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ABSTRACT

This paper aims to develop dual-generalized complex Fibonacci and Lucas numbers and obtain 
recurrence relations. Fibonacci and Lucas’s approach to dual-generalized complex numbers 
contains dual-complex, hyper-dual and dual-hyperbolic situations as special cases and allows 
general contributions to the literature for all real number p. For this purpose,  Binet’s formulas 
along with Tagiuri’s, Hornsberger’s, D’Ocagne’s, Cassini’s and Catalan’s identities, are calculated 
for dual-generalized complex Fibonacci and Lucas numbers. Finally, the results are given, and 
the special cases for this unification are classified.
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INTRODUCTION 

The generalized complex numbers (for details see 
[1,2]) are defined in the form z a a J= +1 2  where a a1 2, ∈� .  
Here, J denotes the generalized complex unit where 
J J2 = /∈ ∈p p, ,  � � . This set is analogue to the complex 
numbers � for p = −1, the hyperbolic numbers  for p = 1 
and the dual numbers   for p = 0 (see details in [3,4]). The 
idea of investigating the number systems by writing the 
coefficients as elements of the complex, hyperbolic and 
dual numbers is a fascinating area for researchers. Hence, 
over the years the various types of number systems have 

been constructed employ this idea. Hyperbolic numbers 
with complex coefficients (complex-hyperbolic numbers or 
hyperbolic-complex numbers) are examined in [1, 5, 6]. n
-dimensional hyperbolic-complex and bicomplex numbers
are investigated in [7–10], respectively. Dual-complex num-
bers are presented in [11–13]. In [14], the notion of dual-
complex numbers and their holomorphic functions are
investigated.  Dual-hyperbolic numbers and their algebraic
properties are discussed in [13]. Besides, the functions and
various matrix representations of dual-hyperbolic numbers
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and complex-hyperbolic numbers are presented in [15]. 
Furthermore, as an extension of dual numbers, hyper-dual 
numbers are studied in [16, 17]. Quite a few studies in the 
literature are related to the types of numbers which con-
sist of different combination of the coefficients, [18–20]. 
Motivated by the above mentioned papers and using the 
Cayley-Dickson doubling procedure for construction, the 
dual-generalized complex (DGC) numbers are investigated 
in [21] with the form w z z= +1 2ε , where z1, z2 are general-
ized complex numbers. Here ε is pure dual unit with condi-
tions ε ε ε2 0 0= ≠ /∈, , �. In this study various properties and 
matrix representations are considered. DGC  numbers cor-
respond to the dual-complex, hyper-dual and dual-hyper-
bolic numbers for the special real values p = −1, p = 0 and 
p = 1, respectively.

The Fibonacci and Lucas sequences have impressed 
researchers in other respects for centuries. The properties 
of Fibonacci and Lucas numbers and their relations can be 
found in classical studies [22–27]. Several studies in the 
literature are conducted considering Fibonacci and Lucas 
numbers, (see some papers in [28–30]). 

The Fibonacci sequence and the golden ratio (the ratio 
of sequential Fibonacci numbers) have been widely dis-
covered in biology, theoretical physics, chemistry, technol-
ogy and nature. In 2015, it was found in amino acids and 
codons, the constituent molecules of genetic codes, [31]. 
It also appears in a ladder network of equal resistors, [32]. 
The characteristics of particular electrical network can be 
written as a function of Fibonacci and Lucas numbers, [32–
34]. Furthermore, some properties of resonant electronic 
systems are related to Fibonacci numbers. In 2020, a pro-
posed optical resonant device, with resonant frequencies 
spaced according to the Fibonacci sequences, demonstrat-
ing the analogy with coupled electrical resonant cells was 
discussed, [35]. 

