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ABSTRACT 

Smoking is globally a challenging issue that causes many fatal health problems.  In this paper, a nonlinear 
fractional smoking mathematical model is proposed in the context of a modified form of the Caputo fractional-
order derivative. The analytical and approximate-analytical solutions are obtained for the proposed mathematical 
model via the fractional differential transform method (FDTM) and Laplace Adomian decomposition method 
(LADM). The obtained solution is provided as a rapidly convergent series. Simulation results are provided in this 
paper to compare the obtained solutions by FDTM, LADM, Runge Kutta (RK) method, and reduced differential 
transforms method (RDTM) with the exact solution of the proposed problem.  By comparing both FDTM and 
LADM solutions, the FDTM solution is closer to the exact solution than the LADM solution. All obtained solutions 
have been analyzed and compared graphically to validate the effiency and applicability of all results. 
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INTRODUCTION 

Smoking has a negative impact on both individuals and societies. [1, 5]. The smoking habit keeps 
spreading between all people of different genders and ages [1, 5]. Controlling the spread of smoking habit has been 
very challenging globally. A mathematical model that describes the smoking habit among various classifications 
of smokers is needed to be further studied in order to investigate this habit mathematically and provide some 
suggested solutions to this issue with a goal to control the spread of this habit or at least minimize its negative 
impact. This topic of research has attracted the interests of many researchers from various fields of science, 
engineering, and medicine to conduct further research studies concerning the smoking mathematical model. [1, 2, 
3, 4, 5, 6]. Fractional calculus has recently attracted the interests of mathematicians and researchers due to the 
advantages of using fractional derivatives in modelling scientific and engineering phenomena. Fractional 
derivatives can provide a better understanding for the physical system and its dynamics than using the integer-
order derivatives. Therefore, several research studies have been conducted on the mathematical analysis of 
fractional derivatives, and on solving fractional differential equations using analytical or approximate-analytical 
techniques. [7, 8, 9, 10, 11, 12, 17, 18]. Some other notable studies about other proposed techniques for solving 
integral and fuzzy integral equations such as fuzzy b-metric-like spaces for solving integral equation [19] and 
control fuzzy metric spaces with the help of orthogonality for solving fuzzy integral equation [20], respectively. 
Some novel fixed-point results of orthogonal neutrosophic metric spaces are provided in [21]. Two of the most 
interesting approaches for solving these equations of fractional order are FDTM and LADM. On one hand, the 
differential transform method was first created by Zhou [13] to obtain approximate-analytical solutions to ordinary 
differential equations using Taylor series formulation. [15]. Then, Arikoglu and Ozkol in [14] developed this 
approach by using the power series formulation for fractional-order differential equations (see [9] for more 
background information about the applicability of this technique for solving the second-order wave equation). On 
the other hand, the LADM is considered as a coupling Laplace transform method with Adomian decomposition 
which can provide a great help in solving nonlinear differential equations analytically [8]. For more examples 
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about this method, we refer to [8] where the proposed HIV infection of  cells model is successfully solved 
via the Laplace Adomian decomposition method. An extension of the LADM was proposed by Kaabar et al. [10] 
to form a modified coupling method of double Laplace transform with Adomian decomposition to solve the 
nonlinear fractional-order Schrödinger equation with second-order spatio-temporal dispersion. Ali et al. [15] has 
applied LADM for the fractional-order immunology and AIDS model. Günerhan et al. [16] has also applied LADM 
for a fractional-order model of HIV infection. In this paper, the general form of the nonlinear fractional smoking 
model is written as follows: 

𝐷∗#𝑃(𝑡) = 𝑎*1 − 𝑃(𝑡)- − 𝑏𝑃(𝑡)𝑀(𝑡),  
𝐷∗#𝑊(𝑡) = −𝑎𝑊(𝑡) + 𝑃(𝑡)𝑊(𝑡) − 𝑐𝑊(𝑡)𝑀(𝑡), 

𝐷∗#𝑀(𝑡) = −(𝑎 + 𝑑)𝑀(𝑡) + 𝑐𝑊(𝑡)𝑀(𝑡) + 𝑓𝑄(𝑡), 

𝐷∗#𝑄(𝑡) = −(𝑎 + 𝑓)𝑄(𝑡) + 𝑑(1 − 𝑒)𝑀(𝑡), 

𝐷∗#𝑅(𝑡) = −𝑎𝑅(𝑡) + 𝑒𝑑𝑀(𝑡),                               (1) 

