Xerogel of fast kinetics and high adsorption capacity for cationic dye removal

Deniz SEZGIN, Muge SARI YILMAZ *

ABSTRACT
Silica-based xerogel was prepared by the two-step sol-gel method to investigate its methylene blue (MB) removal performance. The characteristics of the prepared adsorbent were determined using X-ray diffraction (XRD), Fourier transforms infrared (FTIR), scanning electron microscopy (SEM), and N\textsubscript{2} adsorption/desorption analyses. The MB removal studies were conducted with different operating parameters and optimal conditions were found to be 0.06 g adsorbent dosage, and 20 mg.L-1 initial MB concentration at 45 min. The Langmuir isotherm best represents the MB adsorption equilibrium data and the high maximum adsorption capacity was achieved with 1666.67 mg.g-1. The kinetic mechanism of the study is defined by the pseudo-second-order kinetic model. Additionally, the adsorption of MB on xerogel exhibited fast kinetics, reaching a high removal capacity (96.56\%) in a minute.

Keywords: Xerogel, Fast Kinetics, High Capacity, Adsorption, Cationic Dye

INTRODUCTION
It is estimated that approximately 100,000 various types of dye are used broadly in different fields including paper, textile, leather tanning, printing, cosmetics, and food processing for different purposes [1,2]. The discharge of generated dyestuff effluents from these fields into water resources without any treatment adversely affects the living life and disrupts the ecological system owing to their toxic and carcinogenic contents [3,4]. Furthermore, the effluents containing dyes decrease light penetration, thereby severely influencing the photosynthetic activity of aquatic livings [5].

Methylene blue is a cationic dye that is widely preferred as a colorant for cotton, wool, and silk [6]. MB appears considerably in industrial wastewater, and it is recognized that even its presence of much less than 1 ppm may also result in unfavorable impacts on the ecosystem balance [7,8]. Even though it is accepted that MB is not a highly harmful dye, long-term exposure to MB will induce eye irritation, heart rate increase, dizziness, headache, nausea, vomiting, and allergy [9,10]. Therefore, it is crucial to eliminate MB from effluent wastes before their discharge into water resources. Up to the present, different removal techniques have been developed including adsorption [9,11], electrochemical degradation [12], ion exchange [13], membrane filtration [14], and oxidation [15]. Compared with other removal techniques, adsorption is regarded as an appealing approach in terms of its high yield, ease of design, and low process cost [16,17]. For this purpose, numerous adsorbents have been evaluated for the MB adsorption process such as silica-based materials [18–21], activated carbon [22], carbon nanotubes [23], graphene oxide [3,24], and zeolite [25]. Silica-based materials possess large pore volume, adjustable pore size, high mechanical, and thermal stabilities [26,27]. These materials with specific properties have broad applications in catalysis [28], thermal insulation [29], biomedical [30], and adsorption [20,31]. Silica xerogel is one of the silica-based materials frequently preferred in adsorption processes owing to its wide surface area, ease of synthesis, easy chemical functionality, and non-toxic properties in the environment [32,33]. In addition, the reported studies in the literature show that silica xerogel has achieved promising adsorption capacity in dye adsorption. Guzel Kaya et al. synthesized a silica xerogel from volcanic tuff with a high surface area and this material was used to examine its MB adsorption behavior. They observed that synthesized xerogel had a high MB removal capacity and good thermal stability [34]. Hannachi et al. fabricated a novel bi-functionalized xerogel for application as an adsorbent. They reported that the xerogel exhibited
high adsorption capacity and regenerable function [35]. The mesoporous silica-based xerogel prepared by Mota et al. showed high MB removal capacity and large specific pore volumes [36].

To the best of the authors’ knowledge, there are not many studies in the literature on the removal of methylene blue by xerogel synthesized from pure silica with a high adsorption capacity as in this study. In the present work, xerogel was synthesized according to the two-step sol-gel method and its MB adsorption performance was examined. For this purpose, removal studies were performed by various parameters (xerogel amount, time, and initial MB concentration). The obtained adsorption data were investigated by Langmuir and Freundlich isotherms. Also, the kinetic mechanism of adsorption was identified by conducting kinetic studies.

