
Sigma J Eng Nat Sci, Vol. 40, No. 3, pp. 475–490, September, 2022

ABSTRACT

DNA sequence classification is an important challenge in genomic studies due to 
non-linear and chaotic behavior of DNA oxidation signals of Adenine, Cytosine, 
Guanine, and Thymine bases. To achieve genotype identification of samples derived 
from biological sources accurately, Machine Learning (ML) methods have been 
commonly preferred instead of expert-based methods due to the ability in handling 
such these complex-structured biological sequences. Reducing the dimension 
without sacrificing important information that should not be omitted during the 
classification process is an important task in ML applications. Th is st udy pr esents 
a new feature extraction method to detect two sub-types of hepatitis nucleic acid 
trace files. The proposed method combines both discrete wavelet transform (DWT) 
and entropy. The DWT decomposes the bases signals up to three levels and thus all 
necessary information that is hidden in both spatial and frequency domains is aimed 
to captured. To achieve a good summarization of DNA trace files having different 
length, multi-scale permutation entropy (MPE) measures are then computed from 
approximate and detail coefficients o f  signals s tored in the s ub-bands. Different 
feature sets are extracted with the proposed method using real data covering 200 
hepatitis DNA trace files and then fed to a simple memory-based learning classifier, 
k-NN. The classification performance of the proposed feature extraction method is
compared against a method based on MPE features without wavelet decomposition.
The results indicate, in classifying hepatitis DNA trace files, the average accuracy
reaches up to nearly 99% with feature sets based on proposed method even at 30%
training samples proportion.
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INTRODUCTION

In the last decades, deoxyribonucleic acid (DNA)-
sequencing has become a growing research interest in 
the field of biological sciences. In 1977, two powerful 
approaches were introduced by Maxam and Gilbert [1] 
and Sanger, Nicklen and Coulson [2], which are based on 
chemical degradation and enzymatic synthesis, respec-
tively [3]. Recently, new sequencing technologies have 
been developed for determining the complete or interested 
region of DNA sequence, and these technologies aim to 
serve users at affordable costs as well as produce results 
in a short time period. Capillary electrophoresis (CE) is a 
commonly-applied approach in studies of high-throughput 
DNA sequencing and separation [4]. Although the next 
generation sequencing (NGS) produce millions to bil-
lions more data than Sanger sequencing by CE within the 
same amount of time, the results of NGS are verified with 
the results obtained by CE. Besides, many institutions still 
prefer to use their legacy sequencer, CE, because this plat-
form is fast, cost effective and preserve a familiar workflow. 
However, especially the abilities of being sensitive in detec-
tion and being cost-effective may turn into challenges in the 
case of huge number of subjects and hence, CE is preferred 
generally in small sized projects. The key principle of CE 
is the usage of dideoxynucleotide triphosphates (ddNTPs) 
as DNA chain terminators which are labeled with differ-
ent fluorescent dyes [5]. Base calling signals are recorded 
as fluorescence peaks and each peak show the nucleic acid 
sequence, Adenine (A), Cytosine (C), Guanine (G), and 
Thymine (T).

The accurate identification of virus subtypes is one 
of the main challenges for DNA sequencing centers. 
Since DNA data is indeed a 4-channel time series [6], it 
exhibits the complex-structured characteristics (e.g. being 
non-stationary and non-linear, being noisy data having 
outliers). For these reasons, it is often inadequate to visually 
distinguish the signals by a specialist and, moreover, it is 
prone to errors. Instead of such labor intensive methods, 
the original signal can be transformed to a different 
space where a set of features, called vector of features, is 
generated without losing the original information that 
are used in discrimination of subtypes. Changing the 
original signal into a useful vector of features is known as 
feature extraction and high classification performance is 
achieved with this pre-classification stage of virus subtypes 
recognition.

Some traditional smoothing and filtering methods 
used in denoising the sequential data for biological signal 
processing are based on Savitzky-Golay (SG), Fourier 
transform (FT) and Fast Fourier transform (FFT). These 
methods, which give efficient results with the stationary 
structure of the signal in the data, have a wide applicability 
especially in analytical chemistry. However, the fact that 
they are easily affected by the noise and thus the difficulty in 

processing non-stationary signals (having different shapes 
and widths) brought the need to use a transformation 
method that takes into account local information of the 
original signal in spatial domain as well as frequency. 
Wavelet transform (WT) which biological signals are 
represented in both spatial and frequency domains [7] 
has been effectively used in the feature extraction stage of 
classification [8–20]. More specifically, WT has been widely 
applied for denoising DNA CE signals that have overlapped 
peaks [21–26].

Although the obtained wavelet coefficients (WC) pro-
vide a well representation of the energy distribution in the 
spatial-frequency domain of the signal, a curse of dimen-
sionality problem is caused when a high-dimensional fea-
ture space is used in the classification stage [27–29]. To 
carry out suitable reduction in dimension that produces 
classification with a high performance as well cost effec-
tive, some measures such as statistical-based [10,20,30,31], 
entropy-based [32–35] and both combined [36] are calcu-
lated over the set of WC and then used as a vector of fea-
tures. Entropy-based features have a wide application in 
the studies of biological signal processing [37–43], in order 
to quantify the degree of disorder of an interested signal 
and can be effectively used to detect virus subtypes of DNA 
chromatograms (DNAC) [44].

In this study, a feature extraction method is proposed 
in the purpose of classifying the DNAC. The classification 
performance obtained from the proposed method is evalu-
ated using Hepatitis B Virus (HBV) and Hepatitis C Virus 
(HCV) trace files recorded from 200 hepatitis patients. 
The proposed method has two processing stages and these 
stages are executed sequentially. In the first stage, nucleic 
acid sequences, A, C, G and T, are decomposed into sub-
bands using discrete WT (DWT). Thus, it is aimed to 
capture all necessary local information of DNAC which 
is hidden in the both spatial and frequency domains due 
to the artifacts. In the second stage, complexity of each of 
these sub-bands is quantified by multi-scale PE (MPE). 
Thus, it is intended to achieve a good summarization of 
trace files having different length and complex-structured 
characteristics. By executing two processing stages given 
above, different feature sets are generated. Kruskal-Wallis 
H tests are utilized to show the discrimination abilities of 
each generated sets. Thus, an additional computational 
load from redundant information is prevented. After, each 
feature set is used as an input to a simple classification 
algorithm, k-nearest neighbors (k-NN). The classification 
performance of the proposed feature extraction method is 
compared against a method based on MPE features without 
wavelet decomposition.