 

with initial conditions are written in the following form: 

𝑃(0) = 𝑃:, 𝑊(0) = 𝑊:, 𝑀(0) = 𝑀:, 𝑄(0) = 𝑄:, 𝑅(0) = 𝑅:	.	                                                (2) 

Let 𝑁(𝑡) be the total population with respect to time which consists of 5 smokers’ classifications [1]: Potential 

smokers, occasional (light) smokers, heavy smokers, temporary quitters, and permanently quitters are denoted by 

𝑃(𝑡), 𝑊(𝑡), 𝑀(𝑡), 𝑄(𝑡), and 𝑅(𝑡), respectively. Therefore, 𝑁(𝑡) can be written as follows: 

𝑁(𝑡) 	= 	𝑃(𝑡) +𝑊(𝑡) +𝑀(𝑡) + 𝑄(𝑡) + 𝑅(𝑡). 

Each parameter in (1) represents the following [1]: 

𝑎 represents the natural death rate;  𝑏 represents the connection index between potential and light smokers, 𝑐 

represents the connection index between light and heavy smokers; 𝑑	represents the smoking quitting index; e 

represents the number of former smokers who quitted smoking permanently with a rate d; 𝑓 represents the 

connection index between temporary quitters who might go back to the smoking habit. 

While there are many methods for solving nonlinear models, our proposed nonlinear fractional smoking 

mathematical model in the context of a modified version of Caputo fractional derivative have not been investigated 

using the FDTM and LADM. Our numerical experiments and simulation make our study unique in comparison to 

many other related studies.  

This paper is constructed as follows: In Section 2, some fundamental fractional calculus definitions and 

properties are introduced. In Section 3, the proposed smoking mathematical model will be solved using FDTM 

and LADM. In Section 4, all obtained results are compared and analyzed. In section 5, we conclude our research 

study. 

2. BASIC DEFINITIONS  

In this section, some basic fractional calculus definitions and properties are introduced which will be 

applied later. 

DEFINITION 1. A real function 𝑓(𝑥), 𝑥 > 0 is said to be in the space 𝐶A, 𝜇𝜖𝑅 if there exists a real number 𝑃 >

𝜇 such that 𝑓(𝑥) = 𝑥D𝑓E(𝑥) where 𝑓E(𝑥)𝜖𝐶[0,∞). Clearly, we have the following: 𝐶A < 𝐶I if  𝜇 < 𝛽. 

DEFINITION 2. A function 𝑓(𝑥), 𝑥 > 0 is said to be in the space 𝐶AK, 𝑚𝜖𝑁⋃{0} if 𝑓(K) ∈ 𝐶A. 
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DEFINITION 3. The Riemann-Liouville fractional integral operator of the order 𝛼 > 0 of a function, 𝑓 ∈ 𝐶A, 𝜇 ≥

−1	 is defined as follows: 

(𝐽T#𝑓)(𝑥) =
1

Γ(𝛼)
V
W

T
(𝑥 − 𝜏)#YE𝑓(𝜏)𝑑𝜏, 𝑥 > 𝑎, 

                                                          (𝐽T:𝑓)(𝑥) = 𝑓(𝑥).                                                       (3) 

All the properties of the operator 𝐽# are mentioned in [36] in which we will discuss only important properties as 

follows: 

For	𝑓 ∈ 𝐶A, 𝜇 ≥ −1, 𝛼, 𝛽 ≥ 0,	and 𝛾 > −1 

a. (𝐽T#𝐽T
I𝑓)(𝑥) = (𝐽T

#[I𝑓)(𝑥),  (4) 

b. (𝐽T#𝐽T
I𝑓)(𝑥) = (𝐽T

I𝐽T#𝑓)(𝑥),  (5) 

c. 𝐽T#𝑥\ =
](\[E)

](#[\[E)
𝑥#[\.                                                                                          (6) 

There are some advantages of using Riemann–Liouville fractional derivative over other fractional 

derivatives due to the fact that this type of fractional derivative can be efficiently applied in modelling scientific 

phenomena. A modified form of Caputo fractional operator, denoted by 𝐷^, will be used in this research work. 