EXPERIMENTAL

Materials

Tetraethylorthosilicate (TEOS), ethanol, toluene, HCl, and MB were supplied from Sigma-Aldrich. Ammonia solution (NH₄OH, 25 wt%), was purchased from J.T. Baker.

XRD measurements were performed on a PANalytical X’Pert-Pro XRD diffractometer using CuKα radiation (40 kV, 40 mA). Infrared spectra were recorded over a spectral region from 4000 to 450 cm⁻¹ using PerkinElmer Spectrum One FT-IR spectrophotometer models accompanied with both KBr pellets. SEM images were recorded using Zeiss EVO® LS 10. The textural properties of the sample were determined on the Micromeritics ASAP 2020 adsorption device.

Synthesis of Xerogel

Silica xerogel was prepared according to the acid and base-catalyzed two-step sol-gel method previous study [37]. In the initial step, certain amounts of TEOS, ethanol, distilled water, and HCl were added in an Erlenmeyer flask. The mixture was exposed to the ultrasonic irradiation in an ultrasonic bath for 5 min and kept at 60 °C for 60 min to form a hydrolysis solution. In the second step, the mixture of the distilled water and NH₄OH was dropped in the hydrolysis solution and the obtained silica sol was kept at the ultrasonic bath for 5 min under ultrasonic irradiation. The sol was poured into a Teflon reactor and waited at 50 °C for gelation. The obtained gel was treated with ethanol four times at 50 °C and then the same washing process was repeated with toluene. The final gel was dried at 60 °C until it reaches a constant weight.

Adsorption Studies

Methylene blue aqueous solutions of various concentrations (10 to 100 mg.L⁻¹) were prepared to examine the initial dye concentration effect on silica-based xerogel adsorption. The effects of xerogel amount, contact time, and initial MB concentration on the dye removal efficiency of silica-based xerogel were investigated in the adsorption study. Firstly, the study of the xerogel amount effect on adsorption was carried out by adding various sample dosages starting from 0.02 to 0.25 g to each Erlenmeyer flasks containing 50 mL MB solution. The Erlenmeyer flasks containing dye-adsorbent mixture were shaken for 1 h at 25 °C using a shaking incubator. At the end of the time, the mixtures were filtered and the dye concentrations in the obtained filtrates were measured by an UV-visible spectrophotometer (Perkin Elmer, Lambda 35).

The effects of the other parameters on the adsorption of xerogel were carried out via a similar procedure. In each run, the determined content of xerogel was added to Erlenmeyer flasks including 50 mL of a given concentration of MB aqueous solution. The amount of adsorbed MB by xerogel at equilibrium (qₑ) and the adsorption efficiency (AE%) were found by applying the following equations:

\[qₑ = \frac{V \cdot (C₀ - Cₑ)}{M} \] \hspace{1cm} (1)

\[AE\% = \left(\frac{C₀ - Cₑ}{C₀} \right) \times 100 \] \hspace{1cm} (2)
where C_0 and C_e are the initial and equilibrium concentrations of MB (mg.L$^{-1}$), respectively. M is the amount of xerogel used (g) and V is the volume of the MB solution (L) [38].

RESULTS AND DISCUSSION

Characterization

The XRD pattern of the silica-based xerogel was presented in Figure 1. As shown in Figure 1, the synthesized sample demonstrates a broad peak between 20° and 30°. The broadness of this peak is typical of the silica-based sample with an amorphous structure [39].

The FT-IR spectrum of the produced silica-based xerogel was depicted in Figure 2. The broadband at 3448 cm$^{-1}$ was related to -OH group stretching vibration. The peaks at 467, 797, and 1087 cm$^{-1}$ corresponded to the bending, symmetric, and asymmetric vibrations arising from Si-O-Si, respectively. Furthermore, the vibration of H-O-H showing the presence of H$_2$O molecules was observed at 1636 cm$^{-1}$. The Si-OH vibration appeared at 946 cm$^{-1}$. In the meantime, Si-O stretching of O-Si-O network defects was observed at 569 cm$^{-1}$ [19,39–41].

