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INTRODUCTION

Let f I: →   be a convex function. Then the following 
inequalities hold
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for all a, b ∈ I with a < b. Both inequalities hold in the 
reversed direction if the function f is concave. This double 
inequality is well known as the Hermite-Hadamard inequal-
ity [8]. Note that some of the classical inequalities for means 
can be derived from Hermite-Hadamard integral inequali-
ties for appropriate particular selections of the mapping f.

In [7], S. S. Dragomir, et al. gave the following defini-
tion and related Hermite-Hadamard integral inequalities as 
follow:

Definition 1. A nonnegative function f I: ⊆ →   is 
said to be P-function if the inequality

f(tx + (1 – t)y) ≤ f(x) + f(y), 

holds for all x, y ∈ I and t ∈ (0,1).
Theorem 1. Let f ∈ P(I), a, b ∈ I with a < b and f ∈ 

L[a,b]. Then

f
a b

b a
f x dx f a f b
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2
.  (1.2)

Definition 2. [13] Let h J: →   be a non-negative func-
tion, h ≠ 0 We say that f I: →   is an h-convex function, 
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or that f belongs to the class SX(h, I), if f is non-negative and 
for all x,y ∈ I, α ∈ (0,1) we have

f(αx + (1 - α)y) ≤ h(α)f(x) + h(1 – α)f(y) 

If this inequality is reversed, then f is said to be h-con-
cave, i.e. f ∈ SV(h,I). It is clear that, if we choose h(α) = α 
and h(α) = 1, then the h-convexity reduces to convexity and 
definition of P-function, respectively.

Readers can look at [1, 13] for studies on h-convexity.
In [9], H. Hudzik and L. Maligranda considered among 

others the class of functions which are s-convex in the sec-
ond sense.

Definition 3. A function f : ,0 ) →   is said to be s–
convex in the second sense if

f(αx + βy)≤ αs f(x)+ βs f(y), 

for all x,y ∈ 0,∞), α, β ≥ 0 with α + β = 1 and for some fixed s 
∈ (0,1]. This class of s-convex functions in the second sense
is usually denoted by Ks

2.
It can be easily seen that for s = 1, s-convexity reduces to 

ordinary convexity of functions defined on [0,∞).
In [6], S. S. Dragomir and S. Fitzpatrick proved a variant 

of Hadamard’s inequality which holds for s-convex func-
tions in the second sense.

Theorem 2. Suppose that f:[0,∞) → 0,∞) is an s-convex 
function in the second sense, where s ∈ (0,1), and let a,b 
∈ 0, ∞), a < b. If f ∈ L[a,b] then the following inequalities
hold
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Both inequalities hold in the reversed direction if f is 

s-concave. The constant k
s

=
+
1

1
 is the best possible in the

second inequality in (1.3).
The main purpose of this paper is to introduce the con-

cept of (s,P)-function which is connected with the concepts 
of P-function and s-convex function and establish some 
new Hermite-Hadamard type inequality for these classes of 
functions. In recent years many authors have studied error 
estimations of Hermite-Hadamard type inequalities; for 
refinements, counterparts, generalizations, for some related 
papers see [2, 3, 4, 5, 7, 10, 11, 12].

THE DEFINITION OF (s,P)-FUNCTION

In this section, we introduce a new concept, which is 
called (s,P)-function and we give by setting some algebraic 
properties for (s,P)-function, as follows:

Definition 4. Let s ∈ (0,1]. A function f I: ⊂ →   is 
called (s,P)-function if 

f(tx + (1 – t)y) ≤ (ts + (1 – t)s)[f(x) + f(y)], (2.1)

for every x,y ∈ I and t ∈ [0,1].
We will denote by Ps(I) the class of all (s,P)-functions on 

interval I. Clearly, the definition of (1,P)-function is coin-
cide with the definition of P-function.

We note that, every (s,P)-function is an h-convex func-
tion with the function h(t) = ts + (1-t)s. Therefore, if Ps(I), 
then

i) f + g ∈ Ps(I) and for c ∈R� (c ≥ 0) cf ∈ Ps(I) (see [13],
Proposition 9).

ii) if f and g be a similarly ordered functions on I , then
fg ∈ Ps(I).(see [13], Proposition 10).

Also, if f : I → J is a convex and g ∈ Ps(J) and nondecreas-
ing, then g ° f ∈ Ps(I) (see [13], Theorem 15). 