3. METHODOLOGY 
In this section, the proposed smoking mathematical model will be solved using the FDTM and LADM. 

3.1. FRACTIONAL DIFFERENTIAL TRANSFORM METHOD 

The fractional differential transform method (FDTM) is semi-numerical and analytical approach, and it 

is considered as a traditional differential transformed method reform. The differential transformation, , can 

be expressed as follows: 

                                               (7) 

The differential transform inverse of  is written as 

         (8) 

By substituting Eq. (7) into Eq. (8), the following is obtaind: 

    (9) 

Assume that 𝑆`(𝑘) is the fractional differential transform of 𝑠(𝑥). The approximate function 𝑆(𝑘) is written as: 

                                       (10) 

The above equation (Eq. (10)) represents the differential transformation that is resulted from using Taylor 

series expansion where the derivatives’ symbolic evaluation is not applicable for this technique. In addition, by 
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applying the iterative procedure, comparative derivatives have been obtained. The orginal function is represented 

by a lower case letter, while the transformed function is represented by an upper case letter. According to Eq. (9) 

and Eq. (10), it is obvious to prove that the transformed functions have the basic mathematical values as mentioned 

in Table 2. 

Table 1. The fractional differential transform method operations. 

Given Function Transformed Function 

  

  

  

  

  

  

  

 
By applying FDTM to the proposed smoking mathematical model, and by using with both Table 1 and 

the Eq. (10), a system of equations is obtained as follows: 

𝑃#(k+1)= 
𝛤(1 + 𝛼𝑘)

𝛤(𝛼(𝑘 + 1) + 1)
d	𝑎𝛿(𝑘) -𝑎𝑃#(𝑘) − 𝑏f𝑃#(𝑙)𝑀#(𝑘 − 𝑙)

h

ij:

k ,	

𝑊#(k+1)=  
𝛤(1 + 𝛼𝑘)

𝛤(𝛼(𝑘 + 1) + 1)
d−𝑎𝑊#(𝑘) +f𝑃#(𝑙)𝑊#(𝑘 − 𝑙)

h

ij:

 -cf𝑊#(𝑙)𝑀#(𝑘 − 𝑙)
h

ij:

k ,	

𝑀#(k+1)=  
𝛤(1 + 𝛼𝑘)

𝛤(𝛼(𝑘 + 1) + 1)
d−𝑎𝑀#(𝑘) − 𝑑𝑀#(𝑘) + 𝑐f𝑊#(𝑙)𝑀#(𝑘 − 𝑙)

h

ij:

+f𝑄#(𝑘)k ,	

𝑄#(k+1)=  
𝛤(1 + 𝛼𝑘)

𝛤(𝛼(𝑘 + 1) + 1)
[−𝑎𝑄#(𝑘) − 𝑓𝑄#(𝑘)+𝑑𝑀#(𝑘) − 𝑑𝑒𝑀#(𝑘)],	

𝑅#(k+1)=  
𝛤(1 + 𝛼𝑘)

𝛤(𝛼(𝑘 + 1) + 1)
[−𝑎𝑅#(𝑘) +ed𝑀#(𝑘)]. 

                                                                                                                                                (11) 

with the following initial conditions: 

𝑃#(0) = 𝑃:, 𝑊#(0) = 𝑊:, 𝑀#(0) = 𝑀:, 𝑄#(0) = 𝑄:, 𝑅#(0) = 𝑅:	. 

( ) ( ) ( )w x d x b x= ± ( ) ( ) ( )W k D k B kj j= ±
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From Eq. (11) and the above initail conditions, the numerical approximate values of 𝑃(𝑡),𝑊(𝑡), 𝑀(𝑡), 𝑄(𝑡) and 

𝑅(𝑡) for 𝑘	 = 1,2,3, . .. can be obtained for various values of 𝛼, and the numerical comparisons are shown in the 

comparison of results and discussion section. 

By using the inverse reduced differential transform of	P̂ (k),W^(k), 	M^(k), 	Q^(k)	and	R^(k), we get the 
following solution: 
 

𝑝(𝑡) =fP̂ (k)𝑡h#
v

hj:

= P̂ (0) + P̂ (1)𝑡# + P̂ (2)𝑡w# + P̂ (3)𝑡x# +⋯ 

 

𝑤(𝑡) =fW^(k)𝑡h#
v

hj:

= W^(0) +W^(1)𝑡# +W^(2)𝑡w# + W^(3)𝑡x# +⋯ 

 

𝑚(𝑡) =fM^(k)𝑡h#
v

hj:

= M^(0) + M^(1)𝑡# + M^(2)𝑡w# +M^(3)𝑡x# +⋯ 

 
𝑞(𝑡) = ∑ Q^(k)𝑡h#v

hj: = Q^(0) + Q^(1)𝑡# + Q^(2)𝑡w# + Q^(3)𝑡x# + ⋯ 
 

 
               𝑟(𝑡) = ∑ R^(k)𝑡h#v

hj: = R^(0) + R^(1)𝑡# + R^(2)𝑡w# + R^(3)𝑡x# + ⋯	                          (12) 
 
3.2. THE LAPLACE ADOMIAN DECOMPOSITION METHOD 

In this section, we will illustrate the basic steps for LADM. We discuss the following important definitions 

or our research study: 

DEFINITION 3.1 [8] A function 𝑓 on 0 ≤ 𝑡 < ∞ is exponentially bounded of order 𝜎 ∈ 𝑅 if satisfies ∥ 𝑓(𝑡) ∥≤

𝑀𝑒��, for some real constant 𝑀 > 0. 

DEFINITION 3.2 [7,8, 17] The Caputo fractional derivative is defined as follows: 

𝑳{𝑫𝝈𝒇(𝒕)} = 𝒔𝝈𝑳{𝒇(𝒕)} −f
𝒎

𝒌j𝟎

𝒔𝝈Y𝒌Y𝟏𝒇(𝒌)(𝟎), 
   (13) 

where 𝑚 = 𝜎 + 1, and [𝛼] represents the integer part of 𝜎.  As a result, the following useful formula is obtained: 

𝐿(𝑡�) = �(�[E)
�(���)

,				𝜎 ∈ 𝑅[.       (14) 

The last-mentioned definitions can be used in this section to discuss the general procedures for solving the 

proposed mathematical model (1).  First of all, the Laplace transform is applied to both lift-hand and right-hand 

sides of Eq. (1) in the following form: 

𝐿 �
𝑑#

𝑑𝑡# 𝑃
� =

𝑎
𝑠 − 𝑎𝐿

(𝑃) − 𝑏𝐿(𝑃𝑀), 

𝐿 �
𝑑#

𝑑𝑡# 𝑊
� = −𝑎𝐿(𝑊) + 𝑏𝐿(𝑃𝑊) − 𝑐𝐿(𝑊𝑀),	

																														𝐿 � �
�

���
𝑀� = −𝑎𝐿(𝑀) − 𝑑𝐿(𝑀) + 𝑐𝐿(𝑊𝑀) + 𝑓𝐿(𝑄),	

𝐿 �
𝑑#

𝑑𝑡# 𝑄
� = −𝑎𝐿(𝑄) − 𝑓𝐿(𝑄) + 𝑑𝐿(𝑀) − 𝑑𝑒𝐿(𝑀), 

      𝐿 � �
�

���
𝑅� = −𝑎𝐿(𝑅) + 𝑒𝑑𝐿(𝑀).     

         (15) 

Then, by applying the formula (13) to Eq. (15), we reach the following: 



Sigma Journal of Engineering and Natural Sciences, Technical Note, Vol. , No. , pp. , March,  
 

 
 
 

𝑠#𝐿(𝑃) − 𝑠#YE𝑃(0) =
𝑎
𝑠 − 𝑎𝐿

(𝑃) − 𝑏𝐿(𝑃𝑀), 

𝑠#𝐿(𝑊) − 𝑠#YE𝑊(0) = −𝑎𝐿(𝑊) + 𝑏𝐿(𝑃𝑊) − 𝑐𝐿(𝑊𝑀), 

𝑠#𝐿(𝑀) − 𝑠#YE𝑀(0) = −𝑎𝐿(𝑀) − 𝑑𝐿(𝑀) + 𝑐𝐿(𝑊𝑀) + 𝑓𝐿(𝑄), 

𝑠#𝐿(𝑄) − 𝑠#YE𝑄(0) = −𝑎𝐿(𝑄) − 𝑓𝐿(𝑄) + 𝑑𝐿(𝑀) − 𝑑𝑒𝐿(𝑀), 

𝑠#𝐿(𝑅) − 𝑠#YE𝑅(0) = −𝑎𝐿(𝑅) + 𝑒𝑑𝐿(𝑀). 

