
ABSTRACT

Nonparametric linear mixed effects models are preferred due to overcome the restrictions of 
linear models which need to satisfy distributional assumptions. In these models, smoothing 
approaches are needed to handle nonparametric part and chosen according to the type of 
data. When there is a measurement error in the nonparametric part, these smoothing 
techniques become more complicated. In this paper, we propose wavelet approach to smooth 
nonparametric function under known measurement error in nonparametric linear mixed 
effects model and then, we predict random effects pa ra meter. Fu rt hermore, a s i mu lation 
study is done to demonstrate the theoretical findings b y c omparing w ith t he c ase i gnoring 
measurement error. The performances are much better for the proposed model than the no 
measurement error case.
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INTRODUCTION

Linear mixed-effects models (LMM) can be considered 
as an enlarged linear model that contains random effects 
together with the usual fixed effects [1]. They have acquired 
a lot of interest in statistical research because of their flex-
ibility to handle many disciplines (e.g. longitudinal, clus-
tered, multivariate, correlated, repeated measures, growth 
and dose–response curve data structures). However, in 
LMM information about the functional form of regression 
is needed and some distribution assumptions about ran-
dom effects and random errors should be satisfied. Then, 

to overcome these restrictions which may not be satis-
fied by the parametric modeling, nonparametric linear 
mixed-effects models (NLMM) which provides flexibility 
to describe the functional association have become largely 
preferred instead of LMM [2-4].

For nonparametric features, the most famous smooth-
ing approaches are kernel approaches, smoothing splines, 
penalized splines, regression polynomial splines and series-
based smoothers, including wavelets [5-7]. The smooth-
ing approaches are chosen according to the type of data. 
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Longitudinal data which involve repeated observations 
of the same things at different points in time are used in 
NLMM.

Wavelets are not commonly handled for longitudinal 
data. Müller [8] investigated the nonparametric methods. 
Kernel-type smoothing methods, smoothing spline meth-
ods and regression (polynomial) spline methods for longi-
tudinal data have been largely exposed [2, 9-17]. Rice and 
Wu [17] introduced NLMM for unequally sampled noisy 
curves. For longitudinal data, a NLMM was discussed on 
wavelet bases via a Bayesian structure by Lu and Huang 
[18]. Angelini et al. [19] examined wavelet regression 
estimation in NLMM. Ghoul et al. [20] proposed wavelet 
analysis in semiparametric mixed models for longitudinal 
data.

Although the wavelets have been considered as a very 
powerful mathematical tool and become an alternative 
approach to the Fourier transform, they are not com-
monly used in errors in variables case. Chichignoud et al. 
[21] introduced adaptive wavelet multivariate (t ∈ [0,1]d,
d > 1) nonparametric regression with errors in variables.
They devised an adaptive estimator based on projection
kernels on wavelets and a deconvolution operator in non-
parametric model (NPM). Using theoretical arguments for
nonparametric wavelet estimation Yalaz [22] represented
a wavelet approach to estimate partially linear errors in
variables model which is a semiparametric model (SPM)
when explanatory variable of nonparametric part has mea-
surement error. The author created the estimator for para-
metric part parameter of semiparametric regression using
the idea described as wavelet approach for nonparamet-
ric function given in Chichignoud et al. [21]. Despite the
improvements on wavelet approach in NPM and SPM with 
errors in variables, there is still a gap in NLMM uses wave-
let approach considering the errors in variables. Although
NPM, SPM and NLMM are totally different models and
estimation procedures are also totally different, SPM and
NLMM have nonparametric function which is handled in
NPM. Hence, we are inspired from literature and created
a unique solution for NLMM. The weight function given
in Yalaz [22] helped us to generate the wavelet predictor
in NLMM. In this study, we introduce wavelet approach
to smooth nonparametric function under known measure-
ment error in NLMM by expanding these previously stud-
ied topics.

We consider an experiment with n subjects and ni obser-
vations over time for the ith subject. The response variable 
yij for the ith subject at time point tij satisfies.

y g t Z b i n j nij ij ij
T
i ij i= ( ) + + = = , ,..., ; ,...,1 1  (1) 

where g(.) is a twice differentiable smooth function on 
some finite interval, ∈ij are independent random noises 
with mean zero and the variance Σi, bi are independent qi 

× 1 vectors of random effects associated with covariates Zij 
with mean zero and covariance matrix Di.