The remaining sections of this study are organized as 
follows. Following section includes materials and methods 
of the study. After, results are presented and a discussion 
and some concluding remarks are provided in last two 
sections.
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(high-scale) and high-frequency (low-scale) coefficients. 
The coefficients obtained from the LP filtering recorded 
as approximation coefficients, while HP filtering produces 
details coefficients. The useful information is included in 
the approximate part and the noise is included in the detail 
part [31]. The coefficients obtained from the first-level hav-
ing the half frequency bandwidth of the original signal are 
down-sampled by a factor 2 [48]. The same procedure is 
repeated using the approximate coefficients of the first-level 
of decomposition in order to get two mutually orthogonal 
sets of wavelets for the second level of decomposition. At 
each step of the decomposition process, as the filtering and 
sub-sampling are applied, the frequency resolution is dou-
bled, whereas the spatial resolution is halved.

Permutation and multi-scale permutation entropy
PE [49] quantify the complexity of time series having 

non-stationary, noisy and non-linear characteristics. For a 
given discrete time series {x(i)} with length N, an embed-
ding procedure is applied to the time series to generate the 
following m-dimensional vector:

X i x i x i x i m( ) { ( ), ( ), , ( ( ) )}= + + −τ τ… 1  (3)

where m and τ show the embedding dimension that is 
greater than or equal to 2 and embedding delay, respec-
tively. The vector X(i) is then arranged in an ascending 
order π = r0, r1, … , rm–1, where x(i + r0τ) ≤ x(i + r1τ) ≤ … ≤ 
x(i + rm–1τ). For a given m, there are m! possible order pat-
terns π, referred as motifs. The relative frequency for each 
motif is expressed by p(π) and the PE for a given embed-
ding dimension is defined as:

PE = −∑ p p( )log( ( ))
{ }

π π
π

 (4)

In order to obtain scale-independent measure, PE is 
normalized by PE ⁄ log(m!). The normalization ensures to 
get entropy values which are in the range between 0 and 1. 
The larger PE value is, the more complex the time series is.

Since PE is a single-scaled measure, it is not suitable 
for systems having structures on multiple spatial and tem-
poral scales. Similar to the multi-scale entropy method 
introduced by [50], MPE [51] incorporates two different 
procedures. Firstly, for a given discrete time series {x(i)} 
with length N, multiple coarse-grained time series {y(s)} are 
constructed. Each element of the coarse-grained series is 
obtained from the following formula

y
s

x ij
s

i j s

js
( )

( )

( )=
= − +
∑1

1 1
(5)

where j = 1,2,…, N ⁄ s and s is the scale parameter. Secondly, 
the complexity of each coarse-grained series are calculated 
with PE and plotted as a function of s.

MATERIAL AND METHODS

Dataset
DNA trace files are generally obtained with base-calling 

software. “Phred” which is the frequently-used by academic 
and commercial laboratories embedded in automated DNA 
analyzer, ABI-3730 (Applied Biosystems, Foster City, USA) 
is used in this study for the purpose of obtaining hepati-
tis DNA trace files. In total, 200 hepatitis DNA trace files 
are labelled as HBV (96 traces) and HCV (104 traces). 
The information of any trace file includes four nucleotides 
(bases), A, C, G and T, that has Gaussian shaped peaks. A 
single trace file has approximately 60,000 (4×15,000) data 
points and each trace has a different length from other 
traces. In order to obtain numerical representation of the 
bases of a trace, base signals are converted from SCF for-
mat to an array using “scfread” function in MATLAB 2019b 
software [45].

FEATURE EXTRACTION

To perform classification of HBV and HCV, extracting 
discriminative features from four-bases of hepatitis DNA 
trace files is an important stage. Following sub-sections 
provide a brief description of proposed feature extraction 
process which is based on discrete WT (DWT) and entropy 
measures.

Discrete wavelet transform
The WT decomposes a signal into a set of functions 

called wavelets. Wavelets obtained from a mother wave-
let by dilating and shifting are small oscillatory waves and 
characterize the local information of signals in spatial-
frequency domain. Continuous WT (CWT) and DWT are 
two types of wavelet analysis. Since the data generated by 
chromatography devices is discrete in nature, using DWT 
is recommended [46]. Wavelet is defined with the following 
equation:

Ψ Ψ( , , )a b t
a

t b
a

=
−





1
(1)

where Ψ is the mother wavelet and a and b are the dilation 
(scale) and shift values, respectively. Using Eq. (1), wavelet 
coefficients are obtained. To achieve discrete transforma-
tion, the following discrete Ψ is used:

Ψ Ψ( , , ) ( )m n t t n
m

m= −
− −2 22 (2)

where m and n demonstrate the scaling and location values. 
Wavelet coefficients are obtained an algorithm proposed 
by Mallat [47]. At first step, two digital filters, low-pass 
(LP) and high-pass (HP), are applied to the signals. Thus, 
DWT decomposes the original signal into two mutually 
orthogonal sets of wavelets, representing the low-frequency 
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CLASSIFICATION

K-NN is a simple memory-based classification algo-
rithm which can be effectively used in both classification 
and estimation purposes. Since it serves as a robust clas-
sification technique for noisy time-series, the classifica-
tion process of this study is carried out with k-NN. In this 
non-parametric method, subjects are classified based on 
the class of their known nearest neighbor. To determine 
the class, training set of the data and pre-defined neighbor-
hood parameter (k) are required. The algorithm searches 
the space of training set for the k-nearest subjects based on 
a distance function or a similarity measure [34]. The per-
formance of the k-NN clasifier depends on the type of the 
distance function and the value of k. Since Euclidean dis-
tance is the popularly used [46], the present study uses this 
metric. Also, the value of k is usually taken as small integer 
values with a positive sign and the value of k is taken from 
1 to 5 in this study.

CLASSIFICATION PERFORMANCE EVALUATION

Different classification performance measures such as 
sensitivity (Se), specificity (Sp), accuracy (Acc) and Kappa 
statistic (κ) are used in evaluation. From the confusion 
matrix which is a useful tool for evaluating the classifier’s 
performance, the number of correctly classified subjects 
(true positive-TP and true negative-TN) and their propor-
tions (TP rate and TN rate) can be derived. TP rate and 
TN rate are generally known as Se and Sp, respectively. 
Acc gives an information about the proportion of over-
all correctly classified subjects (both TP and TN). κ is an 
agreement measure lies in the range between [–1,+1] for 
assessing the classification power of a classifier.