It is natural to study Fibonacci and Lucas’s versions of the 
above mentioned type of numbers. By using dual-complex 
numbers in [14], dual-complex Fibonacci and Lucas num-
bers are defined in [36] and Binet’s formulas, and D’Ocagne, 
Catalan’s and Cassini’s identities are obtained.  Likewise, 
dual-complex numbers with generalized Fibonacci and 
Lucas numbers coefficients are discussed in [37]. In analogy 
to dual-complex Fibonacci and Lucas numbers, dual-hyper-
bolic Fibonacci and Lucas numbers and their identities are 
introduced in [38]. Besides, dual-hyperbolic numbers with 
generalized Fibonacci and Lucas numbers coefficients are 
examined in [39, 40]. Hyper-dual generalized Fibonacci 
numbers are examined in [41]. Additionally, in [42], the 
researchers obtained some properties of Fibonacci and 
Lucas numbers by regarding them as a generalized complex 
Fibonacci and Lucas numbers. 

As summarized above, dual-complex, hyper-dual and 
dual hyperbolic Fibonacci/Lucas numbers are already 
known in the literature and obtained by considering the 
value as –1, 0, and 1 for p. The generalization according to 

any p∈�  is missing. Under these circumstances, the fol-
lowing open problem needs to be answered:

Problem: Is there a probability of occurrence of an 
extension of dual-complex, hyper-dual and dual-hyper-
bolic Fibonacci/Lucas numbers for any value of p?  If the 
answer is affirmative, what algebraic properties and recur-
rence relations are satisfied?

Based on this open problem, we introduce the theory of 
DGC  Fibonacci and Lucas numbers. This paper is organized 
as follows: Section 2 presents basic notations that are used 
throughout the paper. Section 3 attempts to develop DGC  
Fibonacci and Lucas numbers, and also includes the opera-
tions on these numbers and several equalities.  Also famil-
iar Tagiuri’s, Hornsberger’s, Binet’s formulas, D’Ocagne’s, 
Cassini’s and Catalan’s identities for these types of numbers 
are extended and examples are given. This approach shows 
us the given problem has an affirmative answer and the the-
ory is improved with respect to any real value of p ( J 2 = p),  
not only for –1, 1 and 0. Finally, in Section 4 the results 
are concluded, the classifications are given and the concrete 
contributions of the study are discussed.

GENERAL INFORMATION

In this section, we recall some basic notations and 
results related to Fibonacci/Lucas numbers (see [22-27]) 
and DGC  numbers (see [21]).

Fibonacci and Lucas Numbers
Fibonacci sequence is defined by F F F nn n n+ −= + ≥1 1 1,   

with F F0 10 1= =,  . The nth Fibonacci number Fn can be for-
mulated by the Binet’s formula:

Fn
n n

=
−
−

α β
α β

, (1)

where α =
+1 5

2
 and β =

−1 5
2

. Thus, the golden ratio is 

obtained by using Binet’s formula as lim .
n

n

n

F
F→∞

+ =1 α  Moreover,

nega-Fibonacci numbers are calculated by

F Fn
n

n−
+= −( )1 1 . (2)

Analogically, the Lucas sequence is defined by changing 
the initial numbers in the Fibonacci sequence and written 
by L L L nn n n+ −= + ≥1 1 1,   with L0 = 2, L1 = 1. The nth Lucas 
number Ln can be formulated by Binet’s formula:

Ln
n n= +α β . (3)

Similar to the Fibonacci numbers, the golden ratio is 

obtained by using Binet’s formula as lim .
n

n

n

L
L→∞

+ =1 α
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Theorem 1 (see [26]). The D’Ocagne’s, Catalan’s and 
Cassini’s identities for Fibonacci and Lucas numbers are 
given in as Table 1.

DGC  numbers
The set of generalized complex numbers � p (for details 

see [1,2]) is defined by: 

� � � �
p

p p: | , , , , .= = + ∈ = /∈ ∈{ }z a a J a a J J1 2 1 2
2    

Considering this set and inspired by the Cayley-Dickson 
doubling procedure, the set of DGC  numbers is defined as 
follows (see [21]): 

� � �
p p

: | , , , , ,= = + ∈ = ≠ /∈{ }w z z z z1 2 1 2
2 0 0ε ε ε ε    

where the base elements 1, , ,J Jε ε{ }  satisfy the properties 
given in Table 2. Here Jε is called the generalized complex-
dual unit.