(16) 

By applying the initial conditions, the following result is obtained: 

𝐿(𝑃) =
𝑃:
𝑠 +

𝑎
𝑠#[E −

𝑎
𝑠# 𝐿

(𝑃) −
𝑏
𝑠# 𝐿

(𝑃𝑀), 

𝐿(𝑊) =
𝑊:

𝑠 −
𝑎
𝑠# 𝐿

(𝑊) +
𝑏
𝑠# 𝐿

(𝑃𝑊)−
𝑐
𝑠# 𝐿

(𝑊𝑀), 

                                                        𝐿(𝑀) = ��
�
− T

��
𝐿(𝑀) − �

��
𝐿(𝑀) + �

��
𝐿(𝑊𝑀) + �

��
𝐿(𝑄), 

                            𝐿(𝑄) = ��
�
− T

��
𝐿(𝑄) − �

��
𝐿(𝑄) + �

��
𝐿(𝑀) − ��

��
𝐿(𝑀), 

𝐿(𝑅) =
𝑅:
𝑠 −

𝑎
𝑠# 𝐿

(𝑅) +
𝑑𝑒
𝑠# 𝐿

(𝑀). 

(17) 

By using this method, the solution is obtained as an infinite series. To apply the Adomian decomposition 

method, let the values of  𝐴 = 𝑃𝑀,𝐸 = 𝑀𝑊	and 𝐵 = 𝑃𝑊. The solution is expressed as an infinite series in the 

following form: 

𝑃 =f𝑃¢, 𝑊 =f𝑊¢	
v

¢j:

, 𝑀 =f𝑀¢	
v

¢j:

, 𝑄 = f𝑄¢	
v

¢j:

, 𝑅 =f𝑅¢.
v

¢j:

	
v

¢j:

 

(18) 

We decompose the two nonlinear parts, named 𝐴 and 𝐶, in the following form: 

𝑨 =f𝑨𝒏

v

𝒏j𝟎

, 𝑬 = f𝑬𝒏

v

𝒏j𝟎

, 𝑩 =f𝑩𝒏

v

𝒏j𝟎

. 
(19) 

Here, 𝐴¢, 	E¨,	and B¨	can be computed using the convolution operation as 

𝐴¢ =
1

𝛤(𝑛 + 1)
𝑑¢

𝑑𝜂¢
df𝜂¬𝑃¬f𝜂¬𝑀¬

¢

¬j:

¢

¬j:

k
­j:

, 

𝐸¢ =
1

𝛤(𝑛 + 1)
𝑑¢

𝑑𝜂¢
df𝜂¬𝑀¬f𝜂¬𝑊¬

¢

¬j:

¢

¬j:

k
­j:

, 

𝐵¢ =
1

𝛤(𝑛 + 1)
𝑑¢

𝑑𝜂¢
df𝜂¬𝑃¬f𝜂¬𝑊¬

¢

¬j:

¢

¬j:

k
­j:

. 

(20) 

Substituting Eq. (18) and Eq. (19) into Eq. (17), we obtain the following result: 

𝐿 ®f𝑃¢	
v

¢j:

¯ =
𝑃:
𝑠 +

𝑎
𝑠#[E −

𝑎
𝑠# 𝐿

®f𝑃¢	
v

¢j:

¯−
𝑏
𝑠# 𝐿

®f𝐴¢

v

¢j:

¯, 

𝐿 ®f𝑊¢	
v

¢j:

¯ =
𝑊:

𝑠 −
𝑎
𝑠# 𝐿

®f𝑊¢	
v

¢j:

¯ +
𝑏
𝑠# 𝐿

®f𝐵¢

v

¢j:

¯−
𝑐
𝑠# 𝐿

®f𝐸¢

v

¢j:

¯, 
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𝐿 ®f𝑀¢	
v

¢j:

¯ =
𝑀:

𝑠 −
𝑎
𝑠# 𝐿

®f𝑀¢	
v

¢j:

¯ −
𝑑
𝑠# 𝐿

®f𝑀¢	
v

¢j:

¯ +
𝑐
𝑠# 𝐿

®f𝐸¢

v

¢j:

¯ +
𝑓
𝑠# 𝐿

®f𝑄¢	
v

¢j:

¯, 

𝐿 ®f𝑄¢	
v

¢j:

¯ =
𝑄:
𝑠 −

𝑎
𝑠# 𝐿

®f𝑄¢	
v

¢j:

¯−
𝑓
𝑠# 𝐿

®f𝑄¢	
v

¢j:

¯ +
𝑑
𝑠# 𝐿

®f𝑀¢	
v

¢j:

¯ −
𝑑𝑒
𝑠# 𝐿

®f𝑀¢	
v

¢j:

¯, 

𝐿 ®f𝑅¢	
v

¢j:

¯ =
𝑅:
𝑠 −

𝑎
𝑠# 𝐿

®f𝑅¢	
v

¢j:

¯ +
𝑑𝑒
𝑠# 𝐿

®f𝑀¢	
v

¢j:

¯. 