PROPOSED FEATURE EXTRACTION METHOD

The proposed method has mainly two processing stages 
that are executed sequentially, namely decomposition stage 
and feature extraction stage.

Decomposition Stage: For a trace file, firstly, signals in a 
single base (i.e., A, C, G or T) are pre-processed with DWT 
to decompose them into four sub-bands using third-level 
decomposition. For the first-level of decomposition, signals 
are passed through LP and HP filters and the approximate 
and detail coefficients are produced. Later, down-sampling 
is applied by a factor 2 according to Nyquist rule, and the 
approximate coefficients are fed into another LP and HP 
filters again. Thus, second-level coefficients are obtained. 
After down-sampling by a factor 2, the approximate coef-
ficients are passed through the filters again and the third-
level of coefficients are obtained.

Feature Extraction Stage: The coefficients of the sub-
bands signals obtained from DWT are used to calculate 
entropy-based features. In the decomposition stage, it is 

created 4 sub-bands for a single base of a trace file. For 
each of these 4 sub-bands, entropy values are calculated in 
assessing the dynamics and complexity of signals located 
in these sub-bands. When the decomposition and feature 
extraction stages are repeated for all bases (A, C, G and T) 
and later for all trace files, a feature set which is then fed to 
any classifier can be created. Using various entropy estima-
tors including embedding and spectral entropies, different 
feature sets can be generated.

Figure 1 shows an illustration of original (the first col-
umn) and decomposed signals (the second column) of 
a selected sample trace file from 200 hepatitis trace files. 
Signals coloured in green, blue, black and red demonstrate 
the signals of bases A, C, G and T, respectively. In the first 
panel of Figure 1, while the first column shows the origi-
nal signals of base A, the second column gives the decom-
posed signals of base A into three levels using Daubechies 1 
wavelet (dB1) [52]. Similarly, the second, the third and the 
fourth panels of Figure 1 illustrate the original and decom-
posed signals of base C, G and T, respectively, which belong 
to the same selected trace. As shown in the first columns 
of Figure 1, original signals in a trace span a wide range 
of intensities in spatial-frequency domain and contain 
overlapped peaks with different shapes (such as Gaussian). 
Smoothing or filtering is needed to such this data having 
non-stationary characteristics which may often represent 
the most important part of a signal sequence. To achieve 
successful separation between HBV and HCV trace files, 
the important information localized in both spatial and 
frequency domains can be derived using DWT (the decom-
position stage). On the other hand, although the spatial-fre-
quency characteristics of the signals are captured by DWT, 
the length of signals stored in four sub-bands of any trace 
file differs from the lengths of the signals in the sub-bands 
of other traces. The dimensionality problem occurs when a 
vector of features is desired to be formed used as an input 
for relevant classifier. To overcome this problem, each ele-
ment of the feature vector should be defined in the same 
dimension. Entropy measures can be effectively applied 
to summarize the complex-structured signals with differ-
ent lengths. The proposed method offers to use entropy 
measures for each-sub-bands of each bases and then to 
concatenate the calculated entropies in order to form a 
vector of features (feature extraction stage). Thus, a good 
summarization of trace files can be performed efficiently 
by executing two processing stages given above and a good 
discrimination between can be attained between the HBV 
and HCV DNAC.

EXPERIMENTAL SETUP

By executing two processing stages given above, differ-
ent feature sets are generated. Each feature set is used as an 
input to k-NN classifier. The obtained classification perfor-
mances using different feature sets are compared between 
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the proposed feature extraction method (given in Step 2) 
and a method based on entropy features without wavelet 
decomposition (given in Step 1). The steps of experimental 
setup are given below:

 Step 1: In this step, four different feature sets based on 
MPE are considered. To create the first feature set, MPE val-
ues are calculated for a single base of a trace file. In order to 
compute entropy values, MPE parameters, m and τ, are set at 
3 and 1, respectively, as suggested in [49], [53]. Besides, the 

scale parameter s is taken as 1 (leading to single scale MPE, 
namely PE). The same procedure is applied to all bases of a 
trace and then to all trace files. Hence, the first feature set 
which is then fed to k-NN classifier is created. This set con-
sists of 4 vector of features (PE(A), PE(C), PE(G), PE(T)) and it is 
demonstrated as PE(A,C,G,T). This step is repeated to form sec-
ond (namely MPE2(A,C,G,T) ) and third (namely MPE3(A,C,G,T)) 
feature sets which are based on MPE with scale parameter 
s = 2 and s = 3, respectively. As in PE(A,C,G,T), the second and 

Figure 1. Original and decomposed signals of a trace file.

Table 1. Description of feature sets extracted in Step 1

Base Feature Set

PE(A,C,G,T) MPE2(A,C,G,T) MPE3(A,C,G,T)

Feature Name Description Feature Name Description Feature Name Description

A PE(A) PE of A MPE2(A) MPE with s=2 of A MPE3(A) MPE with s=3 of A 
C PE(C) PE of C MPE2(C) MPE with s=2 of C MPE3(C) MPE with s=3 of C
G PE(G) PE of G MPE2(G) MPE with s=2 of G MPE3(G) MPE with s=3 of G
T PE(T) PE of T MPE2(T) MPE with s=2 of T MPE3(T) MPE with s=3 of T

all_MPE(A,C,G,T)

PE(A) , PE(C) , PE(G), PE(T), MPE2(A), MPE2(C), MPE2(G), MPE2(T), MPE3(A), MPE3(C), MPE3(G), MPE3(T)
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the third feature sets consist of 4 vectors of features. The last 
feature set is formed by combining all features vectors from 
the first, the second and the third feature sets. Thus, the 
fourth feature set consists of 12 vector of features and it is 
demonstrated by all_MPE(A,C,G,T). Table 1 shows the descrip-
tion of extracted feature sets in this step.