The operations for DGC  numbers are given by the fol-
lowing, respectively, [21]:

w w z z z z

w w z z z z
1 2 11 21 12 22

1 2 11 21 12 22

= ⇔ = =

+ = + + +( ) ( )
, ,

,  

      

ε

λww z z

w w z z z z z z
1 11 12

1 2 11 21 11 22 12 21      

= +

= + +( ) ( )
λ λ ε

ε

,

,

where w z z w z z1 11 12 2 21 22= + = + ∈ε ε,  �
p
 and λ ∈�. �

p
 is 

a commutative ring with unity and a vector space over real 
numbers.

The nega-Lucas numbers can easily be seen by using 

equation L Ln
n

n− = −( )1 .
Proposition 1. The linear relationships involve the 

sums or differences of Fibonacci/Lucas numbers and the 
products of at most 2 of them are given by (see [22–27]):

F F
F L r k

F L r kn r n r

n r

r n
+ −+ =

=

= +




,

, ,

2

2 1      
(4)

F F
L r k

F L r k

F
n r n r

n

n r

r
+ −− =

=

= +




,

, ,

2

2 1     (5)

F F F F F Fm n m r n r
n r

m r n r− = −+ −
−

+ −( ) ,1 (6)

F F F Fn n n n+ + −− =1
2 2

2 1 , (7)

F F Fn n n+ ++ =1
2 2

2 1 , (8)

F F Fn n n+ −− =1
2

1
2

2 , (9)

F F F F Fn m m n m n+ =+ + + +1 1 1 , (10)

L L
L r k

F F r k

L
n r n r

r

n r

n

+ −+ =
=

= +




,

, ,

2

5 2 1    

L L
F F r k

L L r kn r n r

n r

n r
+ −− =

=

= +




5 2

2 1

,

, ,     

L L L L F Fm n m r n r
n r

m r n r− = −+ −
− +

+ −5 1 1( ) ,

L L L Ln n n n+ + −− =1
2 2

2 1 ,

L L Fn n n+ ++ =1
2 2

2 15 ,  

L L Fn n n+ −− =1
2

1
2

25 ,

L L L L Fn m m n m n+ =+ + + +1 1 15 .  

Table 1. Identities for Fibonacci and Lucas numbers

Fibonacci case Lucas case

D’Ocagne’s F F F F Fm n m n
n

m n+ + −− = −1 1 1( ) L L L L Fm n m n
n

m n+ +
+

−− = −1 1
15 1( )

Catalan’s F F F Fn n r n r
n r

r
2 21− = −+ −

−( ) L L L Fn n r n r
n r

r
2 1 25 1− = −+ −

− +( )

Cassini’s F F Fn n n
n2

1 1
11− = −+ −

−( ) L L Ln n n
n2

1 1 5 1− = −+ − ( )

Table 2. Multiplication scheme of DGC  numbers, [21]

1 J ε Jε 
1 1 J ε Jε 
J J p Jε pε
ε ε Jε 0 0
Jε Jε pε 0 0
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DGC  Fibonacci and Lucas numbers

In this original section, utilizing Section 2, the math-
ematical formulation of Fibonacci-Lucas numbers with 
DGC  components is presented and their algebraic proper-
ties, linear sums (or differences) and products of at most 2 
are obtained for p∈� . Finally, we extend important charac-
teristic identities for Fibonacci and Lucas numbers to DGC  
Fibonacci and Lucas numbers.

Definition 1. The DGC  Fibonacci and DGC  Lucas num-
bers are defined by:

�n n n n nF F J F F J= + + ++ + +1 2 3ε ε (11)

and

�n n n n nL L J L L J= + + ++ + +1 2 3ε ε , (12)

where Fn and Ln are the nth Fibonacci and Lucas numbers, 
respectively. 

The set of DGC  Fibonacci and Lucas numbers are 
denoted by D F�

p
 and D L�

p
, respectively. Furthermore,  a 

DGC  Fibonacci number can also be expressed as:

�n n n n nF F J F F J= + + ++ + +( ) ( )1 2 3 ε.

