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ABSTRACT  
The critical lateral buckling load of cantilever beams with IPE cross-section was calculated using analytical closed-

form equations and numerical finite element analyses within the scope of the research. The equations suggested in the 

specifications for simply supported beams were used to calculate the buckling load of cantilever beams. The rationality 

of the values calculated due to this is not fully known. In the research, a single loading was made to the shear center at 

the free end of the cantilever beam. Cantilever length and section height were kept variable. As a result, it has been 

determined that there are partial differences in the analysis result obtained from the elastic stability theory and finite 

element method. Accordingly, the results obtained from ANSYS and SAP2000 analyses confirm each other. On the 

other hand, the results obtained using the formulation of Timoshenko and Gere, the calculation results made according 

to the AISC and DCCPSS regulations, and the results obtained from the LTBeam program confirm each other. 

However, it differs from the FEA analysis due to the cantilever beam length's shortening and the section height 

increase. Thus, to obtain accurate and reliable results in the buckling load calculation of cantilever beams, the equations 

used in analytical calculations were optimized according to finite element analysis (FEA) results. As a result of the 

study conducted according to the error criteria, it was determined that the updated equation results gave similar results 

to the FEA results. 

 

Keywords: Cantilever Beam; Buckling Load; Analytical Calculation; Finite Element 
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INTRODUCTION  
In the lateral buckling calculations of steel beams, the design methods of simply supported and cantilever beams 

given in the regulation are the same. However, due to the different end support conditions in cantilever beams, the 

maximum displacement and buckling angle occur at the free ends instead of the middle of the span. The buckling 

modes obtained as a result of this situation are different from each other. Therefore, the recommended methods for 

simple support beams are not suitable for cantilever beams [1]. AISC  or DCCPSS  regulations do not guide the lateral 

buckling of cantilever beams [2,3]. This research aims to provide rational information against lateral buckling in the 

design of steel cantilever beams. In general, the concepts of lateral buckling of beams and lateral-torsional buckling 

are explained in many books in the literature. Accordingly, the elastic lateral torsion buckling load under the bending 

effect of simple supported beams can be solved with the help of closed-form equations [4–7]. However, analytical 

solutions become very complex when beam end conditions differ from simple support. Therefore, numerical 

approximations such as the finite element method are needed to solve basic differential equilibrium equations [8–10]. 
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The load-displacement relationships of I-section steel cantilevers were investigated by [11]. Under the effect of a single 

load at the free end, numerical and experimental results were compared. Accordingly, estimating the buckling load by 

numerical analysis with the ABAQUS program during the design phase was considered an acceptable method. Studies 

on unsymmetrical I-section cantilever beams were carried out by Samanta and Kumar [12]. In the studies, single load, 

distributed load, and moment were affected at the beam end. With the help of the ABAQUS program, the buckling 

load was investigated by giving lateral support to the top flange, bottom flange, and both. Accordingly, it has been 

found that if loading is made to the lower flange, the side support position does not significantly affect the cantilever 

beam buckling capacity. Özbaşaran et al. presented alternative design methods for calculating the buckling load and 

movement of I-section cantilever beams under the effect of lateral-torsional buckling [13]. In the critical elastic lateral-

torsional buckling load calculation, the results of the closed-form equations, the analysis made by ABAQUS, and the 

experimental findings were found in accordance with the results of the proposed design method. Ma et al. conducted 

a study on elastic lateral buckling of unsymmetrical I-section cantilever beams [14]. According to the Rayleigh-Ritz 

method, while the profile flanges remain linear during buckling, it is assumed that the web part is susceptible to 

distortion. The accuracy of the proposed method has been verified with the help of the NASTRAN program, which 

calculates according to the finite element method. The elastic lateral torsional buckling behavior of tapered beams with 

different support conditions has been investigated by Andrade et al. [15]. A better understanding of the tapered beam 

behavior was provided by providing concrete explanations for some of the results regarded as illogical in the research. 

Zhang et al. conducted studies on the lateral-torsional buckling behavior of I-section cantilever beams with stiffening 

plates [16]. An analytical solution of the dimensionless buckling equation of these beams was obtained with the help 

of dimensionless parameters. The dimensionless critical moment formula developed with the help of mathematical 

optimization analysis software (1stOPT) has been verified with ADINA finite element software. A simple and useful 

calculation method for practical engineering calculations is presented in the research. The results of the finite element 

analysis of the elastic lateral-torsional buckling strength of light steel cantilever beams under the effect of transverse 

loading were shared by Kurniawan and Mahendran [17]. Accordingly, the applicability of modification factors in 

various steel design codes was reviewed, and the design approach in the AS4100 code was proposed for light steel 

cantilever beams subjected to transverse loading. The study carried out by Trahair stated that the lateral buckling 

formulations suggested in the design regulations for simply supported beams with uniformly distributed loads are not 

suitable for cantilever beams [7]. His study aimed to develop simple approximate methods in the design of cantilever 

beams against inelastic lateral buckling. Within the scope of the research conducted by Yılmaz and Kıraç [18], an 

equation that can be used to calculate the critical torsional buckling load of the IPE and IPN simple support beams in 