Step 2: As in Step 1, four sets of features are used in 
this step. After obtaining the coefficients produced for any 
of 4 sub-bands (decomposition stage) of a base of a trace 
file, entropy-based features are calculated. To form the first 
feature set, MPE parameters,m, τ and s are set at 3, 1 and 
1, respectively (leading to single scale MPE, namely PE) 
and PE values are computed for all sub-bands of a base of a 
trace. The same procedure is applied to all bases of a trace, 
and then to all trace files. Hence the first feature set is cre-
ated. This set consists of 16 vector of features, of which 4 
are PE values of base A (SB1_PE(A), SB2_PE(A), SB3_PE(A), 
SB4_PE(A)), 4 are PE values of base C (SB1-PE(C), SB2_PE(C), 
SB3_PE(C), SB4_PE(C)), 4 are PE values of base G (SB1_PE(G), 
SB2_PE(G), SB3_PE(G), SB4_PE(G)) and 4 are PE values of base 
T (SB1_PE(T), SB2_PE(T), SB3_PE(T), SB4_PE(T)). In addition, 
Kruskal-Wallis H test is utilized to show the discrimina-
tion abilities of each sub-band of a base. Thus, an addi-
tional computational load from a redundant information is 
prevented. This step is repeated to form second and third 
feature sets with the same m and τ parameters, but with dif-
ferent scale parameters such as s = 2 and s = 3, respectively. 
The last feature set is formed by combining all features vec-
tors from the first, the second and the third feature sets. 
Thus, the fourth feature set consists of 48 vector of features 
and it is demonstrated by all_wMPE(A,C,G,T). Appendix A 
shows the description of extracted the first, the second and 
the third feature sets which are demonstrated by wPE(A,C,G,T), 
wMPE2(A,C,G,T) and wMPE3(A,C,G,T), respectively. Besides, the 
Kruskal-Wallis H test results applied on all extracted fea-
ture sets and the resultant p-values are shown in Appendix 
A. As it is shown, the discrimination ability among all vec-
tor of features is statistically significant (p-values < 0.001).

Block diagram of the experimental setup is given in 
Figure 2. Two different feature extraction methods such as 

entropy features with and without wavelet decomposition 
are utilized. The results of classifications using all extracted 
feature sets based on these two methods are obtained with 
different training sample proportions (from 5% to 30%, 
increased by %5) and with different k values (from 1 to 5). 
To avoid random selection effect, each classification pro-
cess for a feature set is repeated 100 times and the aver-
age values of performance measures (μACC, μκ, μSe and μSp) 
are considered to make performance evaluation. Also, 
it is aimed to show that each classification process per-
formed with different feature set does not suffer from an 
over-fitting problem. For this aim, it is expected to obtain 
non-complementary values of μSe and μSp [54] in each classi-
fication process. Pairwise comparisons of the performance 
measures between {PE(A,C,G,T)—wPE(A,C,G,T)}, {MPE2(A,C,G,T)—
wMPE2(A,C,G,T)}, {MPE3(A,C,G,T)—wMPE3(A,C,G,T)} and {all_
MPE(A,C,G,T) —all_wMPE(A,C,G,T)} are made with different 
sample proportions and k values.

RESULTS

In this study, different feature sets are extracted for 200 
hepatitis DNA trace files according to the proposed fea-
ture extraction method which is based on entropy features 
with wavelet decomposition. In assessing the summariza-
tion ability of the proposed method, different feature sets 
with the same entropy parameters are also extracted using 
entropy features without wavelet decomposition. All fea-
ture sets are then fed to k-NN classifier with different k 
and training sample proportions. Pairwise comparisons of 
the classification performance measures between extracted 
feature sets based on entropy features with and without 
wavelet decomposition are given in following tables (from 
Table 2 to Table 7 for training sample proportions from 5% 
to 30%).

Table 2 shows all pairwise comparison results of k-NN 
classifications based on two feature extraction methods at 
5% training sample proportion. Compared to the method 
based on entropy features without wavelet decomposition, 
higher μACC and μκ are obtained in all pairwise comparisons 

Figure 2. Block diagram of the experimental setup.
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Table 2. Pairwise comparisons of feature sets at 5% training sample proportion

k Feature Set μACC μκ μSe μSp Feature Set μACC μκ μSe μSp

1 PE(A,C,G,T) 0.907 0.816 0.898 0.918 wPE(A,C,G,T) 0.920 0.842 0.903 0.940
2 0.848 0.700 0.793 0.910 0.875 0.753 0.841 0.914
3 0.835 0.675 0.777 0.901 0.857 0.717 0.817 0.902
4 0.782 0.569 0.717 0.856 0.819 0.641 0.785 0.858
5 0.724 0.457 0.646 0.815 0.747 0.501 0.719 0.785
1 MPE2(A,C,G,T) 0.903 0.808 0.868 0.942 wMPE2(A,C,G,T) 0.906 0.814 0.875 0.942
2 0.843 0.691 0.788 0.906 0.883 0.768 0.855 0.914
3 0.842 0.687 0.790 0.899 0.866 0.735 0.860 0.876
4 0.774 0.552 0.729 0.826 0.822 0.647 0.804 0.845
5 0.726 0.459 0.659 0.805 0.805 0.613 0.783 0.833
1 MPE3(A,C,G,T) 0.892 0.787 0.857 0.931 wMPE3(A,C,G,T) 0.917 0.836 0.907 0.929
2 0.852 0.708 0.794 0.917 0.888 0.777 0.877 0.900
3 0.834 0.674 0.773 0.903 0.886 0.774 0.871 0.904
4 0.795 0.594 0.749 0.848 0.864 0.732 0.853 0.879
5 0.736 0.481 0.642 0.844 0.840 0.682 0.847 0.836
1 all_MPE(A,C,G,T) 0.896 0.794 0.872 0.923 all_wMPE(A,C,G,T) 0.910 0.823 0.890 0.934
2 0.855 0.713 0.818 0.897 0.880 0.762 0.872 0.891
3 0.830 0.666 0.751 0.918 0.875 0.753 0.868 0.885
4 0.797 0.603 0.713 0.892 0.808 0.620 0.768 0.855
5 0.741 0.487 0.698 0.793 0.765 0.534 0.766 0.771

