. 108–117, March, 2022111

3. Compute throughput
4. IF all drones are distributed
5. Take CW size in memory
6. Define the CW size to be published
7. Generate new CW size in place of published CW
8. Discard
9. Else IF
10. Identify the CW size by the drone
11. Go step 3
12. End Else IF
13. End IF
14. Discard

The initial CW is computed arbitrarily inside the search 
space, according to the HBA. The initial generation of CW 
can be written as

CW b b b randi j j
l

j
u

j
l

, ( ) ( , ),= + − 0 1 (4)

where j is problem size, the bl
j and bu

j are lower and upper 
limits of jth dimension the population of ith in ad hoc net-
works. An optimum CW size will be searched near CW size 
while carrying throughput performance with the current 
CW size. The old CW size is kept in memory, and if a better 
CW size is found, then old one is replaced with the better 
CW. The call is made randomly. If any CW size is better 
than current best CW size, then it will be saved in memory, 
information is exchanged in FANETs. 

SYSTEM MODEL

It is assumed that there is a FANET with N drones in the 
TR transmission range. Saturated state is considered. The 
key attributes of FANETs are their three dimensional (3D) 
appearance and excessive mobility. In 3D space, drones 
travel, which is beneficial for moving through obstacles. 

3D space mobility is explained in Fig. 2. For a time T, the 
constant altitude h is assumed. The drone’s position is rep-
resented by (x(t), y(t), h), where x(t) and y(t) indicate time 
varying coordinates of x and y, respectively. The drone’s 
position depends on the position of launch and landing or 
pre- and post-mission. Let (xi, yi, h) and (xf, yf, h) respec-
tively be the original and final positions. Let the distance 
between the original and the final position be d. The mini-
mum d is d x x y yf i f imin ( ) ( )= − + −2 2  between the origi-
nal and final position. The maximum velocity of the drone 

is v
d
Tmax
min .≥  Therefore, from original to final position,

there is at least one possible trajectory. 

IEEE 802.11 DCF

In IEEE 802.11 standard, MAC protocol is utilized to 
manage access to a shared channel by multiple drones. The 
primary access mechanism, which is a contention-based 
access process utilizing a random access technique, is the 
IEEE 802.11 Distributed Coordination Feature (DCF), 
where each station will start transmission without any 
infrastructure assistance. Therefore, this technique can sup-
port both infrastructure type wireless local area network 
(Wireless LAN, WLAN) and wireless ad hoc networks. 

The basic access method of IEEE 802.11 DCF is CSMA/
CA. In wireless networks, the CSMA/CA method is used 
since the collision can not be detected, so collision avoid-
ance is the only remedy. The CSMA/CA approach elimi-
nates collisions by utilizing the methodology presented in 
Fig. 3. After awaiting DCF inter-frame space (DIFS) dura-
tion and completing the backoff process, the source drone 
transmits data to the destination drone. Destination drone 
holds for the short internal frame space (SIFS) and after 
that replies with an acknowledgment (ACK) to endorse the 
successful transmission, irrespective of the busy or inactive 
state of the channel. When the source drone and destina-
tion drone are in communication, the network allocation 
vector (NAV) blocks the channel and closes it to other 
drones. 

Figure 3. CSMA/CA technique. Figure 4. RTS/CTS technique.
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Let PTR be the probability of packet transmission at a 
random slot time that can take place only if c becomes 0 
regardless of j. Therefore, PTR can be written as
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If any of N drones transmit a packet, the channel will be 
busy which can be given as 

P PB TR
N= − −( )1 1 . (9)

If any of remaining N-1 drones sends a packet when a 
packet is sent by a drone, then collision will happen. Thus, 
collision probability Pc can be defined as

P PC TR
N= − − −1 1 1( ) . (10)

Let Ps be probability successful of transmission that 
after a packet transmission, it is received successfully by the 
receiver which can be expressed as

 P
NP P

PS
TR TR

N

B

=
−( ) −1 1

. (11)

Packet arrival probability can be expressed by the 
Poisson distribution with average arrival rate λ which can 
be given as

Another access mechanism used in the DCF is the RTS/
CTS mechanism, seen in Fig. 4. The source drone sends 
an RTS after waiting for the DIFS period and finishing the 
backoff process. After the destination drone receives RTS, 
after SIFS period, it responds to the source drone with a 
CTS. The CTS is detected by the source drone and awaits 
for SIFS time, and then transmits data. If the destination 
drone successfully receives data, to affirm the transmission, 
it answers with ACK. Each other drone that senses RTS or 
CTS frames sets the NAV until the end of ACK to postpone 
transmission. 

