
ABSTRACT

In this paper, interpolated variational iteration method (IVIM) is applied to investigate the 
vibration period and steady-state response for the motion of rigid rod rocking back and forth 
on a circular surface without slipping. The problem can be considered as a strongly nonlinear 
oscillator. In this solution procedure, analytical variational iteration technique is utilized 
by evaluating the integrals numerically. The approximate analytical results produced by the 
presented method are compared with the other existing solutions available in the literature. 
The advantage of using numerical evaluation of integrals, the method becomes fast convergent 
and a highly accurate solution can be obtained within seconds. The authors believe that 
the presented technique has potentially wide application in the other nonlinear oscillation 
problems.
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INTRODUCTION

It is crucial to obtain accurately the motion param-
eters of a nonlinear oscillation such as stability, fluctua-
tion, vibration period and dynamic response to improve its 
performance [1-3]. As a well-known example of nonlinear 
vibration of oscillation systems, the motion of a rigid rod on 
a circular surface can be modelled by nonlinear governing 
differential equation [4]. Wu et al. [5] proposed a second 

order differential equation with the complex nonlinearities 
to obtain the vibration period and dynamic response of the 
rigid rod system.

In last decades, some analytical approximate methods 
and their modifications were suggested by researchers for 
solving nonlinear problems such as Adomian decomposi-
tion method [6, 7, 8], variational iteration method (VIM) 
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[8, 9, 10,13], differential transform method [8, 11], homo-
topy perturbation method [12, 13, 14], harmonic bal-
ance method [15], incremental harmonic balance method 
[16], Newton-harmonic balance method [17], variational 
approach method [18], amplitude-frequency formulation 
[19-21], energy balance method [20], max-min approach 
[21]. Variety of methods to solve nonlinear problems pro-
vide more reliable results for the modal parameter on the 
vibration period. Approximate solutions of the rigid rod 
rocking back and forth on a circular surface without slip-
ping were previously obtained by variational approach 
method, amplitude-frequency formulation, max-min 
approach, Hamiltonian approach, modified homotopy per-
turbation method, modified harmonic balance method, 
iteration perturbation method, parameter expansion 
method, energy balance method, residue harmonic balance 
method [22-39].

An analytical solution for the problem is not an easy 
task to obtain and sometimes it is not possible. The case 
is also the same for the analytical approximate solutions 
since they need analytical evaluation of the integrals that 
stem from highly nonlinear governing equation. While the 
analytical approximate solutions are expected to give more 
accurate results, the desired solution may not be obtained 
due to the integration of nonlinear functions that lead to 
enormous computation time. IVIM reduces the integra-
tion time drastically resulting from nonlinear terms in the 
governing equation and it is a great advantage over analyti-
cal approximation techniques. IVIM can be described as 
the numerical interpretation of the VIM. Although IVIM 
solution is obtained numerically, the method stems from 
an analytical approach. Hence, IVIM provides an analytical 
based numerical solution. The method was first proposed 
for the initial-value problems by Salkuyeh and Tavakoli 
[40]. Atay et al. [41] applied IVIM for the solution of stiff 
differential equations and Coşkun et al. [42] used the tech-
nique to solve jamming transition problem. This study 
investigates the application of IVIM for the first time to the 
motion of rigid rod rocking back and forth on a circular 
surface without slipping.

THEORY

The governing equation of motion of rigid rod rocking 
back and forth on a circular surface without slipping can be 
expressed as,
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with the initial conditions u(0) = A,u'(0) = 0 where A is 
amplitude, g is gravitational acceleration, l is length of the 
rod and t is time [1, 5, 22, 23, 31, 33, 35, 36, 39]. The prob-
lem is illustrated in Fig. 1 and the angle q in Fig.1. corre-
sponds to the solution u(t) in Eq.(1).

The analytical approximation techniques that were used 
in the past to solve the problem [22-39] included the analyt-
ical integration process according to Eq.(1). However, the 
integration process with the nonlinear term u cos u do not 
provide a possible evaluation of a couple of successive inte-
grations. Hence, cos u term is replaced with its Maclaurin 
series approximation with few terms. This transformation 
facilitates the analytical integration, but it’s still very diffi-
cult to carry on computations through several successive 
orders of solution.