Table 3. Pairwise comparisons of feature sets at 10% training sample proportion

k Feature Set μACC μκ μSe μSp Feature Set μACC μκ μSe μSp

1 PE(A,C,G,T) 0.936 0.872 0.933 0.939 wPE(A,C,G,T) 0.954 0.909 0.948 0.961
2 0.915 0.832 0.901 0.932 0.934 0.869 0.932 0.937
3 0.907 0.817 0.891 0.927 0.931 0.862 0.940 0.921
4 0.899 0.799 0.886 0.913 0.917 0.835 0.920 0.914
5 0.864 0.732 0.826 0.908 0.906 0.815 0.902 0.912
1 MPE2(A,C,G,T) 0.939 0.879 0.929 0.951 wMPE2(A,C,G,T) 0.948 0.896 0.934 0.964
2 0.921 0.843 0.910 0.934 0.935 0.870 0.928 0.942
3 0.906 0.815 0.892 0.924 0.929 0.858 0.928 0.930
4 0.896 0.794 0.883 0.913 0.923 0.848 0.934 0.913
5 0.892 0.787 0.881 0.907 0.916 0.833 0.924 0.909
1 MPE3(A,C,G,T) 0.932 0.865 0.923 0.943 wMPE3(A,C,G,T) 0.932 0.865 0.938 0.927
2 0.906 0.814 0.881 0.935 0.922 0.845 0.916 0.930
3 0.908 0.819 0.898 0.923 0.931 0.862 0.943 0.918
4 0.887 0.776 0.861 0.917 0.929 0.858 0.943 0.914
5 0.885 0.774 0.864 0.910 0.926 0.852 0.942 0.909
1 all_MPE(A,C,G,T) 0.937 0.875 0.920 0.956 all_wMPE(A,C,G,T) 0.958 0.916 0.953 0.963
2 0.922 0.844 0.909 0.937 0.935 0.871 0.929 0.943
3 0.921 0.843 0.923 0.920 0.936 0.872 0.947 0.924
4 0.891 0.784 0.862 0.923 0.922 0.845 0.930 0.915
5 0.876 0.757 0.846 0.913 0.919 0.840 0.930 0.909
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with proposed feature extraction method. μACC difference 
of each pairwise comparison range between 0.3% and 
10.4%. More specificly, the highest μACC difference (10.4%) 
is observed between the classifications using feature sets of 
MPE3(A,C,G,T) (73.6%) and wMPE3(A,C,G,T) (84.0%), at k = 5. 
The best classification performance is μACC = 92.0% and it 
is obtained with wPE(A,C,G,T)  feature set at k = 1. Also, it is 
observed that as k increases, the classification performance 
of k-NN classifier using both entropy features with and 
without wavelet decomposition decreases (based on μACC 
and μκ). In addition, according to the μSe and μSp, over-fitting 
does not occured in any of classification process performed 
with different feature sets.

The pairwise comparison results of k-NNclassification 
performances using feature sets based on entropy features 
with and without wavelet decomposition are given in Table 
3 (at 10% training sample proportion). As it is seen, entropy 
features with wavelet decomposition generate higher μACC 
and μκ in nearly all comparisons (except comparison 
between MPE3(A,C,G,T) and wMPE3(A,C,G,T), at k=1. Here, both 
feature sets generate the equal μACC and μκ) as compared 
with entropy features without wavelet decomposition. 
When the μACC of each pairwise comparison is considered, 
the highest μACC difference is obtained as 4.3% between 
the feature sets of all_MPE(A,C,G,T) and all_wMPE(A,C,G,T), at 

k=5. Also, the classification with wPE(A,C,G,T) produce μACC as 
95.4% (at k=1), which is very close to the highest μACC. Also, 
as k increases, the classification performance of k-NN clas-
sifier using both entropy features with and without wavelet 
decomposition decreases in general. Besides, computed μSe 
and μSp suggest that over-fitting problem does not happen 
in any classification process.

Table 4 shows the pairwise comparisons of the clas-
sification results at 15% training sample proportion. 
According to the μACC and μκ, entropy features with wavelet 
decomposition produce better classification performances 
for all pairwise comparisons than entropy features with-
out wavelet decomposition. The μACC difference of each 
pairwise comparison range from 0.1% to 1.8%. The high-
est μACC is obtained in the classification using feature set 
of all_wMPE(A,C,G,T) (96.7%). Also, the classifications with 
wPE(A,C,G,T) (96.4%, at k=1) and wMPE2(A,C,G,T) (96.2%, at 
k=1) produce similar performances. In addition, over-
fitting problem does not occurred in any of classification 
process according to the μSe and μSp.

The pairwise comparsions of the feature sets’ classifica-
tions results at 20% training sample proportion are provided 
in Table 5. μACC and μκ of all pairwise comparisons favor the 
classifications that used the feature sets based on entropy 
features with wavelet decomposition. The highest μACC 

Table 4. Pairwise comparisons of feature sets at 15% training sample proportion

k Feature Set μACC μκ μSe μSp Feature Set μACC μκ μSe μSp

1

PE(A,C,G,T)

0.957 0.914 0.963 0.950

wPE(A,C,G,T)

0.964 0.928 0.953 0.976
2 0.937 0.875 0.934 0.942 0.945 0.891 0.944 0.948
3 0.944 0.889 0.961 0.928 0.945 0.890 0.950 0.940
4 0.924 0.849 0.926 0.923 0.937 0.875 0.949 0.925
5 0.923 0.847 0.932 0.915 0.935 0.872 0.954 0.916
1

MPE2(A,C,G,T)

0.958 0.916 0.958 0.958

wMPE2(A,C,G,T)

0.962 0.925 0.957 0.969
2 0.944 0.888 0.940 0.948 0.950 0.900 0.951 0.949
3 0.943 0.885 0.954 0.930 0.949 0.898 0.956 0.942
4 0.934 0.868 0.936 0.932 0.941 0.882 0.948 0.935
5 0.923 0.846 0.932 0.914 0.940 0.881 0.961 0.920
1

MPE3(A,C,G,T)

0.939 0.879 0.930 0.951

wMPE3(A,C,G,T)

0.940 0.879 0.945 0.934
2 0.931 0.863 0.922 0.941 0.932 0.865 0.938 0.927
3 0.931 0.863 0.937 0.927 0.945 0.890 0.970 0.919
4 0.924 0.848 0.924 0.924 0.942 0.885 0.968 0.914
5 0.925 0.851 0.935 0.916 0.939 0.878 0.966 0.910
1

all_MPE(A,C,G,T)

0.962 0.925 0.964 0.961

all_wMPE(A,C,G,T)