Definition 2. Let � � � n m,  ∈D F
p . Then, the equality, the 

addition, subtraction, scalar multiplication, and multiplica-
tion of these numbers are defined by, respectively:

� �

� �

 

 

n m n m n m n

n m n

F F F F F F

F
m n mF F= ⇔ = = =

±
+ + + + + +=

=

, ,

(

, .   1 1 2 2 3 3

±± + ± + ±

+ ±

= +

+ + + +

+ +

F F F J F F

F F J

F

m n m n m

n m

n n

) ( ) ( )

( ) ,

( ) (

1 1 2 2

3 3

ε

ε

λ λ� λλ λ ε λ ε λF J F F Jn n n+ + ++ + ∈1 2 3) ( ) ( ) , ,�

 (13)

� � n m n m n m n m n m

n

F F F F F F F F J

F F

× = + + +

+
+ + + +( )p 1 1 1 1

mm n m n m n m

n m

F F F F F F

F F
+ + + + + +

+ +

+ + +

+

( )2 2 1 3 3 1

1

p( ) ε

22 3 3 2 1+ + ++ + + +( )F F F F F F Jn m n m n m ε.

 (14)

Definition 3. Let � �n ∈D F
p

. The different conjugations 
and modules in D F�

p
 can be defined as in Table 3.

Proposition 2. Let � �n ∈D F
p

. Then, the properties 
below can be given:
1) ( )1†

22 ,n n n nF F ε++ = +� � 

2) ( )1† 2 2
1 2 1 32 ,n n n n n n n nF F F F F F ε+ + + +× = − + −� �  p p

3) ( )2†
12 ,n n n nF F J++ = +� � 

4) 2† 2 2
1 12 ,n n n n n nF F F F J+ +× = + +� �  p

5) ( )3†
32 ,n n n nF F Jε++ = +� � 

6) 3† 2 2
1 2( 1) ,n

n n n nF F Jε+× = − + −� �  p

7) ( ) ( )
( )

4 2† †
1 1

2 2
1 2 1 3 ( 1) ,

n n n n n n

n
n n n n n n

F F J F F J

F F F F F F Jε ε
+ +

+ + + +

+ = −

= − − − + −

� � 

p p

8) 4† 2 2
1 ,n n n nF F +× = −� �  p

9) 5†
1 ,n n n nF F Jε +− = +� � 

10) 5†
2 3 .n n n nF F Jε + ++ = +� � 

It should be noted that Definition 2, Definition 3 
and Proposition 2 can be given for DGC  Lucas numbers, 
similarly. 

Let us extend the familiar relations of Fibonacci/Lucas 
numbers to DGC  Fibonacci/Lucas numbers.

Theorem 2. Let � �n ∈D F
p

 and � �n ∈D L
p

. Then, the 
following relations hold for n, m, r ≥ 0:

1) � � �  n n n+ =+ +1 2 ,

2) � �
�

�
F F

F

L
n r n r

r n

r n

L r k

F r k+ −+ =
=

= +







,

, ,

2

2 1     

3) � �
�

�
F F

L

F
n r n r

r n

r n

F r k

L r k+ −− =
=

= +







,

, ,

2

2 1     

4) � � � �   m n m r n r
n r

m n r rF F

J J

× − × = − −

+ + − +
+ −

−
− + ( )

( )
( ) [

],

1 1

3 1 3

p

p ε ε

5) � � �  n n n n n

n n n

F F J

F F F J

2
1

2
2 1 2 3 2 2

2 3 2 5 2 42 3

+ = + +

+ + +
+ + + +

+ + +( )
p

p ε ε ,,

Table 3. Conjugations and modules

Definition Formula
Generalized complex 
conjugation ( ) ( )1†

1 2 3n n n n nF F J F F J ε+ + += − + −�

Generalized complex 
module

1

1

2 †
†| |n n n= ´� � �  

Dual conjugation ( ) ( )2†
1 2 3n n n n nF F J F F J ε+ + += + − +�

Dual module 2

2

2 †
†| |n n n= ×� � �  

Coupled conjugation ( ) ( )3†
1 2 3n n n n nF F J F F J ε+ + += − − −�

Coupled module 3

3

†2
†| |n n n= ´� � �  

DGC   conjugation ( )4† 2 3
1

1

1 n n
n n n

n n

F F J
F F J

F F J
ε+ +

+
+

+
= − −

+
 
  