European norms was presented [18]. The slenderness of the profile section and the effect of loading positions were 

taken into account in their study. Consistent results were obtained among analytical, parametric, and numerical 

solutions. It has been found that the lateral torsional buckling load of European IPE and IPN beams can be determined 

by the presented equation and used safely in design procedures. I-section composite beams are discussed by Prombut 

and Anakpotchanakul [19]. It has been observed that the bending results obtained from the shear deformation theory 

and finite element analysis in beams under uniformly distributed load applied to the upper flange are compatible with 

each other. It is stated that thanks to the validated finite element procedure, realistic results can be obtained based on 

curvature, taper, and buckling along the length of an I-section. Özbaşaran and Yılmaz introduced shape optimization 

for symmetrical I-section beams with tapered flanges and/or web [20]. The optimization procedure was created using 

the Big Bang - Big Crunch algorithm and Deb's constraint handling method. The designs made were verified by finite 

element analysis. It has been shown that tapering in absolute conditions may not significantly affect the material 

economy. Trahair stated that the design methods given in regulations such as AS4100, BS595, Eurocode3, and AISC 

for lateral buckling of cantilever beams are modifications of the rules introduced according to simple support beams 

[1]. The accuracy of these modifications was found to be questionable, and it was emphasized that they could not fully 

guide the design. A different method has been developed, and the solution has been summarized with examples. 

Minimizing the cost and weight of products has been an area of interest for many industries. It is among these 

sectors in reinforced concrete and steel structures. Complex situations arise in reinforced concrete and steel structures 

design due to the nonlinear structure behavior and related design equations. In addition, the behavior of the designed 

sections under the effect of dynamic loads also creates complex situations. These problems are sizing optimization 
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problems [21]. Previous optimization studies on reinforced concrete and steel structures are based on weight and cost 

[22–30]. Shaqfa and Orbán improved the position of the upper and lower flexural member, simultaneously minimizing 

cost, weight, and cost-weight [31]. Hayalioğlu and Değertekin presented a genetic algorithm for designing the optimum 

cost of nonlinear steel frames with semi-rigid connections subject to the displacement and stress restrictions of the 

American Institute of Steel Construction-Allowable Stress Design (AISC-ASD) regulation [23]. As a result of their 

studies, they stated that more economical optimum frames could be obtained by adjusting the stiffness of the 

connections in frame systems. Omkar et al. used Particle Swarm Optimization (PSO) to minimize the weight and total 

cost of the composite component to achieve a certain strength of composite components [32]. Barraza et al. used 

Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) to minimize the structural weight of steel structures 

exposed to earthquake loads and to improve the structural performance of buildings [33]. As a result of their studies, 

they emphasized that they generally obtained better solutions with PSO in structural buildings compared to the GA 

approach. Another issue of sizing optimization is to maximize the cross-section against torsion and fracture [34–37]. 

Cho optimized the design of a composite cylindrical shell against buckling and fracture and stated that the optimized 

composite cylindrical shell exhibits significantly improved mechanical properties compared to the traditional design 

as result of the study [36]. Many optimization studies are also done in Excel−Solver [37–39]. Taki optimized the 

dimensions of the Z-hardened panel under compression load with Excel-solver to update Farrar's work. As a result of 

the work, he developed design charts for Z-hardened panels and produced a design guide [40]. Msabawy and 

Mohammad used the Generalized Reduced Gradient (GRG) algorithm in the Solver Add-on tool in Microsoft Excel to 

perform first-order elastic structural analysis of semi-rigid steel portal frames [37]. Msabawy and Mohammad used 

the GRG algorithm to optimize cross-sectional areas in cold-formed steel frames [39]. As a result of their studies, they 

stated that it proved the reliability and validity of the GRG algorithm in terms of the ability to obtain optimum 

configurations of optimized sections. In addition to the sizing optimization problem in reinforced concrete and steel 

structures, there are modification studies of theoretical equations. Perelmuter and Yurchenko determined the optimum 

height and weight of the tower by changing various equations depending on the capacity of the wind-powered 

generator's generated energy [30]. Based on the concepts of the Euler-Bernouli beam theory and fracture mechanics, 

Vosoughi reformulated the management equation using genetic algorithms (GA) and particle swarm optimization 

(PSO) techniques [41]. They showed the convergence, efficiency, and accuracy of the optimization method with the 

finite element method by solving different examples. Le et al. took into account the Adaptive Neuro-Fuzzy Inference 

System (ANFIS) using the GA and PSO to assess the buckling damage of steel columns subjected to axially 

compressive load [42]. They concluded that the ANFIS-PSO method significantly outperformed the ANFIS-GA 

method with a correlation factor of 0.929. Jung et al. working to assess the tensile characteristics of high strength steel, 

used Artificial Neural Networks (ANN) and back-propagated linear regression [43]. They asserted that using a deep 

learning system produced predictions of yield strength, yield ratio, and tensile strength with high accuracy. Cuong-Le 

et al. introduced a PSO-optimized Support Vector Machine (SVM) to identify deterioration in truss and frame 

constructions [44]. Additionally, they contrasted the suggested approach with ANN, Deep Neural Networks (DNN), 

and Adaptive Neuro-Fuzzy Inference System (ANFIS). They concluded that the damage and the degree of damage for 

truss and frame structures were successfully identified using the proposed strategy, outperforming the other techniques. 

