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INTRODUCTION

ABSTRACT

In this paper, we propose a new lifetime distribution called Cubic Rank Transmuted Inverse
Rayleigh as an alternative to the inverse Rayleigh distribution. Some distributional properties
of the suggested distribution such as moments, incomplete moments, Bonferroni and Lorenz
curves, moment generating function, quantile function, median, mean residual life function
are examined. We consider five methods such as maximum likelihood, the least squares,
weighted least squares, Anderson Darling method, and Cramer-von-Mises method to
estimate the parameters of the proposed distribution. Furthermore, a comprehensive Monte
Carlo simulation study is performed to compare the performances of the examined estimators
according to mean square errors and biases. Finally, a real data application is given to illustrate
the usefulness of the proposed distribution.

Cite this article as: Tanis C, Saragoglu B. Cubic rank transmuted inverse rayleigh
distribution: Properties and applications. Sigma ] Eng Nat Sci 2022;40(2):421-432.

In the last decades, many continuous univariate distri- function (cdf) and probability density function (pdf) of the
butions were suggested to model lifetime data in some areas  distribution constructed based on the QRTM method are
such as engineering, medicine, agriculture, chemistry, and

biology. However, current distributions always cannot be

F(x)=(1+1)G(x)-A[G(x)] (1)

enough to model data in these areas. Therefore new exten-

sions are introduced to generate more flexible distributions

and

by many authors. Shaw and Buckley [1, 2] suggested the

quadratic rank transmutation map (QRTM) method to

f(x)=g(x)[1+A-2AG(x)], (2)

generate new distributions. The cumulative distribution
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respectively, where 4 € [-1,1], and G(x) and g(x) denote the
cdf and pdf of any distribution respectively. The suggested
distributions by using the QRTM are called as transmuted
distributions.

Let X be a random variable having inverse Rayleigh (IR)
distribution. The cdf and pdf of IR distribution are

G(x;00) =exp|:—[%ﬂ (3)
x

and

g(x;a)=2—?exp(—?} “4)
x x

respectively, where a > 0 and x > 0. Ahmad et al. [3] sug-
gested transmuted inverse Rayleigh (TIR) distribution by
substituting (3)-(4) into (1)-(2). The cdf and pdf of this dis-
tribution are given as follows:

E,, (x:00) =epo%mlm-xexp(—(%m 5)

and
1+ A-2Aexp
fTIR(x;a’/z)zz_iyeXp‘:_(%):l ((a)) -
X X - =
X

respectively, where -1 <A< 1,a>0and x> 0.

There are many studies on transmuted distributions in
literature, and these can be listed as follows: Granzotto and
Louzada [4] introduced the transmuted log-logistic distri-
bution. Alizadeh et al. [5] proposed a generalized trans-
muted family of distributions. Merovci et al. [6] suggested
another generalization of transmuted distributions. Nofal
et al. [7] proposed Kumaraswamy transmuted exponenti-
ated additive Weibull distribution and its some properties.
Merovci et al. [8] proposed the exponentiated transmuted-
G family of distributions. Bhatti et al. [9] introduced a new
distribution called the transmuted geometric-quadratic
hazard rate distribution. Alizadeh et al. [10] suggested the
complementary generalized transmuted Poisson-G family
of distributions. Tanis et al. [11] introduced the transmuted
complementary exponential power distribution. Saracoglu
and Tanis [12] proposed a new special case of the family
of transmuted distributions called transmuted exponential
power distribution.