(21) 

By matching both left-hand and right-hand sides of Eq. (21), we get the following iterative algorithm: 

𝐿(𝑃:) =
𝑃:
𝑠 , 𝐿(𝑊:) =

𝑊:

𝑠 , 𝐿(𝑀:) =
𝑀:

𝑠 , 𝐿(𝑄:) =
𝑄:
𝑠 , 𝐿(𝑅:) =

𝑅:
𝑠 , 

𝐿(𝑃E) =
𝑎

𝑠#[E −
𝑎
𝑠# 𝐿

(𝑃:) −
𝑏
𝑠# 𝐿

(𝐴:), 

𝐿(𝑊E) = −
𝑎
𝑠# 𝐿

(𝑊:) +
𝑏
𝑠# 𝐿

(𝐵:) −
𝑐
𝑠# 𝐿

(𝐸:), 

𝐿(𝑀E) = −
𝑎
𝑠# 𝐿

(𝑀:)−
𝑑
𝑠# 𝐿

(𝑀:)+
𝑐
𝑠# 𝐿

(𝐸:) +
𝑓
𝑠# 𝐿

(𝑄:), 

𝐿(𝑄E) = −
𝑎
𝑠# 𝐿

(𝑄:) −
𝑓
𝑠# 𝐿

(𝑄:) +
𝑑
𝑠# 𝐿

(𝑀:) −
𝑑𝑒
𝑠# 𝐿

(𝑀:), 

𝐿(𝑅E) = −
𝑎
𝑠# 𝐿

(𝑅:) +
𝑑𝑒
𝑠# 𝐿

(𝑀:),… 

𝐿(𝑃¢) = −
𝑎
𝑠# 𝐿

(𝑃¢YE) −
𝑏
𝑠# 𝐿

(𝐴¢YE), 

𝐿(𝑊¢) = −
𝑎
𝑠# 𝐿

(𝑊¢YE) +
𝑏
𝑠# 𝐿

(𝐵¢YE) −
𝑐
𝑠# 𝐿

(𝐸¢YE), 

𝐿(𝑀¢) = −
𝑎
𝑠# 𝐿

(𝑀¢YE) −
𝑑
𝑠# 𝐿

(𝑀¢YE) +
𝑐
𝑠# 𝐿

(𝐸¢YE) +
𝑓
𝑠# 𝐿

(𝑄¢YE), 

𝐿(𝑄¢) = −
𝑎
𝑠# 𝐿

(𝑄¢YE) −
𝑓
𝑠# 𝐿

(𝑄¢YE) +
𝑑
𝑠# 𝐿

(𝑀¢YE) −
𝑑𝑒
𝑠# 𝐿

(𝑀¢YE), 

𝐿(𝑅¢) = − T
��
𝐿(𝑅¢YE) +

��
��
𝐿(𝑀¢YE).      

 (22) 

Taking inverse transform of (22) we have: 

𝑃: = 𝑃::, 𝑊: = 𝑊::, 𝑀: = 𝑀::, 𝑄: = 𝑄::, 𝑅: = 𝑅::, 

𝑃E = [𝑎 − 𝑎𝑃:: − 𝑏𝐴:]
𝑡#

𝛤(𝛼 + 1), 

𝑊E = [−𝑎𝑊:: + 𝑏𝐵: − 𝐸:]
𝑡#

𝛤(𝛼 + 1), 

𝑀E = [−𝑀: − 𝑑𝑀:: + 𝑐𝐸: + 𝑓𝑄::]
𝑡#

𝛤(𝛼 + 1), 

𝑄E = [−𝑎𝑄:: − 𝑓𝑄:: + 𝑑𝑀:: − 𝑑𝑒𝑀::]
𝑡#

𝛤(𝛼 + 1), 

                      𝑅E = [−𝑎𝑅:: + 𝑑𝑒𝑀::]
��

�(#[E)
, …                                                                      (23) 