Das and Das have used Random Forest Regressor (RFR) to evaluate the fundamental natural frequencies of isotropic 

plate structures [45]. They have been considered as square, rectangular, thin, and thick plates whose materials have 

been selected as Structural Steel, Aernet 100, Al 7108, and Al 2024 for the isotropic plates. They claimed that the 

suggested strategy accurately predicts the fundamental natural frequency and is an adequate model for such a scenario. 

Özbayrak et al. conducted buckling load calculations using ANSYS on European I-section cantilever beams reinforced 

with transverse stiffener plates at various intervals [46]. They have created formulations employing multiple linear 

regression analysis and multigene genetic programming techniques to estimate the found load values more effectively. 

According to their statement, the lateral buckling stress according to the transverse stiffener plate spacing for European 

I-section cantilever steel beams can be calculated with formulations created using computer technology. 

In the construction literature, more studies use machine-learning models of steel I-beams and cantilever beams. 

Artificial intelligence has enabled the suggested formula to successfully forecast the residual lateral buckling capacity 

of steel I-beams, according to research on artificial neural networks [47]. In a different study, a deep learning classifier 
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was used to determine the damage status of cantilever beams in an invasive-free manner with the maximum level of 

accuracy [48]. Artificial neural networks were used to assess the twisting performance of a steel I beam that was 

externally attached to sheets with polymer matrix reinforcement enhanced with various fibers to reduce the 

experimental work [49]. Additionally, the web-post buckling shear strength of cellular beams and the load-bearing 

capability of castellated steel beams were predicted using artificial neural network models [50,51]. Thanks to a 

database provided by a study that included 475 finite element models, the lateral torsional buckling strength was 

calculated using an artificial neural network and the multiple regression approach [52]. An adaptive neuro-fuzzy 

inference system was used to develop empirical equations for estimating natural frequencies from a finite element 

dataset [53]. Additionally, form optimization makes use of artificial intelligence. Using a genetic algorithm, the 

stiffness of cold-formed steel sections was increased [54].  

Within the scope of the research, analytical calculations were compared with the results of numerical analysis. It 

has been observed that the calculations made with the LTBeam program are compatible with the analytical calculation 

results. Critical lateral buckling loads found from analytical equations and LTBeam program results are consistent in 

this regard. However, it has been determined that there are some differences between these and the FEA results 

depending on the profile cross-section and length. In the studies in the literature, it is stated that the analysis made 

according to the finite element method with the help of developing computer technology is more accurate than the 

calculations made with closed-form equations. First, using two different FEA programs, lateral buckling loads 

calculated in the ANSYS program were verified with the help of the SAP2000 program. Later, studies were carried 

out to harmonize the results from the equations given in Timoshenko, Gere, and other Regulations with FEA results 

(ANSYS). Using optimization techniques, the equation given by Timoshenko and Gere and formulations given in 

AISC and DCCPSS regulations were successfully updated. 

 

METHOD 
In the case of a single load acting on the shear centre at the free end of the IPE section cantilever beam, the lateral 

buckling load was calculated and compared with five different methods. These are, respectively, elastic stability theory, 

regulation on design, calculation, and construction principles of steel structures (DCCPSS), LTBeam program, 

SAP2000, and ANSYS software (Figure 1). In the calculations, the material elasticity modulus was 210000 MPa, the 

shear modulus was 80769 MPa, and the Poisson ratio was 0.3. The section heights of the cantilever beams used in the 

study include all IPE profiles in the range of 100-600 mm. Cantilever beam lengths were evaluated in five different 

sizes: 1000 mm, 1500 mm, 2000 mm, 2500 mm, and 3000 mm. 

 

 

 

 

Figure 1. Lateral-torsional buckling condition 

Calculation According to Elastic Stability Theory 
 The critical value of the lateral buckling load for cantilever beams is calculated as given in Equation 1 by 

Timoshenko and Gere [6], depending on the boundary conditions of the beam endpoints. 
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𝑃𝑐𝑟 = 𝛾2

√𝐸 ∙ 𝐼𝑦 ∙ 𝐶

𝐿2
                                                                        (1) 

The factor 𝛾2 in this expression is a dimensionless coefficient obtained according to the ratio 𝐿2𝐶 𝐶1⁄ . The values 

of this coefficient are as given in Table 1. 

 

Table 1. Factor 𝛾2 for I-section cantilever beams 

𝐿2𝐶 𝐶1⁄  0.1 1 2 3 4 6 8 

𝛾2 44.3 15.7 12.2 10.7 9.76 8.69 8.03 

𝐿2𝐶 𝐶1⁄  10 12 14 16 24 32 40 

𝛾2 7.58 7.20 6.96 6.73 6.19 5.87 5.64 

 

As the 𝐿2𝐶 𝐶1⁄  ratio increases, the 𝛾2 factor approaches the 4.013 limit value. This value corresponds to the critical 

load of thin rectangular beams. If ratio 𝐿2𝐶 𝐶1⁄  takes values greater than 40, the approximate factor 𝛾2 is calculated as 

given in Equation 2. 