On the other hand, Granzotto et al. [13] introduced a
new method called cubic rank transmutation map (CRTM)
to generate new distributions as an alternative to QRTM.
The cdf and pdf of a distribution constructed by using the
CRTM are given by

F(x)=4G(x)+(4 -4)G* (x)+(1-1,)G*(x) (7)

and
f(0)=g(0)[4+2(4 - 4)G(x)+3(1-1,)G* (x)].(8)

respectively, where 4 €[0,1], A, € [-1,1] and G(x) and g(x)
denote the cdf and pdf of any distribution respectively.
Granzotto et al. [13] suggested two new distributions called
cubic rank transmuted Weibull and cubic rank trans-
muted log-logistic distributions via the CRTM. Aslam
et al. [14] provided a new family of transmuted distribu-
tions called cubic transmuted-G family of distributions.
Then, Saragoglu and Tanis [15] proposed cubic rank trans-
muted Kumaraswamy distribution which is special case of
the family of cubic rank transmuted distributions. Bhatti
et al. [16] introduced the cubic rank transmuted modi-
fied Burr III distribution. Bhatti et al. [17] suggested cubic
rank transmuted modified Burr III Pareto distribution.
Hameldarbandi and Yilmaz [18] discussed the methodol-
ogy of cubic rank transmuted distributions.

The purpose of this paper is to suggest a new useful
lifetime distribution as an alternative to inverse Rayleigh,
and its competitor ones, and to describe some charac-
teristic properties. This study is organized as follows: In
Section 2, we introduced a new distribution called as
Cubic Rank Transmuted Inverse Rayleigh Distribution
(CRTIR), and its distributional properties. Then, five esti-
mation methods are considered to estimate the param-
eters of the proposed distribution in Section 3. Section
4 presents an extensive Monte Carlo simulation study
to compare the performances of examined estimators in
terms of biases and MSEs. In Section 5, we perform a real
data application to illustrate the applicability of suggested
distribution in real life. Finally, the conclusions are given
in Section 6.

CUBIC RANK TRANSMUTED INVERSE RAYLEIGH
(CRTIR) DISTRIBUTION

In this section, we propose a new lifetime distribution
which is a special case based on IR distribution of the family
of cubic rank transmuted distributions. The suggested dis-
tribution is called cubic rank transmuted inverse Rayleigh
(CRTIR) distribution. By substituting (3)-(4) into (7)-(8)
the cdf and pdf of CRTIR are obtained by

B (s )= Aesp| - [ +(4,- )

2
X

exp| (35 |+~ 2)exr| {35

)

and
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)= o] (2]

[,71 +2(4, -,zl)exp[-(%ﬂ+3(1—/12)€XP[—C—?)H’

respectively, where o > 0, 2,€[0,1], 2,€[~1,1] and x > 0.
In this paper, the CRTIR distribution is briefly denoted by
CRTIR (e,4,,4,). The CRTIR (a,4,,4,) distribution reduces
IR distribution for A = 2,=1. The hazard function (hf) of
CRTIR (a,4,,4,) distribution is given by

a

?

+3(1- 4, )exp| - —Lf }
x

A exp[ (;”)}L ,12-,71)

(10)

A +2(4, - ﬂl)exp[

M (x§ a4 >/12) ==

(11)

Figures 1-2 illustrate some of the possible shapes of the
pdf and hf for CRTIR (a,4,,4,) distribution, respectively.

a=1,4,=05

£4=0.5,2,=0.1

0.9

f(x)
fx)

0 50 100
X x

Figure 1. The pdfs of CRTIR (a,4,,4,) distribution for some
selected parameters.

According to Figure 2, it is seen that the hf of CRTIR
(a,4,4,) distribution is upside bathtub shaped for selected
values of parameters.

QUANTILE FUNCTION AND MEDIAN

The p" quantile Q(p) of the CRTIR (a,4,,4,) distribution
is positive real solution of the Eq. (12);

_ J~olog(h)
Q(P)__W (12)
where
(o VT + o) - A
C9(1=A) (A4 =2)A +27(1-4,) p-2(4,-4)’