The remaining terms can be obtained similarly. Then, the solution is obtained in the form of infinite series as 

follows: 
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𝑷(𝒕) =f𝑷𝒋

v

𝒋j𝟎

, 𝑾(𝒕) =f𝑾𝒋

v

𝒋j𝟎

,									𝑴(𝒕) =f𝑴𝒋

v

𝒋j𝟎

,							𝑸(𝒕) =f𝑸𝒋

v

𝒋j𝟎

, 

𝑹(𝒕) =f𝑹𝒋

v

𝒋j𝟎

. 
(24) 

The solution in Eq. (24) gives the results for the state variables for the SITR model of Eq. (1), and those results 

shall be illustrated in the next section. 

4. COMPARİSON OF RESULTS AND DISCUSSION 

In this section, the results for solving model (1) are investigated for various values of  α to prove the 

effectiveness and validity of the proposed algorithm. The values of the parameters that have been used in numerical 

simulations are summarized in Table 2. 

It is noticeable that FDTM and LADM are effective in producing approximate solutions of the proposed 

mathematical model. Numerical simulation of 𝑃(𝑡),𝑊(𝑡), 𝑀(𝑡), 𝑄(𝑡) and 𝑅(𝑡) are shown in Figs. 1-10  over a 

interval of 0 < t < 1 for different values of 𝛼 = 1, 0.8, 0.5, and all results have been compared with the exact 

solution for the studied problem. The values of the parameters that have been used in numerical simulations are 

summarized in Table 2. Figs. 11-12 show the responses of the model investigated in this work at α= 1. In Figs. 13-

17, we compared the obtained result from FDTM and LADM with the results from using other techniques such as 

Runge Kutta (RK) method and reduced differential transforms method (RDTM) [1] with the same values of the 

parameters that are shown in Table 2. 

According to our comparative results, FDTM provides more reliable solutions than LADM. We conclude 

that the FDTM solution is closer to the exact solution than LADM solution. Therefore, our proposed technique is 

reliable and efficient. Numerical experiments have been conducted using the applied methods for various values 

of α which have successfully provided good results for the studied problem. 

 

Table 2: Parameters values defined in Eq. (1). 

Parameters Values 
P(0) 0.603 
𝑊(0) 0.24 
𝑀(0) 0.10628 
𝑄(0) 0.0326 
𝑅(0) 0.01811 
𝑎 0.04 
𝑏 0.23 
𝑐 0.3 
𝑑 0.2 
𝑒 0.4 
𝑓 0.25 

 

 



Sigma Journal of Engineering and Natural Sciences, Technical Note, Vol. , No. , pp. , March,  
 

 
 
 

 
                                   (I) 

 
                                 (III) 

 
                                   (II) 

 
                               (IV) 

Figure 1.  (I) Exact solution for 𝑃(𝑡),  (II) Approximate solution by using LADM with 𝛼 = 1,		(III) 

Approximate solution with 𝛼 = 0.8, (IV) Approximate solution with 𝛼 = 0.5 for 0	 < 	𝑡	 < 	1. 

 
                                  (I) 

     
                                   (II) 
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                                (III) 

 
                                  (IV) 

Figure 2.  (I) Exact solution for 𝑃(𝑡) , (II) Approximate solution by using FDTM with 𝛼 = 1,		(III) Approximate 

solution with 𝛼 = 0.8, (IV) Approximate solution with 𝛼 = 0.5 for 0	 < 	𝑡	 < 	1. 

 
                                 (I) 

     
                                (III) 

 
                                (II) 

 
                              (IV) 

Figure 3.  (I) Exact solution for 𝑊(𝑡),   (II) Approximate solution by using LADM with 𝛼 = 1,		(III) 

Approximate solution with 𝛼 = 0.8, (IV) Approximate solution with 𝛼 = 0.5 for 0	 < 	𝑡	 < 	1. 
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                                 (I) 

 
                                (III) 

 
                                (II) 

 
                                (IV) 

Figure 4. (I) Exact solution for 𝑊(𝑡), (II) Approximate solution by using FDTM with 𝛼 = 1,		(III) Approximate 

solution with 𝛼 = 0.8, (IV) Approximate solution with 𝛼 = 0.5 for 0	 < 	𝑡	 < 	1. 