Markov Chain Model
If there is a packet to send in FANETs, drone initiates to 

listen the channel. Drone transmits while channel is listened 
idle for DIFS time (δDIFS). Otherwise to prevent collision, 
the drone takes an arbitrary backoff. Let counter of backoff 
time as well as backoff stage for drone at time δ are denoted 
by c(δ) and s(δ), respectively which are stochastic processes. 
c and j represent the backoff counter value and backoff stage 
value, respectively. If maximum retransmission limit and 
CW size are denoted by mr and CW, respectively, then c and 
j can be defined as C ∈ (0,CW – 1), J ∈ (0, mr). The initial 
value of c, which can be expressed as CWmin, is uniformly 
chosen from [0, CW0-1]. c is decreased by 1 when the chan-
nel is sensed inactive for a slot time (δslot), and if channel is 
sensed busy, then c is paused in the current value, and if the 
channel is sensed free again for more than δDIFS, c restart to 
decrease. If c is 0, drone will transmit the packet. When a col-
lision happens after a transmission, j is increased by 1. After 
each unsuccessful transmission, CW doubles and can have  
CWmax = 2mr CWmin highest value. Let PB and PC be chan-
nel busy probability and collision probability, respectively. 

Let b P s t j c t c j mr c CWj c t j, lim ( ) , ( ) , [ , ], [ , ]= = ={ } ∈ ∈ −( )
→∞

0 0 1 
b P s t j c t c j mr c CWj c t j, lim ( ) , ( ) , [ , ], [ , ]= = ={ } ∈ ∈ −( )

→∞
0 0 1  be the stationary distribution of the Markov 

chain. Fig. 5 shows two-dimensional (2D) Markov chain 
model. From Markov chain, the following expression can 
be derived as 

b
CW k
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bj c

j

j
j, , .=

−
0 (5)
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and

Figure 5. Illustration of backoff technique with 2D Markov 
Chain model.
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Pp Ex= − −1 exp( ),λδ (12)

where δEx is expected period of drone in a Markov state 
which can be expressed as

δ δ δ δEx B Slot B S S B S CP P P P P= − + + −( ) ( ) ,1 1  (13)

where δS and δC are the duration of successful transmis-
sion and collided, respectively. δS, and δC can be given as 

δ

δ

δ δ

δ δ δ

S
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D
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N L
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δ δ δ δC
RTS CTS

RTS DelDIFS
/ ,= + +  (16)

δ δ δC
CSMA CA

D
DelDIFS

L
R

/ ,= + + (17)

where δSIFS, δDIFS, δRTS, δCTS, δDel and δACK are are duration 
for SIFS, DIFS, RTS, CTS, delay, and ACK, respectively. 
RD and L are presents transmission rate and packet size, 
respectively. 

THROUGHPUT, PDR, AND DELAY ANALYSIS 

Let S be the system throughput which is the ratio of 
mean transferred data and mean duration of slot time 
which can be written as [24]

S
P P LS B

Ex

=
δ

. (18)

S for RTS/CTS and CSMA/CA can be given as 
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After mr, the packet will be dropped. Thus, PDR can be 
defined as [25]

ηpdr S
mrP= −( )1 . (21)

Let E[D] be mean delay of a packet that has been deliv-
ered successfully, which can be written as [26]

E D E E P EInt Dr Dr[ ] [ ] [ ] [ ],= −δ δ  (22)

where E[δInt] indicates mean duration at a receiver between 
two successfully received packets, E[PDr] is average dropped 
packets number in relation to a successful delivery, E[δDr] 
expresses mean period to drop a packet. E[δInt] can be 
obtained for RTS/CTS and CSMA/CA as 

E
NP P L

S
NInt

RTS CTS S B
Ex
RTS CTS[ ] ,/ /δ δ= =  (23)

E
NP P L

S
NInt

CSMA CA S B
Ex
CSMA CA[ ] ./ /δ δ= =  (24)

If PFd is probability that a packet is dropped finally, then 
E[PDr] can be given as 

E P
P

PDr
Fd

Fd

[ ] .=
−1 (25)

E[δDr] can also be written as 

E E XDr
RTS CTS

Dr Ex
RTS CTS[ ] [ ] ,/ /δ δ=  (26)

E E XDr
CSMA CA

Dr Ex
CSMA CA[ ] [ ] ,/ /δ δ=  (27)

where E[XDr] denotes average number of slot times for a 
dropped packet which can be given as

E X
CW

Dr[ ] .=
+1

2
(28)

Therefore, E[D] can be attained by utilizing equations 
from (22) to (27) as 

E D N
P

P
CWRTS CTS
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×
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2

 (29) 

Table 1. Parameter values used in numerical analysis

Parameters Value
δSlot, δDIFS, δSIFS, δDel  (µs) 20, 10, 50, 1 
RTS, CTS, Lh, L, ACK (bytes) 26, 20, 50, 1024, 14
Rc, Rdat (Mbps) 1, 11
mr, N, TR (m) 5, 0–50, 300
CW for traditional MAC 64
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NUMERICAL RESULTS 

In this section, the impact of different meta-heuris-
tic optimization algorithms in FANETs is evaluated. A 

comparison among meta-heuristic optimization algorithms 
and IEEE 802.11 based traditional MAC is presented. 
Furthermore, comparison between two access mechanisms 
CSMA/CA and RTS/CTS is provided. The numerical results 
are accomplished in MATLAB. Parameter values utilized in 
numerical analysis are given in Table 1. 