0.967 0.935 0.964 0.971
2 0.948 0.896 0.945 0.952 0.953 0.907 0.945 0.962
3 0.946 0.892 0.958 0.933 0.952 0.905 0.964 0.941
4 0.934 0.870 0.946 0.923 0.945 0.890 0.963 0.926
5 0.929 0.860 0.942 0.917 0.940 0.881 0.964 0.915
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Table 5. Pairwise comparisons of feature sets at 20% training sample proportion

k Feature Set μACC μκ μSe μSp Feature Set μACC μκ μSe μSp

1 PE(A,C,G,T) 0.964 0.928 0.967 0.960 wPE(A,C,G,T) 0.971 0.942 0.960 0.983
2 0.951 0.903 0.953 0.951 0.960 0.920 0.956 0.965
3 0.951 0.902 0.969 0.933 0.958 0.917 0.969 0.947
4 0.950 0.901 0.969 0.931 0.951 0.902 0.962 0.940
5 0.945 0.891 0.971 0.919 0.950 0.900 0.973 0.925
1 MPE2(A,C,G,T) 0.964 0.927 0.964 0.963 wMPE2(A,C,G,T) 0.967 0.934 0.959 0.976
2 0.957 0.913 0.958 0.955 0.958 0.915 0.958 0.958
3 0.955 0.910 0.968 0.942 0.959 0.919 0.976 0.942
4 0.945 0.891 0.963 0.927 0.954 0.909 0.972 0.936
5 0.940 0.881 0.956 0.924 0.953 0.907 0.980 0.925
1 MPE3(A,C,G,T) 0.941 0.882 0.922 0.961 wMPE3(A,C,G,T) 0.942 0.883 0.947 0.936
2 0.934 0.869 0.920 0.950 0.936 0.871 0.940 0.931
3 0.948 0.897 0.961 0.935 0.948 0.897 0.974 0.920
4 0.940 0.881 0.945 0.936 0.945 0.890 0.977 0.912
5 0.941 0.883 0.961 0.920 0.950 0.899 0.984 0.913
1 all_MPE(A,C,G,T) 0.970 0.941 0.974 0.967 all_wMPE(A,C,G,T) 0.973 0.947 0.966 0.982
2 0.959 0.918 0.955 0.964 0.965 0.930 0.966 0.965
3 0.957 0.915 0.957 0.958 0.969 0.938 0.981 0.956
4 0.944 0.889 0.953 0.935 0.953 0.905 0.969 0.936
5 0.942 0.884 0.960 0.923 0.954 0.909 0.986 0.921

Table 6. Pairwise comparisons of feature sets at 25% training sample proportion

k Feature Set μACC μκ μSe μSp Feature Set μACC μκ μSe μSp

1 PE(A,C,G,T) 0.967 0.935 0.974 0.960 wPE(A,C,G,T) 0.980 0.960 0.972 0.988
2 0.955 0.911 0.963 0.947 0.967 0.934 0.958 0.977
3 0.961 0.923 0.982 0.940 0.965 0.931 0.971 0.960
4 0.953 0.907 0.972 0.935 0.957 0.915 0.973 0.942
5 0.952 0.904 0.977 0.926 0.956 0.912 0.969 0.942
1 MPE2(A,C,G,T) 0.972 0.944 0.973 0.971 wMPE2(A,C,G,T) 0.972 0.944 0.964 0.981
2 0.961 0.922 0.962 0.961 0.964 0.929 0.961 0.969
3 0.960 0.921 0.976 0.945 0.965 0.929 0.973 0.956
4 0.950 0.901 0.967 0.934 0.959 0.918 0.970 0.947
5 0.948 0.897 0.972 0.923 0.959 0.917 0.983 0.932
1 MPE3(A,C,G,T) 0.945 0.891 0.933 0.959 wMPE3(A,C,G,T) 0.945 0.891 0.949 0.943
2 0.937 0.875 0.919 0.958 0.937 0.875 0.935 0.939
3 0.949 0.899 0.957 0.942 0.950 0.899 0.973 0.924
4 0.946 0.893 0.953 0.940 0.947 0.893 0.975 0.917
5 0.946 0.892 0.964 0.927 0.951 0.902 0.983 0.917
1 all_MPE(A,C,G,T) 0.972 0.944 0.971 0.974 all_wMPE(A,C,G,T) 0.981 0.962 0.977 0.985
2 0.964 0.929 0.962 0.968 0.971 0.942 0.971 0.972
3 0.963 0.926 0.969 0.957 0.971 0.942 0.974 0.968
4 0.956 0.913 0.968 0.944 0.962 0.925 0.967 0.957
5 0.953 0.907 0.978 0.927 0.958 0.915 0.983 0.930
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difference is found as 1.3% for the pairwise comparisons 
between the feature sets of MPE2(A,C,G,T) and wMPE2(A,C,G,T), 
at k=5. The best classification performance in terms of 
μACC is produced with all_wMPE(A,C,G,T) feature set, at k=1 
(97.3%). Also, classification with feature set wPE(A,C,G,T) pro-
duce the similar performance at k = 1 (97.1%). The over-
fitting does not observed according to the μSe and μSp.

All pairwise comparison results of classifications at 
25% training sample proportion are given in Table 6. 
When compared with the entropy features without wavelet 
decomposition, higher μACC and μκ are obtained with the 
proposed method in most of pairwise comparisons. μACC 
and μκ take the same value between classifications using 
feature sets of MPE2(A,C,G,T) and wMPE2(A,C,G,T) at k=1 and 
MPE3(A,C,G,T) and wMPE3(A,C,G,T) at k=2. The highest μACC 
(98.1%) is observed in the classification using the feature set 
all_wMPE(A,C,G,T) at k=1. Also, with feature set wPE(A,C,G,T), 
the similar classification accuracy is achieved (98.0%) at 
the same k. When μACC differences of pairwise comparisons 
are considered, the highest difference (1.3%) is observed 
between the feature sets PE(A,C,G,T) and wPE(A,C,G,T). In addi-
tion, according to the μSe and μSp, over-fitting problem does 
not appear in any classification process performed with 
different feature sets.

The last table includes pairwise comparisons of k-NN 
classifications using the entropy features with and without 

Table 7. Pairwise comparisons of feature sets at 30% training sample proportion

k Feature Set μACC μκ μSe μSp Feature Set μACC μκ μSe μSp

1 PE(A,C,G,T) 0.971 0.943 0.976 0.967 wPE(A,C,G,T) 0.982 0.964 0.970 0.995
2 0.961 0.923 0.966 0.957 0.973 0.946 0.966 0.981
3 0.969 0.938 0.989 0.947 0.972 0.945 0.969 0.976
4 0.961 0.921 0.981 0.939 0.964 0.927 0.968 0.959
5 0.959 0.919 0.992 0.924 0.963 0.926 0.969 0.956
1 MPE2(A,C,G,T) 0.973 0.946 0.972 0.974 wMPE2(A,C,G,T) 0.973 0.946 0.963 0.983
2 0.965 0.930 0.964 0.967 0.967 0.934 0.956 0.980
3 0.964 0.928 0.965 0.963 0.968 0.937 0.975 0.962
4 0.956 0.913 0.969 0.943 0.966 0.933 0.979 0.953
5 0.955 0.911 0.979 0.931 0.968 0.937 0.982 0.955
1 MPE3(A,C,G,T) 0.948 0.896 0.938 0.959 wMPE3(A,C,G,T) 0.948 0.896 0.950 0.945
2 0.941 0.883 0.935 0.949 0.942 0.885 0.939 0.946
3 0.951 0.903 0.952 0.952 0.953 0.906 0.973 0.931
4 0.947 0.895 0.958 0.938 0.949 0.897 0.976 0.920
5 0.947 0.894 0.966 0.926 0.951 0.903 0.982 0.919
1 all_MPE(A,C,G,T) 0.976 0.951 0.981 0.971 all_wMPE(A,C,G,T) 0.985 0.970 0.975 0.995
2 0.971 0.942 0.976 0.966 0.977 0.954 0.970 0.985
3 0.970 0.940 0.986 0.953 0.979 0.958 0.982 0.977
4 0.965 0.931 0.973 0.957 0.971 0.942 0.980 0.961
5 0.960 0.920 0.985 0.934 0.963 0.927 0.984 0.943