𝛾2 =
4.013

(1 − √𝐶1/𝐿2𝐶)2
                                                                (2) 

 

Calculation According to AISC and DCCPSS Regulations 
In the case of lateral torsion buckling boundaries, the positive contribution of the bending moment distribution 

along the length between the points supported by the lateral stability connection is taken into account by the coefficient 

given in Equation 3. The regulations stipulate that this coefficient in cantilever beams is taken as Cb = 1 with an 

approach on the safe side. However, since it was determined that this approach has a limited contribution, the 

expression given in Equation 3 was used within the scope of the research. 

 

𝐶𝑏 =
12.5𝑀𝑚𝑎𝑘𝑠

2.5𝑀𝑚𝑎𝑘𝑠 + 3𝑀𝐴 + 4𝑀𝐵 + 3𝑀𝐶

                                                      (3) 

 

The critical stress value of I-cross section elements with double symmetry axes, whose web and flange parts are 

compact and under the effect of bending around their strong principal axes, are calculated with the expression given 

in Equation 4 according to the lateral-torsional buckling. 

𝐹𝑐𝑟 =
𝐶𝑏 ∙ 𝜋2 ∙ 𝐸

(𝐿𝑏 𝑖𝑡𝑠⁄ )2
√1 + 0.078

𝐽 ∙ 𝑐

𝑊𝑒𝑥 ∙ ℎ𝑜

(
𝐿𝑏

𝑖𝑡𝑠

)
2

                                              (4) 

 

The effective radius of inertia used in the critical stress value formulation is as given in Equation 5. 

𝑖𝑡𝑠
2 =

√𝐼𝑦 ∙ 𝐶𝑤

𝑊𝑒𝑥

                                                                                 (5) 

 

Accordingly, the critical value of the lateral-torsional buckling load of the I cross-section elements under the 

bending effect is calculated as given in Equation 6 in the regulations. 

𝑃𝑐𝑟 =
𝐹𝑐𝑟 ∙ 𝑊𝑒𝑥

𝐿𝑏

                                                                              (6) 

 

Calculation According to Finite Element Method 



Sigma Journal of Engineering and Natural Sciences, Technical Note, Vol. 42, No. 5, pp. XX-XX, October, 
2024 

  

 98 

 

Finite element models of beams were created with the help of ANSYS, SAP2000 and LTBeam software. Critical 

lateral buckling load analysis was performed with the help of the created models. Accordingly, three-dimensional solid 

modelling of cantilever beams was created in the analysis made with ANSYS software (Figure 2) The material type of 

the created models was defined as SOLID187. In the analysis made according to linear elastic material properties, 

cantilever beams were divided into finite elements with an average range of 2.5 ⁓ 5 cm. Fixed support was defined at 

the nodal point on one side of the beam endpoints, and a 1 N unit loading was made to the shear centre on the other 

free end. The analysis type was selected as Eigen Buckling and the value calculated as buckling load factor at the end 

of the analysis gave the buckling load. 

     

a) L=3000 mm b) L=2500 mm c) L=2000 mm d) L=1500 mm e) L=1000 mm 

Figure. 2. Cantilever beams modelled in ANSYS program. 

 

According to the analysis made by utilizing the SAP2000, the cantilever beam body and flange elements are defined 

using the Shell Element. (Figure 3). In the models, flange and web joints were combined at 90o angles. Cantilever 

beams with linear elastic material properties were divided into finite elements with an average range of 2.5 ⁓ 5 cm. 

Fixed support properties were assigned to the nodes on one side of the beam endpoints. The shear centre at the other 

free end was loaded with 1 N unit loading. P-Delta effects were taken into consideration by selecting the analysis type 

as Buckling. As a result of the analysis, the value obtained as the buckling load factor gives the buckling load value. 

LTBeam is free software developed by CTICM (Center Technique Industriel de la Construction Métallique) in 

France, used only for the calculation of critical moments [55]. Critical elastic lateral-torsional buckling loads can also 

be determined through one-dimensional finite element models, where beams are modeled according to their actual 

geometry using LTBeam software. (Figure 4). 

     

a) L=3000 mm b) L=2500 mm c) L=2000 mm d) L=1500 mm e) L=1000 mm 

Figure 3. Cantilever beams modelled in the SAP2000 program. 

 

The program can perform buckling analysis of both simply supported beams and cantilever beams. Limited 

documentation on LTBeam made interpretation of results difficult. However, several reliable sources Access Steel 

(2005) and ECCS (2006) refer to LTBeam as a useful program [56,57]. 
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Figure 4. Cantilever beams modelled in LTBeam program. 