54(1-1,)°

_3(-A)A (A -4
9(1-2,)

and, p €0,1]. Thus, the median can be obtained by taking
p=Lin Eq. (12).
2

RANDOM NUMBERS GENERATION

In order to generate data from CRTIR (a,4,4,) distri-
bution, an acceptance-rejection (AR) sampling method
is given in the following algorithm. In this algorithm, the
Weibull distribution is chosen as a proposal distribution.
The AR algorithm is given as follows:

a=1,2,=0.5 a=1,4,=05
0.9 o 0.9 :
— 1,=0.3 — A, =-0.9
08h L 08 2
— 2,05
0.7} ;‘1=0'7 X 0.7
0.6} — 4,=0.9 06}
_ 05p __ost
g &
0.4} 04}
03} 03f
02t 02f
0.1 J 4 0.1 J
0 : 0 :
0 50 100 0 50 100
x x

Figure 2. The hfs of CRTIR (a,4,,4,) distribution for some
selected parameters.
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Algorithm 1
Al. Generate data on random variable Y from Weibull
distribution with pdf g given as follows:

0-1 0
Oy y
g(y:0.8)=—| < | expi| = | >
B\ B B
A2. Generate U from standard uniform distribution
(independent of Y).

< fCRTIR (Y’a’ll ’2'2)
kxg(Y;0,B)
A3.
Then set X=Y("accept'); otherwise go back to

Al("reject"), where pdf of f ... (+) is given in (10) and

ferm (Z;a/’/zl ’/12)
(26,9

k = max
zeR+

The output of this algorithm suggests a random data on
X from CRTIR (a,4,4,) distribution. It is noticed that the
Algorithm 1 with the (6,6) = (0.2,1) is used for all simula-
tions in this study.

MOMENTS

In this subsection, we have obtained r”" moment of
CRTIR (a,4,,4,) distribution. Let X be a random variable
having CRTIR (a,4,4,) distribution. The r* moment of
CRTIR (a,4,,4,) distribution is given by Theorem 1.

Theorem 1
E(X")= 21“(1——)[/’“22(1 ﬂq)+32( @)}(13)

Proof

+(3a);(1—/12)1"(1—%j
—azl“(l——){ﬂ.l 20 (4, /11)+32 (1-2, )}

Thus, expected value of CRTIR (4,4, distribution is
obtained as follows:

E(X):\/&r(%j[ﬂ1 +NZ(4, - 24)+3(1-2,)] (14)

MOMENT GENERATING FUNCTION

The moment generating function of CRTIR (4,4,
distribution, M,(¢), is given by

M(t)= jfe”‘f(x)dx

t—]z f(x)dx
o (15)

~

anzl“(l——)+z 2a)> (4, - 4)
——j g%(.’;a)z(l—ﬂz)l"(l—z)

S

5
>
it

INCOMPLETE MOMENTS

In this subsection, it is derived r* incomplete moment,
m (y) of CRTIR (a,4,4,) distribution. The Bonferroni and
Lorenz curves are obtained using the first incomplete
moment.

Let X be a random variable having CRTIR (A 4,) dis-
tribution. The " incomplete moment of CRTIR (4,4,
distribution is

m, ()’) = 'y[x’f(x;a,/ll,/lz)dx
- a;/zlr[1—f,%j+ (2a): (4, - 4)
2y

r(1-12%
2y
r 3o

+(30) (1—22)r(1—5,—2j

Y

(16)

where I'(a,t) is incomplete gamma function is defined as follows:

I'(a,t) =J.x“'le”‘dx
t
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BONFERRONI AND LORENZ CURVES

The Bonferroni and Lorenz curves are suggested by
Bonferroni [19]. There are many application fields which
these curves used. For example, economics, reliability,
demography, insurance and medicine, demography, insur-
ance, etc. The Bonferroni and Lorenz curves for CRTIR
(A1) distribution are defined by

B(p)zpiﬂzxf(x)dx
1l 1 2«
AT == [+V2(4 - 4, r(,z]
(2 q ) ( ) 2 (17)
+ﬁ(1_zz)r(1,3?’]
2'¢q

(2 A R (R = 4) B (- 4)]

and

1‘1
=—|xf(x)dx
L(p) ﬂj f (x)

0

+J§(1—/12)r(1,3f’j
24

FG)[JINE(/@—zl)+ﬁ(1—z2)]’

respectively, where  is the first moment given in (14), and
q=Q(p) can be calculated using (12) with probability p.
Figure 3 illustrates the Bonferroni and Lorenz curves for
selected parameters.