The surface area, the total pore volume, and the average pore width of xerogel was 375.86 m2.g$^{-1}$, 0.28 cm3.g$^{-1}$, and 3.69 nm, respectively. The SEM image of the sample was given in Figure 3. It is seen that the sample has small and agglomerated particles in non-uniform shape. The porous structure could not be seen clearly due to the low resolution of SEM.

![Figure 1. XRD pattern of silica-based xerogel](image-url)
Effect of Xerogel Amount

The relationship between the varied dose of adsorbent (0.02-0.25 g) and adsorption efficiency was investigated by keeping the other parameters stable. According to Figure 4a, the removal rate increased quickly up to 0.02 g, and then slowly reached equilibrium at 0.06 g. The constant uptake capacity of xerogel after equilibrium may result from the reduction of the total surface area of MB adsorption due to aggregation or overlapping of adsorption sites [43]. It was obtained that the optimum dose of adsorbent providing the highest efficiency (99.4%) was found as 0.06 g.
Effect of Time

The contact time effect on the MB removal efficiency of xerogel was conducted at predetermined various times starting from 1 to 120 min by using the adsorbent amount of 0.06 g and dye concentration of 20 mg.L\(^{-1}\). Figure 4b demonstrated the variation of adsorption efficiency depending on the time. In the figure, the adsorption of MB onto xerogel increased rapidly within 1 min, and then a slight increase was observed up to 45 min. After 45 min, it approached nearly a constant value and at this time the adsorption efficiency of the xerogel was observed as 98.4%.

Effect of Initial Concentration

The MB concentration effect on adsorption capacity was determined by selecting different concentration ranges (10-100 mg.L\(^{-1}\)). As given in Figure 4c, the removal efficiency of dye increased instantly until 10 mg.L\(^{-1}\) and a considerable increment was not seen between 10 and 20 mg.L\(^{-1}\). After reaching equilibrium, the uptake capacity of xerogel gradually decreased with increasing MB concentration. The highest amount of MB removal was measured at 20 mg.L\(^{-1}\) with 99.65%.
Figure 4. Effect of various parameters on the adsorption of MB (a) Adsorbent dosage, (b) Time, and (c) Initial concentration

Adsorption Kinetics

Pseudo-first order (PFOM) and pseudo-second order (PSOM) kinetic models were employed to analyze the kinetics of the adsorption study. The PFOM and the PSOM were stated as Eqs. 3 and 4, respectively [44];

\[
\ln(q_e - q_t) = \ln(q_e) - k_1 t \\
\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}
\] \hspace{1cm} (3) \hspace{1cm} (4)

where \(q_e \) is the amount of MB adsorption by the silica-based xerogel at equilibrium, while \(q_t \) is the adsorbed MB amount at time \(t \). Also, \(k_1 \) and \(k_2 \) represent the rate constants of PFOM and PSOM.

The drawn plots of PFOM and PSOM were given in Figure 5. The estimated parameters and regression coefficients (\(R^2 \)) were presented in Table 1. It was seen that the calculated \(R^2 \) in the PSOM was considerably higher than that found in the PFOM. Additionally, the \(q_e \) value estimated by PSOM and the \(q_e \) value obtained experimentally were found to be almost the same. Hence, it can be stated that the PSOM best expresses the kinetic mechanism of the MB adsorption study.