Remark 1. We note that if f is satisfy (2.1), then f is a 
nonnegative function. Indeed, if we rewrite the inequality 
(2.1) for t = 0 then

f(y) ≤ f(x) + f(y), 

for every x,y ∈ I. Thus we have f(x) ≥ 0 for all x ∈ I.
Proposition 1. Every nonnegative s-convex function is 

also an (s,P)-function. 
Proof. Let f I: ⊂ →   be an arbitrary nonnegative 

s-convex function. Then

f(tx + (1 – t)y) ≤ ts f(x) + (1 – t)s f(y)
≤ (ts + (1 – t)s)[f(x) + f(y)], 

for every x,y ∈ I and t ∈ [0,1]. 
Proposition 2. Every P-function is also an (s,P)-function. 
Proof. Let f I: ⊂ →   be an arbitrary P-function. 

The proof is clear from the following inequalities

t ≤ ts and 1 – t ≤ (1 – t)s, 

for all t ∈ [0,1]. In this case, we can write

1 1≤ + −t ts s( ) .

Therefore, 

f tx t y f x f y

t t f x f ys s

+ −( )( ) ≤ ( ) + ( )
≤ + −( ) ( ) + ( ) 

1

1( ) ,  

for every x,y ∈ I, t ∈ [0,1] and s ∈ (0,1] Thus desired result 
is obtained. 

We can give the following corollary for every nonnega-
tive convex function is also an P-function.

Corollary 1. Every nonnegative convex function is also 
an (s,P)-function. 

Theorem 3. If f a b: ,[ ] ⊂ →   is an (s,P)-function,
then f is bounded on [a,b]. 

∞
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section, we will denote by L[a,b] the space of (Lebesgue) 
integrable functions on [a,b].

Theorem 5. Let s ∈ (0,1] and f : [a,b] → c ∈R� be a (s,P)-
function. If a < b and f ∈ L[a,b], then the following Hermite-
Hadamard type inequalities hold: 
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Proof. Since f is a (s,P)-function, we get 
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By taking integral in the last inequality with respect to t 
∈ [0,1], we deduce that

f
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.

By using the property of (s,P)-function of f, if the vari-
able is changed as x = ta + (1 – t)b, then

1
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This completes the proof of theorem. 
Remark 2. In Theorem 5, if we choose s = 1, then 

inequality (3.1) reduce to inequality (1.2). 
Theorem 6. Let a < b, s ∈ (0,1] and f:[a,b] → c ∈R� be an 

(s,P)-function. If f is symmetric with respect to (a + b)/2(i.e. 
f(x) = f(a + b – x) for all x ∈ [a,b]), then the following 
inequalities hold:

2
2

22 1s sf
a b

f x f a f b− −+



 ≤ ( ) ≤ ( ) + ( )[ ],

for all x ∈ I.
Proof. Let x ∈ [a,b] be arbitrary point. Since ts + (1 – t)s 

≤ 21–s for all t ∈ [0,1], we get

f x f
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f a f bs21 ,

Proof. Let M = max{f(a), f(b)}. For any x ∈ [a,b], there 
exists a t0 ∈ [0,1] such that x = t0a + (1 – t0)b. Since f is an 
(s,P)-function on [a,b], and ts + (1 – t)s ≤ 21–s for all t ∈ [0,1] 
and s ∈ (0,1], we have

f x t t f a f b M Ms s s( ) ≤ + −( ) ( ) + ( )[ ] ≤ ≤−( ) .1 2 42

This shows that f is bounded from above. For any x ∈ 

[a,b], there exists a t0 ∈ [0,1] such that either x
a b

t=
+

+
2 0

or x
a b

t=
+

−
2 0 .  Since it will lose nothing generality we 

can assume x
a b

t=
+

+
2 0 . Thus we can write
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and from here we have

f x f
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This completes the proof. 
Theorem 4. Let b > a and fα:[a,b] → c ∈R� be an arbitrary 

family of (s,P)-function and let f(x) = supα fα(x). If J = {u 
∈[a,b]:f(u) < ∞} is nonempty, then J is an interval and f is 
an (s,P)-function on J.

Proof. Let t ∈ [0,1] and x,y ∈ J be arbitrary. Then

f tx t y f tx t y

t t f x f ys s

+ −( )( ) = + −( )( )

≤ + −( ) ( ) + ( ) { }
1 1

1

sup

sup ( )

≤≤ + −( ) ( ) + ( )





= + −( ) ( ) + ( ) 

t t f x f y

t t f x f y

s s

s s

( )

( )

1

1

sup sup

 < .

This shows simultaneously that J is an interval, since it 
contains every point between any two of its points, and that 
f is an exponential type P-function on J. This completes the 
proof of theorem. 