MEAN RESIDUAL LIFE FUNCTION

The mean residual life (MRL) or the expected remain-
ing of CRTIR (a,4,,4,) distribution is given as follows:

@=2,4,=0.2,2,20.9

1

08
06
&
04

0.2

00 01 02 03 04 05 06 07 08 09 1

P

U(t)=E(T—t|T>t)
L=
= 1_F(t)_[(l—F(x))dx

t

(A = A,)N2azerf (N2ait)-(1- 4,)
{\/%erf(\/@/t)—ktexp[—(i?)]

-4 exp[—(?ﬂ_% _ﬂl)exp[_(i?ﬂ

+—/11Werf(«/5/t
REEG
weaml 2]

where error function, erf (¢), is defined as follows:

;‘\—/
L

S

|

N

SN—

%

=]

|
- N |
H‘N

UIR IR
Ne—
| I

2
e* dx

erf(t)=%j

POINT ESTIMATION

In this section, we consider five estimation methods
including maximum likelihood, least squares, weighted
least squares, Anderson-Darling method, and Cramer-von
Mises method to estimate the parameters 6,4 and 4, of
CRTIR (a,4,,4,) distribution.

MAXIMUM LIKELIHOOD ESTIMATION

Let X, X,,..., X be random variables with indepen-
dently distributed CRTIR (a,4,,4,) distribution. Then, the
log-likelihood function is given by

a=2,70.2, /12=0.9

1 T T T T T T T T T

osf .
osf |
S}
04} .

0.2F &

00 0.1 02 03 04 05 06 07 08 09 1
P

Figure 3. Bonferroni curve (left) Lorenz curve (right) of the CRTIR distribution for selected parameters.
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(0] x)=nlog(2a)+(2a—3)ilog(xi)
Ah+2(4, —%)exp[—%) (20)

+3(1—/?,2)exp(—2—6;j
X

+Zn:log
i=1

i

where, 0 = (a,/ll,/lg) is a parameter vector, and x=(x,x,,...,
x ). The MLEs, 6, 4, and 4, of a, 4, and 1, parameters can be
obtained by simultaneous solutions of the likelihood equai-
tons. These non-linear equations are obtained by differentiat-
ing the £(a,4,,4,|x) with according to a, 4, and 4, parameters,
and equating to zero. The likelihood equations are

‘(0 n
(a'a") =7 +2) log(x)
-
2 — -
(4, /ll)exp(xizj
-2
) +6(1—/12)exp(2aJ 1)
'xi
2 ’
T A +2(4 - A)exp j
x} &
+3(1- 4, )exp —22a'j
=0,
-
E(le)zi 1_26Xp(,~2 o
9 A +2(A4 - )exp(_zJ (22)
xi
+3(1—/12)exp(_22a
'xi
and
) -
€(0|x) . 2exp(xizj—3exp( E J_O
oh T /'il+2(/lz—ll)exp(_2j (23)

LEAST SQUARES AND WEIGHTED LEAST
SQUARES ESTIMATION

Least square estimation (LSE) and weighted least square
estimation (WLSE) methods were introduced by Swain

et al. [20] for the estimation problem of Beta distribu-
tion parameters. The LSEs and WLSEs can be derived by
minimizing the following two functions which are used to
obtain LSE and WLSE, respectively,

n l 2
Quse (9): ;(FCRTIR (X(i))_mj (24)
and
& (n+2)(n+1y i 2
Qur(0)= X 2k (x,) - ) 29
where F (.) is defined in (9).