�

DGC   module 4

4

2 †
†| |n n n= ´� � �  

Anti-dual conjugation ( ) ( )5†
2 3 1n n n n nF F J F F J ε+ + += + − +�
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and

�n n n n n n n n n

n

F F F F J F F F F

F
+ + + + + + + + +

+

= + + + +

+

( )1
2

1
2

2
2

1 2 1 3 2 42 2

2

p p ε

11 4 2 3F F F Jn n n+ + ++( ) ε.
 (16)

Then, by using (15) and (16) and applying equation (8),  
we obtain:

� � n n n n n n n

n

F F F J F F

F J

2
1

2
2 1 2 3 2 2 2 3 2 5

2 4

2 2

4

+ = + + + +

+
+ + + + + +

+

( )p p ε
ε

= + + + +

+
+ + + + +( )�2 1 2 3 2 2 2 3 2 5

2

2

3
n n n n nF F J F F

F

p p ε

nn J+ 4 ε.

6)  Using equation (15) for n → n –1, equation (16) and using 
identities (9), (5), (8), respectively, we have:

� � n n n n n n n

n

F F F J F F

F J
+ − + + + +

+

− = + + + +

+
( )1

2
1

2
2 2 2 2 1 2 2 2 4

2 3

2 2

4

p p ε
ε

= + + + +

+
+ + + +( )�2 2 2 2 1 2 2 2 4

2

2

3
n n n n n

n

F F J F F

F

p p ε

++3 Jε.

7)  Using equation (14) and identity given in equation (10),
we obtain:

� � � �   n m n m n m n m n m

n m n m

F F F J

F F

× + × = + +

+ +
+ + + + + + + +

+ + + +

1 1 1 3 2

3

2

2

p

p 55 4

1

4( ) +

= +
+ +

+ +

ε εF J

F
n m

n m
� p nn m n m

n m n m n m

F J

F F F J
+ + + +

+ + + + + +

+

+ + +( )
3 2

3 5 42 3p ε ε.  

Corollary 1. Using identities 2), 3) and 4) presented in 
Theorem 2, the following basic identities can be obtained:

• � � �F F Ln n n+ −+ =1 1 ,

• � � �  n n n+ −+ =2 2 3 ,

• � � �  n n n+ −− =1 1 ,

• � � �F F Ln n n+ −− =2 2
,

• � � � �   m n m n

n
m nF J J

× − × =

− − + + − +
+ −

−
− + ( ) ( )
1 1

1
11 1 3 1 3( ) [ ].p p ε ε

Theorem 3. Let � �n ∈D F
p

 and � �n ∈D L
p

. Then, the fol-
lowing relations hold for n, m, r ≥ 0:

1) � � �  n n n+ =+ +1 2, 

2) � �
�

�
L L

L

F
n r n r

L r k

F r k
r n

r n
+ −+ =

=

= +







,

, ,

2

5 2 1       

3) � �
�

�
L L

F

L
n r n r

F r k

L r k
r n

r n
+ −− =

=

= +







5 2

2 1

,

, ,      

6) � � �  n n n n n

n n n

F F J

F F F J
+ − + +

+ + +

− = + +

+ + +( )
1

2
1

2
2 2 2 2 1

2 2 2 4 2 32 3

p

p ε ε ,,

7) � � � � �    n m n m n m n m n m

n m n m

F F J

F F

× + × = + +

+ +
+ + + + + + + +

+ + + +

1 1 1 3 2

3 2

p

p 55 43( ) + + +ε εF Jn m .     

Proof: With the aid of equations (11) and (12) and iden-
tities given in Proposition 1, the following proofs can be 
given:
1)  Considering the definition of Fibonacci number, we have:

� � n n n n n n

n n n n

F F J F F J

F F J F F J

+ = + + +

+ + + +
+ + + +

+ + + +

( )
(

1 1 2 3

1 2 3 4

ε ε

ε ε))
= + + +

=
+ + + +F F J F F Jn n n n

n

2 3 4 5ε ε
� ++2 .