IVIM has the advantage of numerical integration that 
enables to integrate the nonlinear term u cos u directly 
instead of its series approximation. Numerical integration 
reduces the required time drastically and make it possible 
to calculate higher order solutions.

Below, the method and its application to the problem 
are explained and the results are discussed.

INTERPOLATED VARIATIONAL ITERATION 
METHOD (IVIM)

IVIM was first proposed by Salkuyeh and Tavakoli [40] 
to solve the following one-dimensional initial value prob-
lem. Below, the summary of the method is described based 
on the information given in their work [39].

′( ) = ( )( ) ( ) = ∈[ ]u t f t u t u a u t a Ta, , ,,  (2)

VIM formulation [9] for the problem given in Eq. (2) 
may be written as follows:

u t u t t u f u dm m a

t

m m+ ( ) = ( ) + ( ) ′ − ( )∫1 , ( ( ) ( , ))  (3)

where l is Lagrangian multiplier. Application of integrat-
ing by parts to Eq. (3) u0(a) = 0 assuming lead to following 
procedure.

u t G t H t dm m ma

t

+ ( ) = ( ) − ( )∫1 , (4)

Figure 1. Geometry of rigid rod rocking back and forth on 
a circular surface.
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Hence, Lagrangian multiplier for Eq.(9) becomes

u t,( ) = −1 (14)

Similarly, assuming Lv = v̇, Lagrangian multiplier can be 
determined similarly for Eq. (10) as,

v t,( ) = −1 (15)

Then, IVIM would result in the following:
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NUMERICAL RESULTS

Time domain for the computation is discretized by 
dividing time domain using different subintervals 0.0100, 
0.0050, 0.0025 and 0.0010 secs. Four different cases, i.e., g ⁄ L  
= 1,2,5,10 are considered with all subintervals for each case. 
For each case, relative error (RE) for the solution is calcu-
lated according to the equation given below.

Relative Error (RE) (%) =

−Approximate Solution Exact Solution
Exactt Solution

×100  (22)

Convergence of solution for the vibration period by 
reducing the time step is shown in between Tables 1 – 4. 
IVIM solution for the period is obtained by determining 
the time between two successive peaks while the exact value 
is taken from the equation below [36].

where
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Dividing the time domain [a,T] into n–1 subdomains 
discretizes the solution domain with the following nodal 
points.
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−
−
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At this step, solution between nodes is interpolated 
by B-spline basis functions of first order and a numeri-
cal integration becomes possible with the piecewise 
linear interpolation to Hm (ξ,t) in Eq. (4). The method 
results in a numerical equivalent of VIM formulation 
in Eq. (3).
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where index m + 1 denotes m + 1st order solution.

IVIM FOR THE MOTION OF RIGID ROD ON A 
CIRCULAR SURFACE

Governing equation (1) is replaced with a system of two 
first order equations. 
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Lagrangian multiplier for Eqs. (9) can be determined 
by assuming Lu = u̇ and imposing the variation with the 
restricted variation which simplifies to 
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Thus, the equations below are obtained.
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Vibration periods for g/L = 1 are also compared in Table 
5 with previous results obtained via Newton harmonic 

balance method (NHBM), variational approach method 
(VAM) [22], energy balance method (EBM) [33], ampli-
tude-frequency formulation (AFF) [24], and residue har-
monic balance method (RHBM) [36].

Time variation of solution for A = 0.3 π is given between 
Figures 2 – 5 for g ⁄ L = 1,2,5,10 respectively.