CRTIR

ANDERSON-DARLING ESTIMATION

The Anderson-Darling estimators (ADEs) of CRTIR
(a,4,,4,) distribution can be obtained minimizing following
function given in Equation (26)

2

log[FCRTIR (X(i) )]

.(26)
+ log[l - FCRTIR (X(i) )]

1w ..
Qupe (0):_”_;;(21_1)

CRAMER-VON-MISES ESTIMATION

The Cramer—von-Mises estimators (CvMEs) of CRTIR
(a,/ll,/lz) distribution can be obtained minimizing function
given in Equation (27)

1 n
—+
12n S

Que(0)= 73+ 3 Famn (%)~ 21| . @7

The examined five estimators can be obtained by optim
function in R with BFGS algorithm.

SIMULATION STUDY

In this section, a Monte Carlo simulation study is carried
out to assess the MLEs of unknown parameters for CRTIR
(@,4,,4,) distribution according to MSEs and biases. In sim-
ulation study, we consider inverse transform techniques for
generating random variables from CRTIR (a,4,4,) distri-
bution. In this regard, a total of 5000 random samples are
generated by using (12). The parameter settings are as fol-
lows: Case 1: a=0.5, 2,=0.2, 2,=0.9, Case 2: 0=0.9, 4,=0.1,
2,=0.6, Case 3: a=1,1,=0.3,1,=0.8 and Case 4: a=2, 2,=0.25,
4,==0.5. The biases and mean square errors (MSEs) of the
MLE:s are given in Tables 1-4.

The MSE and bias are computed by

MSE(6)=li(é<i)—e)2 (28)
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and

n

Bi‘”(é)=12{é<i>'9}’

nio

(29)

respectively, where n denotes sample size and 0= (6, £, 1,).

According to Tables 1-4, it is seen that as the sample size
increases , the biases and MSEs of all estimators decrease.
The MLE is the estimator with the smallest MSE in all
cases. The CvME has the smallest absolute biases and MSE
for A, in Case 1. As a result, in point estimation for CRTIR
(a,4,4,) distribution, it can be recommended the MLE for
a and 4, parameters. The ADE can be recommended as an
alternative to MLE for a and A, parameters. Furthermore,
CvME can be recommended as an alternative to MLE for 4,.

REAL DATA APPLICATION

In this section, we provide a real application to illustrate
the potential of CRTIR (a,4,4,) distribution in modeling

lifetime data. In this data modeling, the superiority of the
CRTIR (a,4,,4,) distribution over some competing distribu-
tions such as transmuted inverse Rayleigh (TIR) [3], inverse
Rayleigh (IR), Kumaraswamy-inverse Rayleigh (Kw-IR)
[21], Lindley (L), Frechet (F) has been shown. We consider
the -2xlog-likelihood value, Akaike’s Information Criterion
(AIC), Bayesian Information Criterion (BIC), Anderson-
Darling statistics (A*), Cramer-von-Mises statistics (W*),
Kolmogorov-Smirnov test statistics (KS) and its (p-value)
as comparison statistics for fitted distributions.

The data set consist of 30 observations of March precipita-
tion (in inches) in Minneapolis/St Paul. These data are obtained
by [22], and studied by some authors such as [23-25]. The data
set is given as follows: 0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47,
1.43,3.37,2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
0.81,2.81,1.87,1.18,1.35,4.75,2.48, 0.96, 1.89,0.90, 2.05. Table
5 shows that the pdfs of fitted distributions. The MLEs and
standard errors (in parenthesis) and selection criteria statistics
for precipitation data are given in Tables 6-7, respectively. Also,
Figure 4 illustrates fitted cdfs and pdfs for precipitation data.