2) Using equation (4) for r = 2k, we have:

� � n r n r r n r n r n r nL F L F J L F L F J+ − + + ++ = + + +

=
1 2 3ε ε

LLr n
� ,

and for r = 2k + 1, we get:

� �F Fn r n r r n r n r n r nF L F L J F L F L J+ − + + ++ = + + +

=
1 2 3ε ε

FFr n
�L .

3) Taking into account equation (5) for r = 2k, we have:

� �F Fn r n r r n r n r n r nF L F L J F L F L J+ − + + +− = + + +1 2 3ε ε

== Fr n
�L ,

and for r = 2k + 1, we have:

� � n r n r r n r n r n r nL F L F J L F L F J+ − + + +− = + + +

=
1 2 3ε ε

LLr n
� .

4) Using equations (14) and (4), (5), (6), we have:

� � � �   m n m r n r
n r

m n r

m n r m n r

F

F F

× − × = − −

+ − +
+ −

−
− +

− + − − + +

( )( ) [1 1

1 1

p

(( )
(+ + − +− + − − + + − + − − + +

J

F F F Fm n r m n r m n r m n r2 2 2 2p ))( )
+ − + − +− + − − + − − + + − + +

ε

F F F Fm n r m n r m n r m n r3 1 1 3(( )
( ) ( )= − − + + − +−

− +

J F

F F J
r

n r
m n r r

ε

ε

]

( ) [1 1 3 1 3p p JJε].

5) Calculate �n
2 and �n+1

2 :

�n n n n n n n n n

n n n

F F F F J F F F F

F F F

2 2
1

2
1 2 1 3

3

2 2

2

= + + + +

+ +
+ + + + +

+ +

( )p p ε

11 2F Jn+( ) ε ,
(15)
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4) � � � �   m n m r n r
n r

m n r rF F

J J

× − × = −

− + + − +
+ −

− +
− +

( ) ( )
5 1

1 3 1 3

1( )

[ p p ε ε]],

5) � �

�

L L

F

n n

n n n n n nF F J F F F J

2
1

2

2 1 2 3 2 2 2 3 2 5 2 45 2 3

+ =

+ + + + +

+

+ + + + + +( )p p ε εε( ),

6) � �

�

L L

F

n n

n n n n n nF F J F F F J

+ −

+ + + + +

− =

+ + + + +( )
1

2
1

2

2 2 2 2 1 2 2 2 4 2 35 2 3p p ε εε( ),

7) � � � �

�

L L L L

F

n m n m

n m n m n m n m nF F J F F

× + × =

+ + + +

+ +

+ + + + + + + + +(
1 1

1 3 2 35 2p p mm n mF J+ + +( ) )+5 43ε ε .

Proof: By taking into account equations (11) and (12) 
and identities given in Proposition 1,  the proofs can be 
given.

It should be noted that parts 4) and 7) in Theorem 
2 and Theorem 3 are often referred to as Tagiuri’s and 
Hornsberger’s identities, respectively.

Corollary 2. By using Theorem 3, the following basic 
identities can be obtained easily:

•	 � � �L L Fn n n+ −+ =1 1 5 ,

• � � �  n n n+ −+ =2 2 3 ,

• � � �  n n n+ −− =1 1 ,

• � � �  n n n+ −− =2 2 5 ,

• � � � �   m n m n
n

m nF

J J

× − × = −

− + + − +
+ − − +

( ) ( )
1 1 15 1

1 3 1 3

( )

[ ].p p ε ε

Theorem 4. Let �−n  and �−n  be nega DGC  Fibonacci and 
Lucas numbers. Then, the following identities can be given 
for n ≥ 0:

• � � −
+= − + − + +( )n

n
n

n
nL J J( ) ( )1 1 21 ε ε ,

• � � −
−= − + − + +( )n

n
n

n
nF J J( ) ( )1 5 1 21 ε ε .