<table>
<thead>
<tr>
<th>(q_{e,exp})</th>
<th>(q_e)</th>
<th>(k_1)</th>
<th>(R^2)</th>
<th>(q_e)</th>
<th>(k_2)</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.523</td>
<td>2.903</td>
<td>0.0178</td>
<td>0.1801</td>
<td>18.553</td>
<td>0.403</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 1. Kinetic parameters for the PFOM and PSOM
Figure 5. The MB adsorption kinetics plots (a) PFOM and (b) PSOM. Experimental conditions: dosage of the adsorbent: 0.06 g and initial dye concentration: 20 mg.L⁻¹

Adsorption Isotherm

The estimation of isotherm data is necessary to explain the adsorption ability of the adsorbent [38]. In the present work, the Langmuir (LM) and Freundlich (FM) isotherm models were employed to analyze the obtained equilibrium data of MB adsorption onto silica-based xerogel. The expressions of the LM and FM were presented in Eqs. 5 and 6, respectively [45]:

\[
\frac{C_e}{q_e} = \frac{1}{q_m K_L} + \frac{C_e}{q_m} \quad (5)
\]

\[
\ln q_e = \ln K_f + \frac{1}{n} \ln C_e \quad (6)
\]

where \(C_e\) is MB concentration at equilibrium (mg.L⁻¹), \(q_e\) is the adsorbed MB dosage at equilibrium (mg.g⁻¹), \(q_m\) is the maximum adsorption capacity of the silica-based xerogel (mg.g⁻¹). \(K_L\) and \(K_f\) are calculated from the intercept of the graphs given in Figure 6a and b, respectively and \(n\) is a constant found as the slope of Figure 6b.

Figure 6. (a) LM and (b) FM model plots. Experimental conditions: dosage of the adsorbent: 0.06 g and time: 45 min
The calculated parameters and correlation coefficients (R^2) of LM and FM were depicted in Table 2. It was found that the experimental data received from MB adsorption fitted to the LM in comparison to FM in terms of correlation coefficients. The fact that the LM conforms quite well with the equilibrium data shows that the process occurs over a homogeneous surface using single-layer sorption [38]. The maximum adsorption capacity (q_m) of the study was found as 1666.67 mg·g$^{-1}$, and it was compared with previously reported silica-based adsorbents presented in Table 3. The xerogel had the greatest adsorption capacity among all the silica-based adsorbents. Therefore, xerogel can be applied as an effective adsorbent for the removal of MB dye over other available adsorbents.

Table 2. Isotherm parameters for the adsorption of MB on the sample

<table>
<thead>
<tr>
<th>Adsorbent</th>
<th>q_m (mg·g$^{-1}$)</th>
<th>K_L (L·mg$^{-1}$)</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Langmuir</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1666.67</td>
<td>2</td>
<td>0.9993</td>
<td></td>
</tr>
<tr>
<td>Freundlich</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>857.31</td>
<td>3.22</td>
<td>0.6714</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Maximum MB adsorption capacities (q_m) of silica-based materials from the cited in literature