Table 1. Average biases and MSEs of examined estimators for Case 1

bias MSE
Estimator n a A A, a A A,
50 0.0516 0.3106 -0.7902 0.0353 0.1520 0.8872
100 0.0240 0.2183 -0.6309 0.0259 0.1087 0.6167
MLE 200 0.0202 0.1749 -0.4882 0.0260 0.0972 0.4099
500 0.0079 0.1058 -0.3378 0.0197 0.0703 0.2351
1000 -0.01 0.0496 -0.2685 0.0140 0.0422 0.1622
50 0.1486 0.5083 -0.8080 0.1083 0.4695 1.2262
100 0.1500 0.4539 -0.5831 0.0877 0.3883 0.7277
LSE 200 0.1406 0.3783 -0.3566 0.0654 0.2912 0.3776
500 0.1247 0.3165 -0.2212 0.0503 0.2265 0.1886
1000 0.1084 0.2516 -0.1032 0.0359 0.1548 0.0980
50 0.0564 0.4044 -0.9696 0.0694 0.3143 1.3692
100 0.0909 0.3515 -0.6130 0.0606 0.2680 0.6682
WLSE 200 0.1015 0.3063 -0.3701 0.0490 0.2148 0.3346
500 0.0767 0.2201 -0.2299 0.0319 0.1436 0.1582
1000 0.0674 0.1776 -0.1404 0.0250 0.1035 0.0982
50 0.0493 0.3257 -0.8341 0.0499 0.2161 1.0881
100 0.0641 0.2932 -0.6058 0.0456 0.2014 0.6526
ADE 200 0.0733 0.2552 -0.3936 0.0388 0.1693 0.3553
500 0.0644 0.2004 -0.2504 0.0293 0.1295 0.1786
1000 0.0530 0.1512 -0.1539 0.0214 0.0874 0.1065
50 0.1824 0.4379 -0.5447 0.1162 0.3969 0.8881
100 0.1691 0.4225 -0.4428 0.0899 0.3511 0.5802
CvME 200 0.1487 0.3637 -0.2939 0.0661 0.2771 0.3317
500 0.1257 0.3056 -0.1939 0.0492 0.2166 0.1726
1000 0.1105 0.2487 -0.0867 0.0356 0.1519 0.0902
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Table 2. Average biases and MSEs of examined estimators for Case 2

bias MSE
Estimator n a 21 22 a 21 22
50 0.1454 0.2957 -0.6144 0.1361 0.1440 0.6133
100 0.1275 0.2418 -0.4679 0.1427 0.1167 0.4492
MLE 200 0.0857 0.1639 -0.3361 0.1097 0.0776 0.2984
500 0.0823 0.1167 -0.1657 0.0857 0.0549 0.1665
1000 0.0507 0.0736 -0.1177 0.0582 0.0336 0.1196
50 0.4128 0.5565 -0.6204 0.6151 0.5567 1.3237
100 0.3997 0.4655 -0.3463 0.4803 0.4032 0.7762
LSE 200 0.3914 0.4049 -0.1705 0.4251 0.3272 0.4761
500 0.3208 0.3398 -0.1096 0.3206 0.2482 0.3041
1000 0.2451 0.2596 -0.0786 0.2372 0.1717 0.2465
50 0.2736 0.4631 -0.6895 0.4118 0.3742 1.2191
100 0.2521 0.3868 -0.5030 0.3371 0.2936 0.7468
WLSE 200 0.1986 0.2937 -0.3719 0.2581 0.2072 0.4719
500 0.1960 0.2353 -0.1683 0.2003 0.1532 0.2307
1000 0.1422 0.1727 -0.1295 0.1487 0.1069 0.1743
50 0.1612 0.3854 -0.7840 0.2677 0.2657 1.2348
100 0.2134 0.3447 -0.5000 0.2754 0.2371 0.7475
ADE 200 0.1901 0.2766 -0.3514 0.2354 0.1831 0.4799
500 0.1876 0.2256 -0.1643 0.1865 0.1400 0.2433
1000 0.1365 0.1681 -0.1325 0.1411 0.0998 0.1851
50 0.4483 0.4750 -0.4132 0.6477 0.4709 1.1745
100 0.4105 0.4226 -0.2491 0.4861 0.3621 0.7321
CvME 200 0.4010 0.3839 -0.1128 0.4300 0.3085 0.4574
500 0.3168 0.3265 -0.0932 0.3152 0.2370 0.3029