Proof: By using equation (2), and applying identity (4),  
we have:

�− − − + − + − +

+ +
+

= + + +

= − + −
n n n n n

n
n

n
n

F F J F F J

F F J
1 2 3

1 1
11 1

ε ε

( ) ( ) ++ − + −

− − − −

+
+

+
+

+
+

+

( ) ( )

( ) ( )

1 1

1 1

1
2

1
3

1
1

1

n
n

n
n

n
n

n

F F J

F J

ε ε

FF F J F J

F F J
n

n
n

n
n

n
n

n
n

+
+

+ −

−
−

−
−

− − + −

− − + −
2

1
3 1

1
2

2
3

1 1

1 1

ε ε

ε ε

( ) ( )

( ) ( )

= − + − + + −

+ +

+
− + + −

− +

( ) ( )(( ) ( )1 11
1 1 2 2

3

n
n

n
n n n n

n n

F F J F F

F F

� ε

33

11 1 2

( ) )
( )= − + − + ++

J

L J Jn
n

n
n

ε

ε ε( ) ( ) .�

The other part can be proved similarly.
Theorem 5. Let � �n ∈D F

p  and � �n ∈D L
p

. Then, for n ≥ 
1, the Binet’s formulas can be calculated as follows:

• �n

n n

=
−
−

α α β β
α β

* *

,

• �n
n n= +α α β β* * ,

where α α α ε α ε* = + + +1 2 3J J  and β β β ε β ε* = + + +1 2 3J J .
Proof: By using Binet’s formulas for the Fibonacci 

and Lucas numbers given in equations (1) and (3), Binet’s 
formulas for DGC  Fibonacci and Lucas numbers can be 
obtained as below:

�n n n n n

n n n n n

F F J F F J

J

= + + +

=
−
−

+
−
−

+
−

+ + +

+ + +

1 2 3

1 1 2

ε ε

α β
α β

α β
α β

α ββ
α β

ε
α β

α β
ε

α α α ε α ε β β β ε

n n n

n n

J

J J J

+ + +

−
+

−
−

=
+ + + − + + +( )

2 3 3

2 3 21 1 ββ ε

α β

α α β β
α β

3 J

n n

( )
−

=
−
−

* *

and

�n n n n n

n n n n n n

L L J L L J

J

= + + +

= + + + + +

+ + +

+ + + +( ) (
1 2 3

1 1 2 2

ε ε

α β α β α β )) ( )
( ) ( )

+ +

= + + + + + + +

+ +ε α β ε

α α α ε α ε β β β ε β ε

n n

n n

J

J J J J

3 3

2 3 2 31 1

= +α α β β* * ,n n

where α α α ε α ε* = + + +1 2 3J J  and β β β ε β ε* = + + +1 2 3J J .
Let D’Ocagne’s, Catalan’s and Cassini’s identities for 

DGC  Fibonacci and Lucas numbers be introduced:
Theorem 6.  (D’Ocagne’s identity) Let � � � n m, ∈D F

p  
and � � �L L n m, ∈D L

p
. Then, for n, m ≥ 0, the followings can 

be given: 

• � � � �   m n m n
n

m nF

J J

× − × = −

− + + − +
+ + −

( ) ( )
1 1 1

1 3 1 3

( )

[ ],p p ε ε

• � � � �   m n m n
n

m nF

J J

× − × = −

− + + − +
+ +

+
−

( ) ( )
1 1

15 1

1 3 1 3

( )

[ ].p p ε ε

Proof: By writing n → n +1 and  r = 1 in identity 4) in 
Theorem 2 and 3, respectively, the proof is completed.

Theorem 7. (Catalan’s identity) Let � �n ∈D Fp  and 
� �n ∈D Lp . Then, the followings can be given:

•	 � � �  n n r n r
n r

rF J J2 21 1 3 1 3− × = − − + + − ++ −
− ( ) [( ) ( ) ]p p ε ε ,

• � � �  n n r n r
n r

rF J

J

2 1 25 1 1 3 1

3

− × = − − + + −

+
+ −

− + ( ) [( ) ( )

].

p p ε
ε

Proof: By writing m → n in identity 4) in Theorem 2 and 
3, respectively, the identities are proved.