wavelet decomposition at 30% training sample proportion 
(Table 7). In most of all pairwise comparisons, it is observed 
that feature sets extracted with the proposed feature extrac-
tion method produce better classification performances 
than the feature sets based on entropy without wavelet 
decomposition in terms of μACC and μκ. The same μACC and μκ 
are obtained between the pairwise comparisons of feature 
sets MPE2(A,C,G,T) and wMPE2(A,C,G,T) and MPE3(A,C,G,T) and 
wMPE3(A,C,G,T), at k=1. The highest μACC is found as 98.5% is 
observed in the classification with all_wMPE(A,C,G,T) at k=1. 
Also, with feature set wPE(A,C,G,T), the similar classification 
peformance is produced with the same k (98.2%). Besides, 
the highest μACC difference is found as 1.3% between the 
pairwise comparison of classifications using the feature 
sets of MPE2(A,C,G,T) and wMPE2(A,C,G,T) at k=5. As in other 
training sample proportions, over-fitting problem does not 
evident in any classification process according to the μSe and 
μSp results.

DISCUSSION

Machine learning (ML) can be seen as a very useful 
tool in the interpretation of genomic data [55] and has 
been extensively used for the purpose of genomic sequence 
classification with the rapid development of information 
technologies in recent years [55–59]. Especially, for DNA 
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sequencing data, a very common and important challenge 
is discriminating the genes belonging different classes since 
distinguishing the signals by visually is almost impossible. 
ML methods present promising performances in various 
tasks such as recognition and categorization to overcome 
this challenge as shown in many important studies [6, 
60–68].

One of the important pre-processing stage of the ML is 
reducing the dimension [69] of the high-dimensional raw 
data without sacrificing the useful information. Various 
feature extraction methods have been proposed in an 
attempt to find most compact and informative feature sets 
[70] to achieve high classification ability with small error
rate. For the purpose of obtaining correct reflection of sig-
nals, some smoothing and filtering techniques such as SG
and FT can be used. However, these traditional approaches
are not efficient in CE signal denoising because CE signals
have different shapes and widths in both spatial and fre-
quency domains [4, 71]. As stated in [26], WT is an appro-
priate denoising tool for the DNA CE signals because the
important information that is hidden in both spatial and
frequency domains can be captured by WT. Some pioneer
studies have been conducted to show the applicability of this 
transformation technique in the DNA CE signals [21–26].
However, the length of signals located in each sub-bands
still differs among bases of DNA trace files after decompo-
sition. The differences in lengths lead to a dimensionality
problem in forming a vector of features for the purpose of
using it as an input to the relevant classifier. Thus, an addi-
tional transformation stage is needed for each element of
the feature vector to have same dimension.

Entropy is a very powerful and well-known statistical 
measure in quantifying the complexity of biological signals 
and has been widely used, especially in the studies of EEG 
signals [37–43], as a feature extraction method to obtain 
high classification accuracy. However, limited studies deal 
with the complexity of signals stored in each nucleic base 
(A, C, G and T). In the previous study [44], it was shown 
that the entropy-based features calculated for each bases of 
DNA trace files produce remarkable results in discriminat-
ing hepatitis DNA trace files as HBV and HCV. Support 
vector machines (SVM) classifier was used with different 
kernel functions and parameter optimization was per-
formed for SVM parameters.

In this study, on the other hand, a feature extraction 
method which combines both DWT and entropy is pro-
posed. Proposed method is defined with two stages that 
are executed sequentially. While first stage involves the DW 
decomposition of bases signals into sub-bands, the second 
stage involves forming the vector of features based on calcu-
lating the entropy values for these sub-bands. The real data 
set covering 200 patients’ DNA trace files are used. Among 
200 patients having hepatitis, 96 of them was labelled as 
HBV and 104 of them was labelled as HCV. Different feature 
sets are generated using the proposed method with different 

MPE parameters. Then, generated feature sets are fed to a 
memory-based classifier, k-NN, due to the simplicity [72]. 
Different values of k from 1 to 5 are considered. In order to 
assess the performance of the proposed feature extraction 
method, it is compared to the classification results of gener-
ated feature sets based on MPE without wavelet decomposi-
tion. Different training sample sizes ranging from 5% to 30 
in 5% increments are handled. Each classification process 
with different feature sets and training sample proportions 
is repeated 100 times to avoid bias caused by random selec-
tion. The average of performance measures obtained from 
the 100 runs are computed (μACC, μκ, μSe and μSp). Pairwise 
comparisons of the average performance measures between 
feature sets generated with two different feature extraction 
methods, (i.e., entropy features with and without wavelet 
decomposition) are made. The results demonstrate that 
features extracted with proposed method produce higher 
μACC and μκ at all training sample proportions (i.e., from 5% 
to 30%) compared to the entropy features without wavelet 
decomposition even using a simple memory-based learning 
classifier (k-NN) that does not require any parameter opti-
mization. The highest μACC are obtained almost in all pair-
wise comparisons for the feature set of all_wMPE(A,C,G,T) at 
k=1. Also, wPE(A,C,G,T) feature set produce similar μACC values 
with the same k. With proposed feature extraction method, 
the μACC range from 92.0% to 98.5%. As it is expected, when 
the training proportion increases, the average classifica-
tion accuracy increases. This shows, even at 30% training 
samples proportion, the classification performance reaches 
up to nearly 99% by entropy features with wavelet decom-
position. When the classification results of feature sets are 
considered individually, the highest μACC is obtained at k=1 
among all values of k (for all training samples proportions).  