HERMITE-HADAMARD’S INEQUALITY FOR 
(s,P)-FUNCTIONS

The goal of this paper is to establish some inequali-
ties of Hermite-Hadamard type for (s,P)-functions. In this 

∞

αα

α α α

α α α α



Sigma J Eng Nat Sci, Vol. 40, No. 3, pp. 585–592, September, 2022588
f x f

x a
b a

b
b x
b a

a

x a
b a

b x
b a

s s

( ) =
−
−

+
−
−







≤
−
−





 +

−
−













( ) + ( )[ ]
≤ ( ) + ( )[ ]−

f a f b

f a f bs21 ,

and

f
a b

f x a b x

f x f a b x

f x

s

s

+



 = + + −[ ]





≤ ( ) + + −( )[ ]
= (

−

−

2
1
2

1
2

2

2

1

2 )).

This completes the proof. 

SOME NEW INEQUALITIES APPLICATIONS FOR 
(s,P)-FUNCTIONS

The main purpose of this section is to establish new 
estimates that refine Hermite-Hadamard inequality for 
functions whose first derivative in absolute value is expo-
nential type P-function. S. S. Dragomir and R. P. Agarwal 
[4] used the following lemma:

Lemma 1. Let f I:  ⊆ →   be a differentiable map-
ping on I°, a,b ∈ I° with a < b. If f' ∈ L[a,b], then 

f a f b
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f x dx
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t

f ta t b dt
a

b( ) + ( ) −
−
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1 2

1
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Notation 1. We’ll use the following notation for brevity 
throughout this section 

T a b
f a f b

b a
f x dxf a

b
, .( ) =

( ) + ( ) −
−

( )∫2
1

Theorem 7. Let f I: →   be a differentiable mapping 
on I°, a,b ∈ I° with a < b and assume that f ' ∈ L[a,b] and 
s ∈ (0,1]. If |f '| is (s,P)-function on interval [a,b], then the 
following inequality holds 

T a b
b a

s s
s

A f a f b

f
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, .
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Proof. Using Lemma 1 and the inequality 

′ ′ ′+ −( )( ) ≤ + −( ) ( ) + ( ) f ta t b t t f a f bs s1 1( ) ,  

we get 
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and A is the arithmetic mean. This completes the proof of 
theorem. 

Theorem 8. Let f I: →   be a differentiable mapping 
on I°, a,b ∈ I° with a < b and assume that f ' ∈ L[a,b] and s ∈ 
(0,1]. If |f '|q, q > 1, is a (s,P)-function on interval [a,b], then 
the following inequality holds

T a b
b a

p s

A f a f b

f

p q

q q q

,

, ,
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−

+




 +







( ) ( )( )′ ′

2
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4
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1

where 1 1
1

p q
+ =  and A is the arithmetic mean.

Proof. Using Lemma 1, Hölder’s integral inequality and 
the following inequality 

′ ′ ′+ −( )( ) ≤ + −( ) ( ) + ( ) f ta t b t t f a f bq s s q q1 1( )

which is (s,P)-function of |f '|q, we get 
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This completes the proof of theorem.
Theorem 9. Let f I: ⊆ →   be a differentiable map-

ping on I°, a,b ∈ I° with a < b and assume that f' ∈ L[a,b] 
and s ∈ (0,1] If |f'|q, q ≥ 1, is a (s,P)-function on the interval 
[a,b], then the following inequality holds 
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Proof. From Lemma 1, well known power-mean inte-
gral inequality and the property of (s,P)-function of |f '|q, we 
obtain 
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This completes the proof of theorem. 
Corollary 2. Under the assumption of Theorem 9, If we 

take q = 1 in the inequality (4.3), then we get the following 
inequality:

T a b
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s s
s

A f a f b

f

s

s,

, .

( ) ≤
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+( ) +( )
+





( ) ( )( )′ ′
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This inequality coincides with the inequality (4.1). 

AN EXTENTION OF THEOREM 7

In this section we will denote by K an open and convex 
set of c ∈R�n (n ≥ 1).

Let s ∈ (0,1]. We say that a function f:K → c ∈R� is an (s,P)-
function on K if

f tx t y t t f x f ys s+ −( )( ) ≤ + −( ) ( ) + ( ) 1 1( ) ,

for all x y K, ∈  and t ∈[ ]0 1, .
Lemma 2. Let f K: → be a function. Then f is (s, 

P)-function on K if and only if for all x y K, ∈  the function 
Φ : , ,0 1[ ] →  Φ t f tx t y( ) = + −( )( )1  is (s, P)-function on
[0, 1]. 

Proof. (⇐) Let x y K, ∈  be fixed. Assume that 
Φ : , ,0 1[ ] →  Φ t f tx t y( ) = + −( )( )1  is (s, P)-function on
[0, 1].