     
                                  (I) 

 
                                (II) 
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                               (III) 

 
                                (IV) 

Figure 5. (I) Exact solution for	𝑀(𝑡), (II) Approximate solution by using LADM with 𝛼 = 1,		(III) Approximate 

solution with 𝛼 = 0.8, (IV) Approximate solution with 𝛼 = 0.5 for 0	 < 	𝑡	 < 	1. 

     
                                  (I) 

 
                                 (III) 

 
                                 (II) 

 
                                 (IV) 

Figure 6. (I) Exact solution for	𝑀(𝑡), (II) Approximate solution by using FDTM with 𝛼 = 1,		(III) Approximate 

solution with 𝛼 = 0.8, (IV) Approximate solution with 𝛼 = 0.5 for 0	 < 	𝑡	 < 	1. 
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(I)                                         

 
                                 (III) 

 
                                 (II) 

 
                                (IV) 

Figure 7.  (I) Exact solution for	𝑄(𝑡), (II) Approximate solution by using LADM with 𝛼 = 1,		(III) Approximate 

solution with 𝛼 = 0.8, (IV) Approximate solution with 𝛼 = 0.5 for 0	 < 	𝑡	 < 	1. 

 
                                  (I) 

 
                                 (II) 
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                                 (III) 

                                 (IV) 

Figure 8. (I) Exact solution for	𝑄(𝑡), (II) Approximate solution by using FDTM with 𝛼 = 1,		(III) Approximate 

solution with 𝛼 = 0.8, (IV) Approximate solution with 𝛼 = 0.5 for 0	 < 	𝑡	 < 	1. 

 

 
                                   (I) 

 
(II)                                                                                                                                                                                                                             

 
                                (II) 

 
                                (IV) 

Figure 9. (I) Exact solution for	𝑅(𝑡), (II) Approximate solution by using LADM with 𝛼 = 1,		(III) Approximate 

solution with 𝛼 = 0.8, (IV) Approximate solution with 𝛼 = 0.5 for 0	 < 	𝑡	 < 	1. 
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                                 (I) 

 
                                 (III) 

 
                                (II) 

 
                               (IV) 

Figure 10.  (I) Exact solution for	𝑅(𝑡), (II) Approximate solution by using FDTM with 𝛼 = 1,		(III) 

Approximate solution with 𝛼 = 0.8, (IV) Approximate solution with 𝛼 = 0.5 for 0	 < 	𝑡	 < 	1. 

 
Figure 11. The relation between 𝑃(𝑡),𝑊(𝑡),𝑀(𝑡), 𝑄(𝑡) and 𝑅(𝑡) by using FDTM at 𝛼 = 	1. 
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Figure 12. The relation between 𝑃(𝑡),𝑊(𝑡),𝑀(𝑡), 𝑄(𝑡) and 𝑅(𝑡) by using LADM at 𝛼 = 	1. 

 

 
Figure 13. The solution of 𝑃(𝑡) obtained by FDTM (star), LADM(Triangle), RK method (Square), and 

RDTM(Circle) for 𝛼 = 1. 
 
 

 
Figure 14. The solution of 𝑊(𝑡) obtained by FDTM (star), LADM(Triangle), RK method (Square), and 

RDTM(Circle) for 𝛼 = 1. 
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Figure 15. The solution of 𝑀(𝑡) obtained by FDTM (star), LADM(Triangle), RK method (Square), 

and RDTM(Circle) for	𝛼 = 1. 
 
 
 
 

 
Figure 16. The solution of 𝑄(𝑡) obtained by FDTM (star), LADM(Triangle), RK method (Square), and 

RDTM(Circle) for	𝛼 = 1. 
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Figure 17. The solution of 𝑅(𝑡) obtained by FDTM (star), LADM(Triangle), RK method (Square), and 
RDTM(Circle) for 𝛼 = 1. 

 

5. CONCLUSION 

In this research work, the proposed nonlinear fractional smoking mathematical model in the context of a 

modified version of Caputo fractional derivative has been successfully solved using two different approaches: the 

fractional differential transform method and Laplace Adomian decomposition method. All obtained results have 

been analyzed and compared for various cases. Finally, all results prove the validity and efficiency of those 

methods in solving nonlinear fractional differential equations. Our results and methods in this work can be further 

extended or generalized in solving other interesting nonlinear models arising from some phenomena in physics 

and engineering. In addition, our results can also be applied for models formulated using other fractional 

derivatives.  
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