 

Optimization With Microsoft Excel Solver 
Solver is the simplest and most understandable computer software used to find the optimal result. Solver is an add-

in command available in Microsoft Excel. Although it is a command included in Excel, the user must enable this 

command. Solver is used to find the largest or smallest value of the target cell in a formula. Constraints can be 

developed to the values to be used in models to be developed with the Solver and these restrictions can be applied to 

cells [Excel - help]. Using the lateral buckling load values of the IPE profile obtained from ANSYS program with the 

help of Excel Solver; 

 

• The factor 𝛾2 in Equation 1 given by Timoshenko and Gere was calibrated [6]. 

• Fixed coefficients in Equation 4 given in AISC and DCCPSS regulations were calibrated. 

 

The steps taken for calibration were listed below. 

 

1. The Solver command is opened from the Data tab. 

 

2. The target cell is determined by choosing one of values such as mean absolute error (MAE), root mean square 

error (RMSE), and mean absolute relative error (MARE). 

 

3. The Largest is chosen if the target cell value is desired to be as large as possible, and the Smallest is chosen if it 

is desired to be as small as possible. If certain value is desired to be obtained, the value option is selected, and its value 

is written in the box. Since the error rate was desired to be the least in the study, the smallest option and RMSE value 

were chosen. 

 

4. A variable cell must be determined for each coefficient in the equations to be calibrated. Each variable cell must 

have a direct or indirect relationship with the target cell. In the study, cells containing the values of coefficients a, b 

and c were selected as variable cells. Before starting the optimization process, a random number must be defined to 

the coefficients a, b and c. 
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5. Solver is based on Nonlinear Generalized Restricted Gradient (GRG), Simple LP and expansion methods. The 

nonlinear Generalized Restricted Gradient (GRG) method was used in the study. 

 

6. After clicking the Solve command, the equation was solved by the data solver and the expansion coefficients 

that give the smallest error value were calculated. 

 

Error Criteria 
Error criteria were used to test the accuracy of the calibrated equations for the estimation of the lateral buckling 

load values of the IPE profiles. Commonly used error criteria in the literature are Mean Absolute Relative Error 

(MARE), mean absolute error (MAE), mean square error (MSE), root mean square error (RMSE), determination 

coefficient (R2) [58,59]. In this study, MARE, MAE, MSE, RMSE and R2 error criteria were used. The fact that MARE, 

MAE, MSE and RMSE values are closest to zero and R2 value is closest to one reflects the accuracy and power of the 

prediction. In addition, the Nash-Sutcliffe efficiency coefficient (NSE), proposed by Nash and Sutcliffe [60], has been 

used in many studies to measure estimation accuracy. The variance of the estimated data compared to the variance of 

the observed data is a normalized statistic that determines the relative size. NSE expresses to what extent the observed 

and predicted data converge [60]. MARE, MAE, MSE, RMSE and NSE values were calculated from the formulas 

given in Equation 7-11. 

 

𝑀𝐴𝑅𝐸 = 100 ∙ (
1

𝑛
∑ |

𝐵𝐿𝑝,𝑖 − 𝐵𝐿𝑎𝑛𝑠𝑦𝑠,𝑖

𝐵𝐿𝑎𝑛𝑠𝑦𝑠,𝑖

|

𝑛

𝑖=1

) (7) 

𝑀𝐴𝐸 =
1

𝑛
∑|𝐵𝐿𝑝,𝑖 − 𝐵𝐿𝑎𝑛𝑠𝑦𝑠,𝑖|

𝑛

𝑖=1

 (8) 

𝑀𝑆𝐸 =
1

𝑛
∑(𝐵𝐿𝑝,𝑖 − 𝐵𝐿𝑎𝑛𝑠𝑦𝑠,𝑖)

2
𝑛

𝑖=1

 (9) 

𝑅𝑀𝑆𝐸 =
1

𝑛
∑ √(𝐵𝐿𝑝,𝑖 − 𝐵𝐿𝑎𝑛𝑠𝑦𝑠,𝑖)

2
 

𝑛

𝑖=1

 (10) 

𝑁𝑆𝐸 = 1 −
∑ (𝐵𝐿𝑝,𝑖 − 𝐵𝐿𝑎𝑛𝑠𝑦𝑠,𝑖)

2𝑛
𝑖=1

∑ (𝐵𝐿𝑎𝑛𝑠𝑦𝑠,𝑖 − 𝐵𝐿𝑎𝑛𝑠𝑦𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

2𝑛
𝑖=1

 (11) 

 

 

FINDINGS AND DISCUSSION 

 

Analytical and Numerical Findings 
The critical lateral buckling load of I-section cantilever beams was calculated using a total of five different methods. 

The calculated buckling loads were obtained by applying a single load to the centre of shear at the free end of the 

beam. Although there are differences when the profile section increases and cantilever length decreases, the buckling 

load values calculated using the closed form equations and LTBeam program are close to each other. On the other 

hand, when the profile section is reduced and the cantilever length is increased, differences occur in the FEA results. 