As stated previously, vibration periods for different 
values of g ⁄ L with different amplitudes are tabulated 
between Tables 1 – 4. Even for the largest time step 

Table 1. The results of IVIM, Exact and relative errors in different amplitudes for case g/L = 1

Amplitude A Δt1 (0.01) (RE%) Δt2 (0.005) (RE%) Δt3 (0.0025) (RE%) Δt4 (0.0010) (RE%) Exact

0.05π 3.67000 (0.23784) 3.66500 (0.10128) 3.66250 (0.03300) 3.66200 (0.01934) 3.66129
0.1π 3.77000 (0.16018) 3.76500 (0.02734) 3.76500 (0.02734) 3.76400 (0.00077) 3.76397
0.15π 3.95000 (0.22977) 3.94500 (0.10289) 3.94250 (0.03946) 3.94100 (0.00139) 3.94095
0.2π 4.21000 (0.16838) 4.20500 (0.04941) 4.20500 (0.04941) 4.20300 (0.00183) 4.20292
0.25π 4.57000 (0.00888) 4.57000 (0.00888) 4.57000 (0.00888) 4.57000 (0.00888) 4.56959
0.3π 5.08000 (0.05353) 5.08000 (0.05353) 5.07750 (0.00429) 5.07800 (0.01414) 5.07728
0.35π 5.80000 (0.03951) 5.80000 (0.03951) 5.80000 (0.03951) 5.79800 (0.00501) 5.79771
0.4π 6.90000 (0.06010) 6.90000 (0.06010) 6.89750 (0.02385) 6.89600 (0.00209) 6.89586

Table 2. The results of IVIM, Exact and relative errors in different amplitudes for case g/L = 2

Amplitude A Δt1 (0.01) (RE%) Δt2 (0.005) (RE%) Δt3 (0.0025) (RE%) Δt4 (0.0010) (RE%) Exact

0.1π 2.67000 (0.31826) 2.66500 (0.13040) 2.66250 (0.03647) 2.66200 (0.01768) 2.66153
0.2π 2.98000 (0.27203) 2.97500 (0.10379) 2.97250 (0.01967) 2.97200 (0.00284) 2.97192
0.3π 3.60000 (0.27351) 3.59500 (0.13424) 3.59250 (0.06460) 3.59100 (0.02282) 3.59018
0.4π 4.88000 (0.07985) 4.88000 (0.07985) 4.87750 (0.02858) 4.87700 (0.01833) 4.87611

Table 3. The results of IVIM, Exact and relative errors in different amplitudes for case g/L = 5

Amplitude A Δt1 (0.01) (RE%) Δt2 (0.005) (RE%) Δt3 (0.0025) (RE%) Δt4 (0.0010) (RE%) Exact

0.1π 1.69000 (0.39809) 1.68500 (0.10105) 1.68500 (0.10105) 1.68400 (0.04164) 1.68330
0.2π 1.88000 (0.02105) 1.88000 (0.02105) 1.88000 (0.02105) 1.88000 (0.02105) 1.87960
0.3π 2.28000 (0.41268) 2.27500 (0.19248) 2.27250 (0.08238) 2.27100 (0.01631) 2.27063
0.4π 3.09000 (0.19714) 3.08500 (0.03501) 3.08500 (0.03501) 3.08400 (0.00258) 3.08392

Table 4. The results of IVIM, Exact and relative errors in different amplitudes for case g/L = 10

Amplitude A Δt1 (0.01) (RE%) Δt2 (0.005) (RE%) Δt3 (0.0025) (RE%) Δt4 (0.0010) (RE%) Exact

0.1π 1.20000 (0.81728) 1.19500 (0.39721) 1.19250 (0.18717) 1.19100 (0.06115) 1.19027
0.2π 1.33000 (0.06914) 1.33000 (0.06914) 1.33000 (0.06914) 1.33000 (0.06914) 1.32908
0.3π 1.61000 (0.27544) 1.61000 (0.27544) 1.60750 (0.11973) 1.60600 (0.02631) 1.60558
0.4π 2.19000 (0.42827) 2.18500 (0.19898) 2.18250 (0.08433) 2.18100 (0.01555) 2.18066

π
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Table 5. Comparison between the IVIM and other methods for case g/L = 1