Fig. 6 shows throughput according to number of drones. 
With an increasing number of drones, the throughput rises 

Figure 7. Comparison of successful transmission 
probability versus number of drones.

Figure 6. Comparison of throughput against the number of 
drones for each algorithm.

Figure 8. Channel busy probability against number of 
drones.

Figure 9. Collision probability versus number of drones.



Sigma J Eng Nat Sci, Vol. 40, No. 1, pp. 108–117, March, 2022115

up to a definite level, then the throughput continues to 
drop as further collisions arise as more packets contend for 
channel. Throughput for meta-heuristic optimization algo-
rithms is always greater than traditional MAC. The HBA 
has greater throughput than CUCO and DEA when the 
number of drones is low. When the number of drones is 
high (N ≥ 35), the throughput of HBA and CUCO algo-
rithms is almost the same, however, higher than DEA. 
Meta-heuristic optimization algorithms have better effi-
ciency than conventional MAC. It seems that the perfor-
mance of CSMA/CA is better than RTS/CTS. 

Fig. 7 presents the probability of successful transmis-
sion versus number of drones. The increase in the num-
ber of drones adversely affects successful transmission due 
to increase in collision. It seems that with the increase of 
drones the probability of successful transmission is better 
in cases where meta-heuristic optimization algorithm is 
used Figs. 8 and 9 show effect of channel busy probability 
and collision probability for different number of drones, 
respectively. With the increase of the number of drones 

channel busy probability is increased. Since more packets 
will compete for packet transmission, collision probability 
will increase with the number of drones. Due to increase 
of collision probability with the number of drones, chan-
nel busy probability will increase because of retransmission 
and increment of CW size. When number of drones is high 
(N ≥ 35), probability of channel busy and collision are lower 
than traditional MAC than meta-heuristic optimization 
algorithms. Besides, CUCO algorithm is better than HBA 
and DEA algorithms. 

Fig. 10 shows the variation of PDR with drone’s number. 
PDR upturns with the number of drones. When the num-
ber of drones is small, HBA has lower PDR than CUCO 
and DEA. If the number of drones is high, DEA has a lesser 
PDR. The meta-heuristic optimization algorithms’ PDR is 
constantly smaller than traditional MAC. Therefore, it is 
palpable that through growing throughput and decreas-
ing PDR, meta-heuristic optimization algorithms improve 
communication efficiency. Figs. 7, 8, 9, and 10 do not 
depend on whether it is used RTS/CTS or CSMA/CA. 

Figure 10. PDR against number of drones.
Figure 11. Average delay versus number of drones.

Table 2. Throughput values by using RTS/CTS mechanism

Number of 
drones

CUCO HBA DEA Traditional 
MAC

10 5,7520 5,6870 5,7248 5,3775

20 5,7190 5,7022 5,7190 5,6908

30 5,7350 5,7764 5,7750 5,7742

40 5,7357 5,7896 5,7857 5,7874

50 5,7263 5,7763 5,7714 5,7689

Table 3. Throughput values by using CSMA/CA mechanism

Number of 
drones

CUCO HBA DEA Traditional 
MAC

10 7,4810 7,4606 7,4810 7,0797

20 7,4512 7,4600 7,4512 7,4506

30 7,4076 7,4297 7,4089 7,4028

40 7,2964 7,2867 7,2964 7,2303

50 7,2746 7,2572 7,2661 7,0073
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Fig. 11 illustrates the average delay for the number of 
drones. The delay increases with increment in the number 
of drones, mainly due to two causes. First, as the number 
of drones increases, more packets will compete to transmit, 
which increases the chances of channel busyness, which 
increases access time to channel. Second, as the number of 
drones increases, there will be more packets for transmis-
sion, which will create more packet collisions, which will 
rise retransmission and upsurge backoff for transmission. 
In order to decrease latency, channel busy probability and 
collision probability must be reduced. However, meta-heu-
ristic optimization algorithms reduce delay in both RTS/
CTS and CSMA/CA. 

Table 2 and Table 3 present the throughput values by 
using meta-heuristic optimization algorithms with RTS/
CTS and CSMA/CA mechanism, respectively. CSMA/
CA mechanism has better throughput than RTS/CTS 
mechanism. Tables 4 and 5 demonstrate computation 
time comparison among CUCO, HBA, DEA and tradi-
tional MAC with RTS/CTS and CSMA/CA mechanism, 
respectively. Time consumption of traditional MAC is 
less than meta-heuristic algorithms. The time consump-
tion of DEA is less than other metaheuristic optimiza-
tion algorithms. 

CONCLUSION 

In this paper, meta-heuristic optimization algorithms 
are used in FANETs to get optimum throughput perfor-
mance by optimizing CW size. In order to set up the rela-
tionship among parameters Markov chain based analytical 
study is sketched. Successful transmission probability, col-
lision probability, channel busy probability, throughput, 
PDR, and delay expressions are provided. Simulation 
results are illustrated. Comparison between CUCO, DEA, 
HBA and traditional MAC is presented. It is apparent that 
efficiency and communication reliability are increased by 
meta-heuristic optimization algorithms.
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