However, the buckling load values calculated with the help of FEA generally confirmed each other. As a result, the 

results of the first three methods and the last two methods given in Table 2 are quite different from each other. This 

can be clearly seen in Figure 5. 
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Table 2. Lateral buckling load values calculated with different methods 

Profile Type 
Beam Length 

(mm) 

Timoshenko 

(kN) 

AISC- 

DCCPSS 

(kN) 

LTBeam 

(kN) 

ANSYS 

(kN) 

SAP2000 

(kN) 

IPE 100 

1000 

40.18 39.36 40.44 37.44 11.23 

IPE 120 74.03 71.94 73.83 69.76 35.05 

IPE 140 127.87 125.38 126.77 113.22 66.57 

IPE 160 209.12 208.97 207.47 121.78 98.05 

IPE 180 329.12 334.59 324.40 194.45 132.95 

IPE 200 497.23 516.59 493.53 203.16 170.85 

IPE 220 777.32 800.37 749.76 297.87 219.68 

IPE 240 1147.63 1197.99 1110.30 319.21 273.74 

IPE 270 2146.85 1961.40 1771.40 479.70 353.49 

IPE 300 4032.70 3103.90 2755.10 492.58 459.98 

IPE 330 5881.12 4446.00 3923.00 676.51 557.10 

IPE 360 8524.97 6392.55 5608.20 732.06 688.53 

IPE 400 11748.40 8958.72 7819.20 854.77 832.07 

IPE 450 16266.63 12778.91 11093.00 1070.22 1029.68 

IPE 500 22154.84 18114.12 15656.00 1279.80 1254.17 

IPE 550 29518.50 24797.49 21391.00 1551.16 1479.64 

IPE 600 39465.72 34300.18 29512.00 1974.66 1830.02 

IPE 100 

1500 

15.09 15.26 15.12 14.96 0.93 

IPE 120 26.78 26.45 26.95 26.04 4.20 

IPE 140 45.22 44.05 45.43 41.66 14.30 

IPE 160 73.31 71.32 73.39 62.39 33.28 

IPE 180 113.51 110.87 112.95 85.32 59.11 

IPE 200 171.76 168.80 170.06 114.40 86.15 

IPE 220 256.21 256.34 254.27 146.67 119.08 

IPE 240 375.37 380.28 372.89 189.23 153.26 

IPE 270 586.02 609.80 580.41 234.77 200.59 

IPE 300 916.78 952.75 884.95 296.73 263.50 

IPE 330 1287.18 1359.60 1251.80 366.42 324.36 

IPE 360 1784.93 1945.82 1775.40 452.60 410.13 

IPE 400 2835.20 2718.34 2458.80 556.62 506.80 

IPE 450 4704.91 3860.99 3457.90 692.70 644.73 

IPE 500 7111.55 5457.19 4850.20 861.62 814.93 

IPE 550 9850.19 7460.46 6604.60 1076.95 985.93 

IPE 600 13685.47 10302.54 9079.00 1330.55 1273.27 

IPE 100 

2000 

7.68 8.10 7.71 8.48 0.15 

IPE 120 13.44 13.63 13.47 13.46 0.68 

IPE 140 22.29 22.02 22.38 21.88 2.55 

IPE 160 35.55 34.89 35.83 34.14 7.62 

IPE 180 54.40 52.93 54.61 49.01 19.25 

IPE 200 81.83 79.58 81.76 69.19 37.20 
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IPE 220 121.28 118.55 121.17 93.14 62.89 