Denote Y, b and ∈ be the vectors obtained from stacking 
up the n subject-specific vectors of the same symbol, for 
instance, Y = (Y1

T,...,Yn
T)T, Z = diag(Z1,...,Zn), ∈ = (∈1

T,...,∈n
T)T,  

g(t) = (g(t1)
T,...,g(tn)

T)T, where Yi = (yi1,...,yini
)T and similarly

for Zi, ∈i and g(ti), then the model (1) can be written as

Y g t Zb= ( ) + + , (2)

where the covariance matrix of Y is V = ZDZT + Σ, which 
is also equal to diag(V1,...,Vn), where N = ∑n

i=1 ni and D = 
diag(D1,...,Dn). The assumptions about the covariance 
matrix of random effects and the error variance are similar 
to Lindstrom and Bates [23] and Zaixing [24].

By following Yalaz [22, 25], we introduce wavelet pre-
dictor in NLMM when the variable of nonparametric part 
has measurement error. Here, 

τ = t + Δt, 

where Δt are iid measurement errors. It is assumed that Δt 
has a known distribution which is proposed by Fan and 
Truong [26] for NPM.

This study is configured as follows. We define NLMM 
errors in variables method for one dimensional wavelets 
(d = 1) in Section 2, and in Section 3 we propose a pre-
dictor of random effects parameter. To analyze finite 
sample properties some Monte Carlo simulation stud-
ies are done in Section 4. In Section 5, conclusions are  
given.

THEORY

Approximation Kernels and Family of Estimators for 
Nonparametric Function in NLMM

We get NPM, if random effects part is embedded into 
the response variable in a NLMM:

Y Zb g t
Y

− = ( ) +
*

,��� 

for E[∈|t]=0. Hence, if b is known, nonparametric function 
can be estimated using nonparametric methods.

Let g t
y g t y dy

f t
gf t
f t

t y( ) =
( )
( )

=
( )( )

( )
∫ *

,
* *

* ,
 where f(t) is 

defined as a classical deconvolution problem. Our mainly 
purpose is to estimate (gf)(t). We denote p(t): = g(t) × f(t) 
and consider a father wavelet φ on the real line satisfying 
the following conditions described by Chichignoud et al. 
[21].

• φ is compactly supported on [–A, A]; A is a positive
integer.
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p t
n

Y tj
k i

n

i j j k i jk
 ( ) = × ( ) ( )∑∑

=

1
1

*
,( ) ,

where ϕφ(s) is the Fourier transform of wavelet φjk and Dj is 
the deconvolution operator which is demonstrated by Kn in 
Fan and Truong [26] and defined as follows 

Dj jis
s

s
ds( )( ) = −( ) ( )

( )∫ exp
ε 2

.  (3)

The authors also proposed a resolution level j select-
ing rule depending Goldenshluger and Lepskis’ [28] 
methodology. 

Constructions of Nonparametric Functions Estimator 
and Random Effects Predictor

For the model (2), lets denote the densities of τ and t by 
fτ(.) and ft(.) respectively. Then, we describe the estimator 
of ft(.) as, 

f t
n

tn
k i

n

j j k i jk
 ( ) = ( ) ( )∑∑

=

1
1

( ) ,,

where (Djφ)j,k is given in (3).
Using the idea given in Yalaz [22], we demonstrate the 

weight function as 

ni
j j k

i j j k

j j k

n
n f

.
( ) .

( ) .
( ) .

.
.,

,

,( ) =
( )

( )
=

( )
( )∑





1


As we mentioned before, if b is known, then the estima-
tion of g(.) can be found using the weight function given 
above as follows 

g t t Y Z bn
k i

n

ni i i( ) = ( ) −( )∑∑
=1

.

Hence, we need to predict random effects parameter, 
before to find the estimation of nonparametric function.

We show the variables as Y Y Yi i ni ii

n
ik

= − ( )=∑∑ 1

for   Y Y YT
n
T T= …( , )1 and Z Z Zi i

k i

n

ni i i= − ( )∑∑
=1

 for 

  Z Z Zn= …( )diag 1, , . Then, we represent the model (2) as


Y Zb= + , (4)

where   = …( )1
T

n
T T

, , and b b bT
n
T T

= …( )1 , ,  which is a (n × 
q) × 1 vector of random effects with mean zero and covari-
ance matrix D = diag(D1,…,Dn). Because we translate the

• Denote φ0k(t) = φ(t–k). There exists a positive integer
N, such that for any t and k.

k
t y

l
lt k y k y t dy

l
k k

∈ ( ) ( )
∑∫ −( ) −( ) − =

=


0 0

0

0

��� �� ��� ��
* * *

*

( ) ,

,...,, ,  

where δ0l is the Kronecker delta which is defined as Hardle 
et al. [27]

0

1 0 0
0l

l
otherwise

=
=




, ,
, .

• φ is of class the space of functions having all continu-
ous derivatives C r, where r ≥ 2.