The proposed feature extraction method combined 
the DWT and entropy has several advantages against the 
entropy-based features without wavelet decomposition. 
The proposed method has the following advantages:

• In all pairwise classification comparisons of feature
sets, entropy based features with wavelet decomposi-
tion produce better performance measures compared
to the feature extraction method which is based on
entropy but without wavelet decomposition. It is
shown that wavelet decomposition is an important
stage in the feature extraction process in order to
localize the nitrogen‐containing bases (i.e., A, C, G
and T) in DNA. After decomposition of signals in all
bases, the complexities of bases’ sub-bands are mea-
sured by MPE and, in conclusion, very satisfactory
classification performances are obtained.

• As the training sample proportion decreases, μACC
range between pairwise comparison of classifications
based on entropy features with and without wavelet
decomposition is widening. Considering that the
training samples of real DNA sequence data are natu-
rally low, this result is very important.
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CONCLUSION

In this study, a new feature extraction method is pro-
posed for the classification of DNA trace files based on 
entropy features with wavelet decomposition. In addition 
to enabling the detection of hidden information stored in 
each bases of trace files, this method also allows to assess 
the chaotic nature of this information at the local level. To 
achieve better identification of the genotypes of viruses 
such as hepatitis, this method can be effectively used in the 
studies classification of DNAC. 

Although a simple memory-based learning classi-
fier is used in this study, satisfactory classification perfor-
mances are obtained with various feature sets generated by 
the proposed method. Different classifiers which require 
the parameter optimization can also be considered for 
future studies if the purpose is improving the classification 
performance.
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Appendix A. Description of feature sets extracted in Step 2.

HCV HBV 

Feature Set Description Chi-Square 
Test Statisticsa 
(p-value)

Chi-Square 
Test Statisticsa 
(p-value)

wPE(A,C,G,T)

SB1_PE(A) PE for sub-band 1 of the base A 98.791
(<0.000)

271.238
(<0.000)SB2_PE(A) PE for sub-band 2 of the base A

SB3_PE(A) PE for sub-band 3 of the base A
SB4_PE(A) PE for sub-band 4 of the base A
SB1_PE(C) PE for sub-band 1 of the base C 138.899

(<0.000)
243.668
(<0.000)SB2_PE(C) PE for sub-band 2 of the base C

SB3_PE(C) PE for sub-band 3 of the base C
SB4_PE(C) PE for sub-band 4 of the base C
SB1_PE(G) PE for sub-band 1 of the base G 140.171

(<0.000)
275.139
(<0.000)SB2_PE(G) PE for sub-band 2 of the base G

SB3_PE(G) PE for sub-band 3 of the base G
SB4_PE(G) PE for sub-band 4 of the base G
SB1_PE(T) PE for sub-band 1 of the base T 105.363

(<0.000)
242.486
(<0.000)SB2_PE(T) PE for sub-band 2 of the base T

SB3_PE(T) PE for sub-band 3 of the base T
SB4_PE(T) PE for sub-band 4 of the base T
wMPE2(A,C,G,T)

SB1_MPE2(A) Multi-scale PE (s=2) for sub-band 1 of the base A 25.877
(<0.000)

254.360
(<0.000)SB2_ MPE2(A) Multi-scale PE (s=2) for sub-band 2 of the base A

SB3_ MPE2(A) Multi-scale PE (s=2) for sub-band 3 of the base A
SB4_ MPE2(A) Multi-scale PE (s=2) for sub-band 4 of the base A
SB1_ MPE2(C) Multi-scale PE (s=2) for sub-band 1 of the base C 54.433

(<0.000)
237.080
(<0.000)SB2_ MPE2(C) Multi-scale PE (s=2) for sub-band 2 of the base C

SB3_ MPE2(C) Multi-scale PE (s=2) for sub-band 3 of the base C
SB4_ MPE2(C) Multi-scale PE (s=2) for sub-band 4 of the base C
SB1_ MPE2(G) Multi-scale PE (s=2) for sub-band 1 of the base G 62.145

(<0.000)
275.357
(<0.000)SB2_ MPE2(G) Multi-scale PE (s=2) for sub-band 2 of the base G

SB3_ MPE2(G) Multi-scale PE (s=2) for sub-band 3 of the base G
SB4_ MPE2(G) Multi-scale PE (s=2) for sub-band 4 of the base G
SB1_ MPE2(T) Multi-scale PE (s=2) for sub-band 1 of the base T 27.688

(<0.000)
236.742
(<0.000)SB2_ MPE2(T) Multi-scale PE (s=2) for sub-band 2 of the base T

SB3_ MPE2(T) Multi-scale PE (s=2) for sub-band 3 of the base T
SB4_ MPE2(T) Multi-scale PE (s=2) for sub-band 4 of the base T
wMPE3(A,C,G,T)

SB1_MPE3(A) Multi-scale PE (s=3) for sub-band 1 of the base A 71.140
(<0.000)

322.014
(<0.000)SB2_ MPE3(A) Multi-scale PE (s=3) for sub-band 2 of the base A

SB3_ MPE3(A) Multi-scale PE (s=3) for sub-band 3 of the base A
SB4_ MPE3(A) Multi-scale PE (s=3) for sub-band 4 of the base A
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HCV HBV 

Feature Set Description Chi-Square 
Test Statisticsa 
(p-value)

Chi-Square 
Test Statisticsa 
(p-value)

SB1_ MPE3(C) Multi-scale PE (s=3) for sub-band 1 of the base C 115.019
(<0.000)

221.649
(<0.000)SB2_ MPE3(C) Multi-scale PE (s=3) for sub-band 2 of the base C

SB3_ MPE3(C) Multi-scale PE (s=3) for sub-band 3 of the base C
SB4_ MPE3(C) Multi-scale PE (s=3) for sub-band 4 of the base C
SB1_ MPE3(G) Multi-scale PE (s=3) for sub-band 1 of the base G 76.747

(<0.000)
276.995
(<0.000)SB2_ MPE3(G) Multi-scale PE (s=3) for sub-band 2 of the base G

SB3_ MPE3(G) Multi-scale PE (s=3) for sub-band 3 of the base G
SB4_ MPE3(G) Multi-scale PE (s=3) for sub-band 4 of the base G
SB1_ MPE3(T) Multi-scale PE (s=3) for sub-band 1 of the base T 81.993

(<0.000)
229.165
(<0.000)SB2_ MPE3(T) Multi-scale PE (s=3) for sub-band 2 of the base T

SB3_ MPE3(T) Multi-scale PE (s=3) for sub-band 3 of the base T
SB4_ MPE3(T) Multi-scale PE (s=3) for sub-band 4 of the base T

a. Kruskal Wallis Test