Let t ∈[ ]0 1,  be arbitrary, but fixed. Clearly, 
t t t= −( ) +1 0 1. .  and thus,

f tx t y t t t+ −( )( ) = ( ) = + −( )( )1 1 1 0Φ Φ . .

≤ + −( ) ( ) + ( )[ ]t ts s( )1 0 1Φ Φ

= + −( ) ( ) + ( ) t t f x f ys s( ) .1

It follows that f is (s, P)-function on K
(⇐) Assume that f is (s, P)-function on K Let x y K, ∈   

be fixed and define Φ : , ,0 1[ ] →  Φ t f tx t y( ) = + −( )( )1
We must show that Φ is (s, P)-function on [0, 1].

Let u u1 2 0 1, ,∈[ ] and t ∈[ ]0 1, . Then

Φ tu t u

f tu t u x tu t u y
1 2

1 2 1 2

1

1 1 1

+ −( )( ) =

+ −( )( ) + − − −( )( )( )

= + −( ) + −( ) + −( )( )f t u x u y t u x u y( (1 1 2 21 1 1

≤ + −( ) + −( )( ) + + −( )( ) t t f u x u y f u x u ys s( )1 1 11 1 2 2

= + −( ) ( ) + ( ) t t u us s( ) .1 1 2Φ Φ

We deduce that Φ is (s, P)-function on [0, 1].
The proof of Lemma 2 is complete. 
Using the above lemma we will prove an extension of 

Theorem 7 to functions of several variables.
Proposition 3. Assume f K n: ⊆ → +   is a (s, 

P)-function on K. Then for any x y K, ∈  and any u v, ,∈( )0 1  
with u < v the following inequality holds

1
2

1
1
2

1
0 0

f sx s y ds f sx s y ds
u v

∫ ∫+ −( )( ) + + −( )( )

−
−

+ −( )( )( )∫∫
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1
0v u

f sx s y ds d
u
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s s

s
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, .

θ
θ
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Proof. We fix x y K, ∈  and u v, ,∈( )0 1  with u < v. Since 
f is (s, P)-function, by Lemma 2 it follows that the function

Φ Φ: , , ,0 1 1[ ]→ ( ) = + −( )( ) t f tx t y

is (s, P)-function on [0, 1].
Define Ψ : , ,0 1[ ] →

Ψ Φt s ds f sx s y ds
t t

( ) = ( ) = + −( )( )∫ ∫0 0
1 .

Obviously, ′( ) = ( )Ψ Φt t  for all t ∈( )0 1, .

Since f K( ) ⊆ +  it results that Φ ≥ 0  on [0, 1] and 
thus, ′ ≥Ψ 0  on (0, 1).

Applying Theorem 7 to the function ψ we obtain

Ψ Ψ
Ψ 

Ψ

u v
v u

d

v u
s s

s
A u

u

v

s

s

( ) + ( )
−

− ( )

≤
−

+( ) +( )
+





( )

∫

−

2
1

1 2
1 2

2 1
’ ,, ,Ψ’ v( )( )

and we deduce that relation (5.1) holds true. 
Remark 3. We point out that a similar result as those 

of Proposition 3 can be stated by using Theorem 8 and 
Theorem 9.

APPLICATIONS TO TRAPEZOIDAL FORMULA

Assume Ã is a division of the interval [a,b] such that

: ... .a x x x x bn n= < < < < =−0 1 1  

For a given function f a b: ,[ ] →   we consider the
trapezoidal formula

T f
f x f x

x x
i

n
i i

i i, .( ) =
( ) + ( )

−( )
=

−
+

+∑
0

1
1

12

It is well known that if f is twice differentiable on (a,b) 
and M = supx ∈ (a,b)|f ''(x)| < ∞ then

f x dx T f E f
a

b
( ) = ( ) + ( )∫ , , ,

where E f ,( )  is the approximation error of the integral

f x dx
a

b
( )∫  by the trapezoidal formula and satisfies,

E f
M

x x
i

n

i i, .( ) ≤ −( )
=

−

+∑12 0

1

1
3 (6.1)

Clearly, if the function f is not twice differentiable or 
the second derivative is not bounded on (a,b), then (6.1) 
does not hold true. In that context, the following results are 
important in order to obtain some estimates of E(f,℘)

Proposition 4.  Let s ∈ (0,1], a b, ∈  with a < b and 
assume that f a b: ,[ ] →   is a differentiable function on
(a,b). If |f '| is (s,P)-function on [a,b] then for each division 
℘ of the interval [a,b] we have,

E f
s

s s

A f a f b x x

s

s

i ii

n

,

, .