The associated projection kernel on the space 

V span jkj jk: , ,= { }∈ ∈� �

is given for any t and y* by  

K t y t yj
k

jk jk, ,* *( ) = ( ) ( )∑

where 

jk

j
jt t k j k( ) = −( ) ∈ ∈2 22 , , .N Z

Then the projection of p(t) on Vj can be written as, 

p t K p t K t y p y dy

p t

j j j

k
jk jk

( ) = ( )( ) = ( ) ( )
= ( )
∫
∑

: ,

,

* * *

where 

p p y y dyjk jk= ( ) ( )∫ * * * .

In Chichignoud et al. [21], the authors adapted the ker-
nel approach proposed by Fan and Truong [26] in their 
wavelet context and they introduced 

p
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Y
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NLMM to LMM, we write the variance-covariance matrix 
of Ỹ as V where V ZDZT= +   and the block diagonal 
covariance matrix of ∈ is Σ. Under (4), we display the joint 
Gaussian distribution of b and Ỹ as

b

Y
N

D DZ

ZD V

T

� ∼
�

�






































0
0 , ,

and the conditional distribution of Ỹ given b is 


Y b N Zb| ,∼ ( ) . Then, we maximize the joint density of Ỹ 
and b

f Y b f Y b f b

D

Y Zb Y Zb

q

T

 







,

( )

)

( ) = ( ) ( )

= × −{
− −(

− − −

−

|

exp2
1
2

2
1
2

1
2

1 )) +( 

 }−b D bT 1 ,

 (5)

where |.| describes the determinant of a matrix. We derive  
log f (Ỹ, b) by giving the log function of (5) as follows 

log log | log

[

f Y b f Y b f b

q D

Y Zb

 




,

log( ) log log

)

( ) = ( ) + ( )

= −
+ + +

−
1
2

2
TT TY Zb b D b− −−( ) +( 












1 1




,
 (6)

By discarding the constant term and the log function, 
the partial derivative of (6) with respect to the element of 
b equal to zero and employing b̂ to denote the solution find 

� � � � �Z Y Z Z D bT T− − −− +( ) =1 1 1 0.

We compute ( )   Z Z D D DZ V ZDT T− − − −+ = −1 1 1 1  via 
the Sherman-Morrison-Woodbury Theorem ([29]) and 
after algebraic simplifications, we introduce the wavelet 
predictor in NLMM as 

b DZ V YT� � �= −1 . (7)

After prediction of random effects parameter, an esti-
mation of nonparametric component g(t) can be described 
as

g t t Y Z bn
k i

n

ni i i


( ) = ( ) −( )∑∑
=1

. (8)

RESULTS AND DISCUSSION

Simulation Study
In this section, we benefit from Monte Carlo simulation 

approach to demonstrate the finite sample properties of the 
estimators by using MATLAB.

We consider the model with two random effects (q = 2) 
as follows; 

y b b time g tij ij ij ij= + + ( ) +1 2 ,

b N D N Ii

iid

ij

iid

ni
∼ ( ) ∼ ( )0 0 2, , , ,

where D =










1
1  is the AR(1) process with ρ = 0.60 and

timeij shows time which was taken as the same set of occa-
sions, {tij = j for i = 1,…,n, j = 1,…,ni}. We consider n = 4, 8, 
16, 32 subjects and per subject ni = 8 observations. Then, we 
calculate the simulation results with the sample sizes of N = 
Σn

i=1 ni = 32,64,128,256.
Nonparametric functions are considered as

g1(t) = 4.26(exp(–3.25t) – 4exp(–6.5t) + 3exp(–9.75t)), 

g t

t t t

t t t t

t

2

2

2

4 3 4 0 0 5
4
3

4 10 7 15 0 5 0 75

16
3

( )

( ), . ,

( ) , . . ,

(

=

− ≤ ≤

− + − < ≤

11 0 75 12− < ≤












 t t) , . .

In all examples, the density of both the true regressor 
t and the measurement error Δt are chosen as the most 
common combinations of ordinarily smooth distributions 
which are summarized in Table 1.

We consider the normal distribution as an example 
of a supersmooth distribution, and the Laplace (or dou-
ble explonential) distribution, uniform distribution and 
beta distribution for the ordinarily smooth case. Because 
Beta (2,2) and Beta (0.5,2) distributions reflect two differ-
ent behaviors on [0,1] we use them. Finally, following the 
asymptotic considerations given in Chichignoud et al. [21], 
we choose the primary resolution level j that we have used 
throughout our simulations as j(n) = log2 (log(n)) + 1.