IPE 240 178.48 174.29 176.73 125.52 90.56 

IPE 270 273.25 273.28 270.66 157.69 127.37 

IPE 300 413.59 420.70 406.92 203.64 172.04 

IPE 330 579.28 597.66 572.20 250.62 215.13 

IPE 360 821.91 850.50 806.09 315.28 275.33 

IPE 400 1148.93 1183.51 1110.20 383.08 341.32 

IPE 450 1596.85 1671.94 1548.30 501.56 435.68 

IPE 500 2190.69 2354.40 2158.40 623.86 554.99 

IPE 550 2930.69 3212.96 2928.90 756.28 678.74 

IPE 600 4677.88 4427.48 4010.90 940.96 882.53 

IPE 100 

2500 

4.62 5.04 4.64 4.66 0.04 

IPE 120 5.01 8.32 7.98 8.06 0.16 

IPE 140 13.03 13.20 13.09 13.14 0.61 

IPE 160 20.70 20.60 20.79 20.36 1.90 

IPE 180 31.10 30.68 31.44 30.21 5.34 

IPE 200 46.58 45.66 46.85 43.58 12.55 

IPE 220 68.88 66.93 69.00 60.83 27.17 

IPE 240 100.34 97.60 100.30 83.97 47.49 

IPE 270 153.44 149.81 152.05 111.37 78.71 

IPE 300 227.62 227.15 226.39 145.40 115.46 

IPE 330 320.72 321.15 317.08 183.84 150.84 

IPE 360 448.53 454.21 444.46 230.65 198.14 

IPE 400 619.07 629.30 609.04 287.02 248.05 

IPE 450 847.93 883.59 843.75 357.03 318.18 

IPE 500 1204.29 1238.94 1170.30 446.34 407.00 

IPE 550 1637.31 1687.23 1583.30 562.43 500.25 

IPE 600 2235.76 2319.16 2160.30 703.94 650.52 

IPE 100 

3000 

3.08 3.44 3.08 3.11 0.01 

IPE 120 3.29 5.62 5.25 5.32 0.05 

IPE 140 3.54 8.81 8.53 8.49 0.19 

IPE 160 13.37 13.61 13.44 13.88 0.59 

IPE 180 20.06 20.00 20.18 19.94 1.69 

IPE 200 29.90 29.54 29.96 28.98 4.18 

IPE 220 43.54 42.73 43.88 41.22 10.21 

IPE 240 63.10 61.89 63.59 59.46 21.10 

IPE 270 95.81 93.21 95.68 80.80 43.34 

IPE 300 142.61 139.31 141.52 107.71 73.51 

IPE 330 200.10 196.04 197.65 139.41 104.75 

IPE 360 276.97 275.53 276.06 186.65 145.01 

IPE 400 380.57 380.04 376.98 222.18 186.48 

IPE 450 524.17 530.18 519.59 287.56 242.90 

IPE 500 727.46 739.97 717.59 348.59 313.45 

IPE 550 979.80 1005.44 968.32 452.78 387.04 

IPE 600 1319.75 1378.19 1317.40 551.96 504.52 
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The existing analytical method formulations have been optimized according to the FEA analysis results obtained 

by utilizing the ANSYS program. There are two main reasons for choosing the buckling load values to be referenced 

in FEA calculations from the ANSYS program instead of SAP2000. Firstly, cantilever beams are modelled as Solid 

elements in the ANSYS program and as Shell elements in SAP2000. Secondly, in SAP2000, while the web and flanges 

are joined perpendicular to each other at an angle of 90o; The web and flange joints of the models in ANSYS are 

curvilinear and exactly the same as the real profile geometry. For these reasons, the ANSYS program was used for the 

buckling load values taken as a reference within the scope of the research. The comparisons of the buckling load values 

of the IPE series cantilever beams of five different lengths calculated by five different methods are as given in Figure 

5. 
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Figure 5. Lateral buckling loads of cantilever beams of different lengths 

 

 

OPTIMIZATION TECHNIQUE FINDINGS WITH MICROSOFT EXCEL SOLVER 
In the second stage of the study, the a and b coefficients in Equation 12 were calibrated with the help of 

Excel−Solver, keeping the relationship between the 𝛾2 factor and the L2C/C1 ratio. The analyses have been conducted 

on a computer with an AMD Ryzen 7 PRO 3700 8-Core 3.60 GHz processor and 8 GB RAM. In addition, the c, d and 

f coefficients in Equation 13 of AISC and DCCPSS Regulations were calibrated with the help of Excel−Solver. At this 

stage, two different calibration processes were carried out using two different equations. The graph of the relationship 

between the ratio L2C/C1 given in Table 1 and 𝛾2 is given in Figure 6. As can be seen in Figure 6, there is an exponential 

relationship between the ratio L2C/C1 and 𝛾2 as in Equation 12. Therefore, the coefficients of Equation 12 were 

optimized to determine the 𝛾2 factor. In the advancing age of science, there are new methods for calculating lateral 

buckling load values as well as the Timoshenko and Gere [6] equation. The c, d and f coefficients of Equation 13 were 

calibrated by adhering to AISC and DCCPSS Regulations and using the lateral buckling load values obtained from the 

ANSYS program. 

𝛾2 = 𝑎 ∙ (𝐿2 ∙
𝐶

𝐶1

)
𝑏

 (12) 

 

𝐹𝑐𝑟 =
𝐶𝑏 ∙ 𝜋2 ∙ 𝐸

(
𝐿𝑏

𝑖𝑡𝑠
)

2 (𝑐 + 𝑑 ∙
𝐽𝐶

𝑊𝑒𝑥 ∙ ℎ𝑜

∙ (
𝐿𝑏

𝑖𝑡𝑠

)
2

)

𝑓

 (13) 

c= 1, d= 0.078, f= 0.5  
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Figure 6. Relationship between L2C/C1ratio and γ2 

 

 

The coefficients of Equation 12 and Equation 13 were calibrated using Excel Solver so that the RMSE error 

criterion was the smallest. The coefficients of the calibrated equations are given in Table 3. As seen in Table 3, the 

new coefficients are different from each other. Comparison criteria for two different calibrated equations are given in 

Table 4. The approximate MSE values of the calibrated equations were obtained as 890, MARE values of 50 and MAE 

values of 24. NSE error value was used because of high MSE values. An NSE value greater than 0.9 indicates that the 

estimate is correct. The scatter plots in Figures 7-8 are quite good as there is no deviation from x=y (45°). 

 

Table 3. Coefficients for calibrated models 

Models a b  

Caliber Model1 3.896068277 0.419127105  

 c d f 

Caliber Model2 0 0.160835288821455 0.919080100568975 

 

 

 
 

Figure 7. Comparisons of the prediction and ANSYS values of the buckling load for Calibration Timoshenko 

and Gere equation 
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Figure 8. Comparisons of the prediction and ANSYS values of the buckling load for Calibration AISC - 

DCCPSS 

 

Table 4. Comparison criteria of modified equations 
 NSE MAE MARE MSE RMSE R2 

Caliber Model1 0.994 24.30 51.56 892.56 29.88 0.995 

Caliber Model2 0.994 24.29 51.47 891.46 29.86 0.995 

 

In recent years, machine learning research in the construction industry have used a maximum of 3 performance 

criteria [47,49,50,52,53,61–65]. The equations created utilizing the six performance criteria have undergone a thorough 

analysis in this study. Six performance parameters were used to objectively assess the Caliber models' performance. 