A NHBM (RE%) VAM (RE%) EBM (RE%) AFF (RE%) RHBM (RE%) IVIM (Δt4) (RE%) Exact

0.05π 3.66129 (.0054) 3.66129 (.0054) 3.66129 (.0054) 3.66129 (.0054) 3.66129 (.0054) 3.66200 (.0193) 3.66129
0.1π 3.76395 (.0005) 3.76394 (.0008) 3.76397 (.0008) 3.76394 (.0008) 3.76397 (.0000) 3.76400 (.0008) 3.76397
0.15π 3.94065 (.0053) 3.94064 (.0056) 3.94064 (.0056) 3.94062 (.0061) 3.94095 (.0023) 3.94100 (.0014) 3.94095
0.2π 4.20117 (.0416) 4.20116 (.0419) 4.20181 (.0264) 4.20105 (.0445) 4.20297 (.0012) 4.20300 (.0018) 4.20292
0.25π 4.56247 (.1534) 4.56246 (.1536) 4.56432 (.1129) 4.56194 (.1650) 4.56988 (.0088) 4.57000 (.0089) 4.56959
0.3π 5.05358 (.4668) 5.05355 (.4674) 5.05831 (.3736) 5.05162 (.5054) 5.07843 (.0226) 5.07800 (.0141) 5.07728
0.35π 5.72597 (1.2372) 5.72584 (1.0399) 5.73741 (1.0399) 5.71939 (1.3507) 5.80146 (.0648) 5.79800 (.0050) 5.79771
0.4π 6.67838 (3.1538) 6.67785 (3.1615) 6.70586 (2.7553) 6.67785 (3.1615) 6.90674 (0.1578) 6.89600 (.0021) 6.89586

Figure 4. Variation of u(t) for g/L = 5 and A = 0.3π.Figure 2. Variation of u(t) for g/L = 1 and A = 0.3π.

Figure 3. Variation of u(t) for g/L = 2 and A = 0.3π. Figure 5. Variation of u(t) for g/L=10 and A = 0.3π.
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relative error is less than one percent for all the cases g ⁄ 
L = 1,2,5,10 and for all amplitudes of each case. Reducing 
time steps provides a rapid convergence. The smallest 
time step used in the study is 0.0010 secs and the low-
est relative error is obtained as 0.0000209 in the case g 
⁄ L = 1 with amplitude of 0.4π. For the same step size 
the peak relative error is 0.0006919 in the case g ⁄ L = 
10 with the amplitude 0.2π. A relative error of the same 
order is also occurred for the same case with the ampli-
tude 0.1π. These results are reasonable and computed 
periods for the smallest step size are almost equal to 
analytical values. Order of solution was raised to twenty 
to fifty in the analysis and numerical experiments did 
not result in a significant change after twentieth order. 
Such orders of solution are impossible to maintain with 
VIM or other analytical approximate solution technique 
which is a great advantage of IVIM compared to analyti-
cal techniques. 

Vibration periods calculated using IVIM are also com-
pared in Table 5 with the available solutions existing in the 
literature. While the amplitude is increasing, the relative 
error due to NHBM, VAM, EBM, AFF, RHBM increases 
since the solutions via these methods were of low order 
because of high nonlinearity which made the analyti-
cal integration impossible after a few successive approxi-
mations. However, IVIM enables researchers to conduct 
the solution up to any order and numerical integration 
decreases the solution time in order of seconds. In addi-
tion, the results obtained from IVIM are very close to ana-
lytical solutions due to the analytical based formulation of 
the method.

Time variation of solutions and root mean square 
errors (RMSE) for all the cases g ⁄ L = 1,2,5,10 with the 
amplitude 0.3π are depicted between Figs.2 – 5 and the 
results are in excellent agreement with the analytical 
solutions. 

CONCLUSION

In this study, the motion of rigid rod rocking back 
and forth on a circular surface without slipping is con-
sidered. The problem is analyzed using IVIM which 
may be described as the discretized form of analytical 
variational iteration technique. The solutions computed 
using the presented method compared with the ana-
lytical approximate results of the previous studies. The 
numerical evaluation of integrals significantly reduces 
the required time for the solution and the solution 
converges rapidly by a fine discretization in the solu-
tion domain. Numerical results show how the solution 
method is efficient and accurate which suggest the use 
of the approach for other nonlinear oscillation problems 
compared to analytical approximation techniques appli-
cable to such problems that include lots of analytical 
operations.
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