Theorem 8. (Cassini’s identity) Let � �n ∈D Fp  and 
� �n ∈D Lp . Then, the followings can be given:  
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• � � �  n n n
n J J2

1 1
11 1 3 1 3− × = − − + + − ++ −

−( ) [( ) ( ) ]p p ε ε ,

• � � �  n n n
n J J2

1 1 5 1 1 3 1 3− × = − − + + − ++ − ( ) [( ) ( ) ].p p ε ε

Proof: By taking r = 1 in Catalan’s identities given in the 
above theorem, the proof is completed.

Example 1. Let the above identities for the numbers in 
D F�

p  and D L�
p  for the given values of m, n, r be verified:

D’Ocagne’s identities for m = 3, n = 1 and p = −
1
3

:

• � � � �   3 2 4 1

4
3

4 3× − × = − − − −J Jε ε ,

• � � � �   3 2 4 1 5
4
3

4 3× − × = + + +( )J Jε ε .

Catalan’s identities for n = 2, r = 2 and p = 0:

• � � �  2
2

4 0 1 3 3− × = + + + J Jε ε ,

• � � �  2
2

4 0 5 1 3 3− × = − + + +( )J Jε ε .

Cassini’s identities for n = 2 and p =
1
5

:

• � � �  2
2

3 1

4
5

12
5

3− × = − − − −J Jε ε ,

• � � �  2
2

3 1 5
4
5

12
5

3− × = + + +( )J Jε ε .

CONCLUSION

The main objective of this study is to construct DGC  
Fibonacci and Lucas numbers by introducing their general 
recurrence relations for any real number p in the light of 
the study [21]. The striking part of this paper is that one 
can reduce the calculations to dual complex, hyper-dual 
and dual-hyperbolic Fibonacci/Lucas numbers by taking 
the special real values p = −1, p = 0 and p = 1, respectively.  
Considering these values, the above mentioned special 

Fibonacci/Lucas numbers are generalized from the view-
point of definition, algebraic properties, recurrence rela-
tions and well-known identities in Section 3. Hence, Section 
3 is directly linked to the paper [36] for p = −1 (regarding 
dual-complex case) and the paper [38] for p = 1 (regard-
ing dual-hyperbolic case). Additionally, Section 3 is closely 
associated with the papers [37], [41] and [39, 40] regarding 
dual-complex, hyper-dual and dual-hyperbolic situations 
as a special case.  This classification can be seen in Table 4.

With a similar thought, our next goal is to present the 
DGC  Oresme numbers which are given by the second-order 
relation O O O nn n n+ += − ≥2 1

1
4

0,  with O0 = 0 and O O1 2

1
2

= =  

(see in [43, 44]) and examine the linear relations and, non-
linear properties of them, and their connection with  DGC  
Fibonacci and Pell numbers.
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Table 4. Special cases for p ∈ {–1,0,1}

Definition Number Condition (ε2 = 0) Ref.

Dual-complex Fibonacci F F i F F in n n n+ + ++ + +1 2 3ε ε J i i= = −, 2 1 [36,37]    

Dual-complex Lucas L L i L L in n n n+ + ++ + +1 2 3ε ε J i i= = −, 2 1 [36,37]    

Hyper-dual Fibonacci F F F Fn n n n+ + ++ + +1 2 3 ε ε J = = ≠ ≠   , , ( , ), ( )2 0 0 0ε ε [41]

Hyper-dual Lucas L L L Ln n n n+ + ++ + +1 2 3 ε ε J = = ≠ ≠   , , ( , ), ( )2 0 0 0ε ε [41]

Dual-hyperbolic Fibonacci F F j F F jn n n n+ + ++ + +1 2 3ε ε J j j j= = ≠ ±, , ( )2 1 1 [38–40]

Dual-hyperbolic Lucas L L j L L jn n n n+ + ++ + +1 2 3ε ε J j j j= = ≠ ±, , ( )2 1 1 [38–40]
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