The correlation coefficient R has been utilized as a performance criterion in machine learning studies in the field 

of construction the most frequently in recent years [49, 50, 52, 53, 63–67]. The R value for these studies in the literature 

was discovered to be somewhere in the range of 0.9, and the correlation between the actual predicted value and the 

observed value was only somewhat stronger. Additionally, several researchers used the R2 criterion to assess the 

effectiveness of the models they created for machine learning investigations [47,50,53,61]. The R2 criteria was 

determined to be more than 0.9 in these investigations. This finding demonstrates that prediction and observation have 

a stronger link. The determination factor R2 criteria was utilized in this work instead of the R coefficient, which would 

have been misleading for assessing the performance of the models. Tables 4 show that the Caliber models' findings 

meet the R2 criteria of larger than 0.9 and that there is a stronger connection between prediction and observation.  

The amount of time that passed while the suggested strategy was being used is another important finding. It took 

0.173 seconds to optimize the coefficients. With the developing technology, the proposed approach for calculating the 

buckling load is not only accurate but also significantly faster. Thus, decreases the amount of computation necessary 

to carry out such an analysis. 

Excel−Solver has been used in optimization studies in the field of construction in recent years [36,38–40]. 

However, it was used for the first time in the field of construction in the optimization of the coefficients of an equation 

in this study. 

 

CONCLUSIONS 
Analytical solutions become very complex when the beam end conditions are a cantilever beam with a fixed support 

as opposed to a simple support. Therefore, numerical approaches such as the finite element method are needed to solve 

the fundamental differential equilibrium equations. Despite having various types of smart automating, finite element 

types, and executed analyses, two identical models examined using the finite element method in two distinct verified 

software’s should have produced findings that are equal. Because the mesh cannot be adjusted, the usage of 

isoperimetric components on SAP2000 can only be used to make initial estimates for early phases of study. Finite 
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elements with more nodes or integration points are not an option in SAP2000. ANSYS software, which is more suitable 

for research than design, has been preferred in finite element analysis due to the advantage of the selection and full 

control of different finite element meshes, where different behaviour rules of materials can be applied, and possible 

complex analysis applications. 

In today's steel specifications, no distinction is made in the design and calculation methods of simply supported 

beams and cantilever beams under the buckling effect. However, the buckling zones on the steel beams change 

according to the end support conditions. Considering these situations in differential equilibrium equations creates quite 

complex problems in generating analytical solutions. Instead, existing analytical formulas were optimized for 

cantilever beams with reference to finite element analysis. Thanks to the results obtained, the buckling load calculation 

of cantilever beams can be successfully solved with the help of renewed closed form equations. This renewed formula 

can make very high accuracy predictions, which can be an alternative to finite element analysis. 

The proposed approach in optimizing the coefficients has taken only 0.173 seconds, it can be concluded that 

employing Excel-Solver reduces the computational cost that is required to conduct for buckling loads of IPE-Section. 

85 numerical calculations were conducted to determine the buckling load of IPE cantilever beams with varied length. 

Therefore, only cantilever beams with the IPE section are compatible with the calibrated equation created using the 

Excel-Solver. Other I-section cantilever beams require a significantly wider variety of numerical analysis. In further 

studies, experimentally validate the proposed method and its results is recommended for buckling load calculations. 

 

NOTATION 

 

Pcr  : Critical buckling load 

L  : Beam length 

E  : Modulus of elasticity 

Iy  : Moment of inertia about the weak axis 

C  : Torsional stiffness 

C1  : Distortion stiffness 

Cb  : Moment correction coefficient 

Fcr  : Critical Stress 

Lb  : Length of element not supported by stability joint 

its  : Effective radius of inertia 

J  : Torsional constant 

Cw  : Distortion constant 

Wex  : Elastic section modulus about the strong axis 

ho  : The distance between the centres of gravity of the cross-section flanges 

𝛾2 : a dimensionless coefficient  

𝑀𝑚𝑎𝑘𝑠: The absolute value of the maximum bending moment along the length of the laterally unsupported beam 

𝑀𝐴 : The absolute value of the bending moment at 1/4 point of the laterally unsupported beam length. 

𝑀𝐵 : The absolute value of the bending moment at 1/2 point of the laterally unsupported beam length. 

𝑀𝐶 : The absolute value of the bending moment at 3/4 point of the laterally unsupported beam length. 

𝐵𝐿𝑝 : Buckling load estimated by calibrated models 

𝐵𝐿𝑎𝑛𝑠𝑦𝑠: Buckling load obtained from ANSYS analysis 

n : Length of the series 

𝐵𝐿𝑎𝑛𝑠𝑦𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ : Average of the buckling load obtained from ANSYS analysis 
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