<table>
<thead>
<tr>
<th>Adsorbent</th>
<th>q_m (mg·g$^{-1}$)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgFeO$_2$NPs</td>
<td>4.98</td>
<td>[8]</td>
</tr>
<tr>
<td>Fe$_3$O$_4$@SiO$_2$-CR</td>
<td>63.69</td>
<td>[17]</td>
</tr>
<tr>
<td>nSiO$_2$</td>
<td>547.5</td>
<td>[19]</td>
</tr>
<tr>
<td>MW–nSiO$_2$</td>
<td>679.9</td>
<td>[19]</td>
</tr>
<tr>
<td>(MAA-co-MMA)/SiO$_2$</td>
<td>85.33</td>
<td>[46]</td>
</tr>
<tr>
<td>(MAA-co-HPMA)/SiO$_2$</td>
<td>87.37</td>
<td>[46]</td>
</tr>
<tr>
<td>HSA</td>
<td>47.211</td>
<td>[47]</td>
</tr>
<tr>
<td>MSA</td>
<td>65.746</td>
<td>[47]</td>
</tr>
<tr>
<td>SBA-12-OH</td>
<td>91.1</td>
<td>[48]</td>
</tr>
<tr>
<td>Silica-chitosan-ZnO Nanocomposite</td>
<td>293.3</td>
<td>[49]</td>
</tr>
<tr>
<td>Silica Nanoparticles</td>
<td>347.2</td>
<td>[50]</td>
</tr>
<tr>
<td>Silica Nanoparticles</td>
<td>113.636</td>
<td>[51]</td>
</tr>
<tr>
<td>Silica Nanoparticles</td>
<td>511.04</td>
<td>[52]</td>
</tr>
<tr>
<td>Silica Nanoparticles</td>
<td>500.1</td>
<td>[53]</td>
</tr>
<tr>
<td>Silica Nanoparticles</td>
<td>380</td>
<td>[54]</td>
</tr>
<tr>
<td>Silica Nanoparticles</td>
<td>375.9</td>
<td>[55]</td>
</tr>
<tr>
<td>SiO$_2$/CA</td>
<td>1158.332</td>
<td>[56]</td>
</tr>
<tr>
<td>Hollow Silica Nanoparticles</td>
<td>64.06</td>
<td>[57]</td>
</tr>
<tr>
<td>GO/Hollow Mesoporous Silica</td>
<td>476.19</td>
<td>[24]</td>
</tr>
<tr>
<td>Cyclodextrin/Silica</td>
<td>212</td>
<td>[58]</td>
</tr>
<tr>
<td>mwXG-g-PANi/SiO$_2$</td>
<td>1250</td>
<td>[59]</td>
</tr>
<tr>
<td>Silica Xerogel</td>
<td>51.967</td>
<td>[34]</td>
</tr>
<tr>
<td>Silica Xerogel</td>
<td>512</td>
<td>[35]</td>
</tr>
<tr>
<td>Silica Xerogel</td>
<td>1666.67</td>
<td>This work</td>
</tr>
</tbody>
</table>

This work
The characteristics of adsorption isotherm can be analyzed using separation factor \(r_L \) that was expressed by Eq. 7;

\[
r_L = \frac{1}{1 + (K_L C_0)} \tag{7}
\]

where \(K_L \) is the \(LM \) constant (L.mg\(^{-1}\)) and \(C_0 \) is the highest initial MB concentration (mg.L\(^{-1}\)). The separation factor in the current study was calculated as 0.0244 (0<\(r_L \)<1), showing that the MB removal process of silica-based xerogel is favorable [22].

CONCLUSION

In the present work, silica-based xerogel was synthesized and utilized as an adsorbent for MB adsorption at different operating parameters. The obtained results exhibited that the MB adsorption process depends on the amount of xerogel, time, and initial MB concentration. The highest removal capacity of xerogel was reached at 45 min with 20 mg L\(^{-1}\) initial MB concentration, and 0.06 g of xerogel. The high removal capacity of xerogel reached within 1 min indicates that the adsorption of MB is fast. The \(PSOM \) with a high \(R^2 \) represents well the kinetic mechanism of the study. The \(LM \) isotherm fitted best the obtained equilibrium data and achieved maximum adsorption capacity (1666.67 mg.g\(^{-1}\)) can be assigned as quite high when compared to MB adsorption studies with silica-based materials. It can be stated that silica-based xerogel is an appropriate adsorbent for the elimination of MB from aqueous solution, owing to its high yield, great adsorbing capacity, and fast process.

NOMENCLATURE

- \(AE \): Adsorption efficiency
- \(C_0 \): Initial concentrations of MB, mg.L\(^{-1}\)
- \(C_E \): Equilibrium concentrations of MB, mg.L\(^{-1}\)
- \(k_1 \): Pseudo-first order model constant
- \(k_2 \): Pseudo-second order model constant
- \(K_L \): Langmuir isotherm model constant
- \(K_f \): Freundlich isotherm model constant
- \(M \): The amount of xerogel, g
- \(r_L \): Separation factor
- \(q_e \): The amount of adsorbed MB by xerogel at equilibrium, mg.g\(^{-1}\)
- \(q_m \): The maximum adsorption capacity of the silica-based xerogel, mg.g\(^{-1}\)
- \(q_t \): The amount of adsorbed MB by xerogel at time \(t \), mg.g\(^{-1}\)
- \(V \): Volume of the MB solution, L

REFERENCES