1000 0.2404 0.2521 -0.0761 0.2342 0.1662 0.2498
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Table 3. Average biases and MSEs of examined estimators for Case 3

bias MSE
Estimator n a 21 22 a 21 22
50 0.0263 0.2149 -0.7445 0.0947 0.1027 0.7991
100 0.0211 0.1628 -0.5655 0.0944 0.0892 0.5182
MLE 200 0.0243 0.1236 -0.4082 0.0828 0.0769 0.3059
500 0.0197 0.0774 -0.2530 0.0591 0.0555 0.1450
1000 0.0173 0.0532 -0.1651 0.0385 0.0341 0.0799
50 0.2347 0.4304 -0.7652 0.3797 0.3909 1.2035
100 0.2000 0.3427 -0.5449 0.2638 0.2851 0.6953
LSE 200 0.1926 0.2861 -0.3615 0.1984 0.2139 0.3771
500 0.1382 0.2041 -0.2472 0.1362 0.1408 0.2171
1000 0.1192 0.1650 -0.1674 0.1002 0.0961 0.1442
50 0.0691 0.3153 -0.8591 0.2257 0.2399 1.2084
100 0.0894 0.2467 -0.5768 0.1713 0.1842 0.6324
WLSE 200 0.0932 0.1959 -0.3913 0.1284 0.1402 0.3325
500 0.0685 0.1319 -0.2509 0.0888 0.0922 0.1672
1000 0.0516 0.0927 -0.1681 0.0590 0.0566 0.1017
50 0.0466 0.2476 -0.7755 0.1706 0.1731 1.0175
100 0.0632 0.2065 -0.5569 0.1403 0.1438 0.5950
ADE 200 0.0774 0.1727 -0.3803 0.1121 0.1175 0.3240
500 0.0551 0.1181 -0.2557 0.0819 0.0824 0.1744
1000 0.0377 0.0831 -0.1871 0.0580 0.0526 0.1168
50 0.2932 0.3615 -0.5253 0.4089 0.3323 0.9274
100 0.2262 0.3062 -0.4191 0.2653 0.2554 0.5822
CvME 200 0.2079 0.2715 -0.3005 0.2001 0.2039 0.3348
500 0.1460 0.2000 -0.2220 0.1372 0.1386 0.2049

1000 0.1252 0.1637 -0.1502 0.1001 0.0951 0.1362
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Table 4. Average biases and MSEs of examined estimators for Case 4

bias MSE
Estimator n a j.l 22 a 21 /Tz
50 0.6080 0.1169 0.1841 1.0308 0.0503 0.2509
100 0.3567 0.0484 0.1053 0.5717 0.0233 0.1930
MLE 200 0.1532 0.0147 0.0209 0.1957 0.0103 0.1178
500 0.0568 0.0084 -0.0222 0.0417 0.0041 0.0477
1000 0.0359 0.0066 -0.0221 0.0167 0.0020 0.0239
50 0.8443 0.4555 -0.3943 3.6576 0.3837 1.3042
100 0.7374 0.2974 -0.1712 2.9431 0.2043 0.9303
LSE 200 0.6806 0.2175 -0.0401 2.7434 0.1410 0.7412
500 0.5088 0.1234 0.0690 1.7555 0.0668 0.5020
1000 0.3138 0.0653 0.0656 0.9385 0.0301 0.3324
50 0.7596 0.3669 -0.2865 3.4343 0.2813 0.6131
100 0.6925 0.2272 -0.0683 2.8400 0.1601 0.3981
WLSE 200 0.4636 0.1161 0.0229 1.6693 0.0709 0.3369
500 0.1930 0.0410 0.0135 0.5105 0.0185 0.1566
1000 0.0869 0.0180 -0.0058 0.1637 0.0056 0.0748
50 0.6447 0.2630 -0.1511 2.3614 0.1811 0.5321
100 0.5072 0.1592 -0.0490 1.7457 0.0954 0.3748
ADE 200 0.2576 0.0710 -0.0278 0.7327 0.0312 0.2684
500 0.1021 0.0253 -0.0218 0.1776 0.0067 0.1190
1000 0.0508 0.0140 -0.0258 0.0558 0.0025 0.0581
50 0.7083 0.3814 -0.3965 3.1821 0.3300 1.4664
100 0.6590 0.2593 -0.1820 2.7157 0.1810 0.9733
CvME 200 0.6185 0.1923 -0.0479 2.5014 0.1239 0.7577
500 0.4871 0.1150 0.0629 1.6989 0.0636 0.5018
1000 0.3040 0.0615 0.0623 0.9130 0.0287 0.3322