( ) ≤
+
+( ) +( )

( ) ( )( ) −( )′ ′

−

+=

−∑

1 2
2 1 22 3

1
2

0

1

 (6.2)

Proof. We apply Theorem 7 on the sub-intervals [xi, xi+1], 
i = 0,1,...,n – 1 given by the division ℘. Adding from i = 0 
to i = n – 1 we deduce

T f f x dx
s

s s

x x A f x

a

b s

s

i

n

i i i

,( ) − ( ) ≤
+
+( ) +( )

−( ) (′

∫

∑

−

=

−

+

1 2
2 1 21

0

1

1
2 )) ( )( )′ +, .f xi 1

 (6.3)

On the other hand, for each xi ∈[a,b] there exists ti 
∈[0,1] such that xi = tia + (1 – ti)b. Since |f '| is (s,P)-function 
and ts + (1 – t)s ≤ 21–s) for all t ∈ [0,1], we deduce 

′

′ ′

( ) ≤ + −( ) ( ) + ( )[ ]
≤ ( ) ( )( )−

f x t t f a f b

A f a f b

i i
s

i
s

s

( )

, ,

1

22
 (6.4)

for each i = 0,1,...,n – 1. Relations (6.3) and (6.4) imply 
that relation (6.2) holds true. Thus, Proposition 4 is com-
pletely proved. 

A similar method as that used in the proof of Proposition 
4 but based on Theorem 8 and Theorem 9 shows that the 
following results are valid.

Proposition 5. Let s ∈(0,1], a b, ∈  with a < b and 
assume that f a b: ,[ ] →   is a differentiable function on
(a,b). If |f '|q, q > 1, is an (s,P)-function on interval [a,b], 
then for each division ℘ of the interval [a,b] we have,

E f
p s

A f a f b

p s q

q q q

i

n

,

,

( ) ≤
+





 +
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1
2∑ + −( )x xi i ,

where 1 1
1

p q
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θ θ
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Proposition 6. Let s ∈ (0,1], a b, ∈  with a < b and 
assume that f a b: ,[ ] →   is a differentiable function on
(a,b). If |f '|q, q > 1 is an (s,P)-function on interval [a,b], then 
for each division ℘ of the interval [a,b] we have, 

E f
s

s s

A f a f b

s

s

q

q q q

i

n

,

,

( ) ≤
+
+( ) +( )







( ) ( )( )′ ′
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=
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1 2
2 1 22 5

1

1
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+∑ −( )
1

1
2x xi i .

SOME APPLICATIONS FOR SPECIAL MEANS

Let us recall the following special means of two non-
negative number a,b with b > a:

1. The arithmetic mean:

A A a b
a b

a b= ( ) =
+

≥, : , , .
2

0

2. The geometric mean:

G G a b ab a b= ( ) = ≥, : , , .0

3. The harmonic mean:

H H a b
ab

a b
a b= ( ) =

+
>, : , , .

2
0

4. The Logarithmic mean

L L a b
b a
b a

a b= ( ) =
−
−

>, : , , .
ln ln

0

5. The p-Logarithmic mean:

L L a b
b a
p b a

p a b

p p

p p p

= ( ) =
−

+( ) −( )







∈ −{ } >

+ +

, : ,

\ , , , .

1 1
1

1

1 0 0

6. The Identric mean:

I I a b
e

b
a

a b
b

a

b a
= ( ) =







>
−

, , , .
1

0

1

These means are often used in numerical approximation 
and in other areas. However, the following simple relation-
ships are known in the literature: H ≤ G ≤ L ≤ I ≤ A.

It is also known that Lp is monotonically increasing over
p ∈, denoting L0 = I and L–1 = L.

Proposition 7. Leta, b ∈ [0,∞) with a < b, s ∈ (0,1] and 
n ∈ (–∞,0) ∪ [1,∞)\{–1}. Then, the following inequalities 
are obtained: 

2
4

1
2s n

n
n n nA a b L a b

s
A a b− ( ) ≤ ( ) ≤

+
( ), , , .

Proof. The assertion follows from the inequalities (3.1) 
for the function f(x) = xn, x ∈ [0,∞).

 Proposition 8.  Let a, b ∈(0,∞) with a < b and s ∈(0,1]. 
Then, the following inequalities are obtained:

2
4

1
2 1 1 1s A a b L a b

s
H a b− − − −( ) ≤ ( ) ≤

+
( ), , , .

Proof. The assertion follows from the inequalities (3.1) 
for the function f(x) = x–1, x ∈ (0,∞).
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