The average values of 100 replicates of the mean squared 
error of response variable (MSE) and the mean squared 

Table 1: Examples

 Example 1  Example 2  Example 3 

t → Beta(2,2)  t → Beta(0.5,2)  t → Uniform[0,1] 
Δt → L(0,0.001)  Δt→L(0,0.001)  Δt → L(0,0.001) 
∈ → N(0,0.25)  ∈ → N(0,0.25)  ∈ → N(0,0.25)
σ∈

2 = 0.25 σ∈
2 = 0.25 σ∈

2 = 0.25

Σ

Σ

π Σ

Σ

π Σ

Σ

Σ Σ

Σ

ω

ε

ε σ

ρ
ρ
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error of predictor (MSEP) for measurement error case 
(Our) and ignoring measurement error case (NoME) which 
are considered in four different sample sizes are given in 
Table 2 for g1 and given in Table 3 for g2. When we compare 
our results with ignoring measurement error case, it can be 
easily seen that the results are encouraging.

We also compared the finite sample and the asymptotic 
distributions of our estimator and the estimator ignor-
ing measurement. In Figures (1-3), the abscissa is Z = 
(Var(g(t)))–½ (g(t) – E(g(t))) and the ordinate is probabil-
ity. The empirical cumulative distribution function (CDF) 
curve of the estimator (indicated by dashed line) fits very 
well with the normal CDF (indicated by solid line) curve 

and it is better than the NoME case (indicated by dotted 
line).

CONCLUSION

This paper presents wavelet estimation of the NLMM 
when nonparametric part has measurement error. If the 
measurement error is known, prediction of random effects 
parameter using wavelet approach is possible. And so, we 
introduce the predictor of  based on projection kernels 
on wavelets and borrowing the ideas of deconvolution 
technique. We implemented some simulations to illustrate 
the theoretical results. Because in literature NLMM is not 

Table 2: Simulation results g1

 n = 32  n = 64 n = 128 n = 256

Example 1
 MSE  MSEP  MSE  MSEP  MSE  MSEP  MSE  MSEP 

Our  0.2388  0.1910  0.6923  0.2220  1.0313  0.3119  2.5672  0.2685 
NoME  0.6536  0.5122  1.1017  0.4781  2.2137  0.4912  4.4953  0.4749 
Example 2

 MSE  MSEP  MSE  MSEP  MSE  MSEP  MSE  MSEP 
Our  0.3055  0.1960  0.5782  0.2430  0.8895  0.7299  1.2934  1.5225 
NoME  0.6719  0.4866  1.3092  0.4689  2.5972  0.4104  5.1700  0.4113 
Example 3

 MSE  MSEP  MSE  MSEP  MSE  MSEP  MSE  MSEP 
Our  0.2707  0.1387  0.4807  0.2204  0.9833  0.2877  3.3393  0.3815 
NoME  0.6415  0.5112  1.1410  0.4661  2.2870  0.4546  4.7235  0.4069 

Table 3: Simulation results g2

 n = 32  n = 64 n = 128 n = 256

Example 1
 MSE  MSEP  MSE  MSEP  MSE  MSEP  MSE  MSEP 

Our  0.2156  0.1944  0.6595  0.1661  0.8946  0.3563  2.2521  0.1975 
NoME  0.5859  0.5228  0.9974  0.4768  2.0009  0.4841  4.0860  0.4816 
Example 2

 MSE  MSEP  MSE  MSEP  MSE  MSEP  MSE  MSEP 
Our  0.3779  0.3670  0.6439  0.2807  1.3524  0.3938  1.4073  1.7035 
NoME  0.7777  0.4121  1.4087  0.4848  2.8928  0.4215  5.6872  0.4205 
Example 3

 MSE  MSEP  MSE  MSEP  MSE  MSEP  MSE  MSEP 
Our  0.2720  0.1184  0.4633  0.1936  1.0232  0.2354  3.1527  0.4068 
NoME  0.6076  0.5220  1.0576  0.4589  2.2507  0.4735  4.5764  0.4188 
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Figure 1. Comparison of the finite sample and asymptotic distributions of the estimator in Example 1.



Sigma J Eng Nat Sci, Vol. 40, No. 3, pp. 630–639, September, 2022636

Figure 2: Comparison of the finite sample and asymptotic distributions of the estimator in Example 2.
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Figure 3: Comparison of the finite sample and asymptotic distributions of the estimator in Example 3.
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considered using wavelet approach, we compared our work 
with the circumstances ignoring measurement error. We 
aimed at estimating the two different regression functions 
at different three points with three different densities and 
finally compared these results. It is discussed in the simu-
lation that the resulting rates are comparable to no mea-
surement error case. The performances are much better for 
the proposed model then the model ignoring measurement 
errors. Asymptotic normality of proposed predictor is still 
open one and should be investigated.
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