Table 5. The list of pdfs of fitted distribution for precipitation

data
204 A ipitati
forn(x)= S exp(_x_z) Table 6. MLEs (standard errors) for precipitation data
|: NG a,A>0,x>0 Distribution MLEs (standard errors)
l—eXP(——zﬂ . G=0.4722(0.1121), £ = 0.7214(0.3988), L =
x RTIR ' I R IR
¢ —0.8903(0.7762)
0?2 ) 0 ) TIR a=0.6285(0.1582), J= —-0.6700(0.2661)
fLindley(x)_0+1( +‘x)exp(_ 'x) >0;-X>0 IR d:08587(01567)
\ Kw-IR G=0.7314(0.1716), 1= 0.6867(0.1853)
_ (e} A

Srvechot (X) = 1O x (k1) exp(—[—) J 1 o>0,x>0 L 60=0.9096(0.1247)

x F fi=1.5496(0.2026), 6= 1.0162(0.1272)
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Table 7. Selection criteria statistics for precipitation data
Distribution -2log AIC BIC A* wW* K-S p value
CRTIR 78.9324 84.9324 89.1360 0.2932 0.0341 0.0891 0.9709
TIR 84.2022 88.2022 91.0046 1.1316 0.2117 0.1817 0.2748
IR 88.2730 90.2730 91.6742 2.1823 0.4308 0.2396 0.0636
Kw-IR 86.4023 90.4023 93.2047 1.2099 0.2278 0.1984 0.1882
L 86.2874 88.2874 89.6886 1.5910 0.2618 0.1882 0.2382
F 83.8340 87.8340 90.6364 0.7596 0.1201 0.1523 0.4892
1 osp
—— cAmR
039p 08 — TR
—R
08f 07k
07f 06k
06 \
" > 05 /\\
z 05k
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04 \
osf 03f- \
02k 02t \
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% os 1 is 2z 25 @ 35 ¢ 45 5 %65 1T 15 2z 25 § 45 & 45
% precipitation data

Figure 4. Fitted cdfs (left) and pdfs (right) for precipitation data.

CONCLUSION

In this study, we introduce a new lifetime distribution
an alternative to IR distribution called CRTIR (a,4,4,)
distribution using the extension suggested by Granzotto
et al. (2017). The hf of CRTIR (a,4,4,) distribution is
upside bathtub shaped according to Figure 2. We pro-
vide five estimators of unknown parameters of CRTIR
(a,4,4,) distribution. Also, we perform a Monte Carlo
simulation study in order to evaluate these estimators in
terms of biases and MSEs at different samples. The results
of the simulation study show that there is a decrease in
biases and MSEs of all estimators as the size of the sam-
ple increases for all cases. We recommend the maximum
likelihood method for point estimation of CRTIR (a,4,,4,)
distribution. We present a real data application to illus-
trate the usefulness of CRTIR (a,4,4,) distribution for
modeling data. It is compared the fits of CRTIR (a,4,4,)
distribution and five statistical distributions. Table 7
illustrates that the best-fitted model is CRTIR (a,4,4,)
distribution among all fitted distributions in modeling
precipitation data.
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