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ABSTRACT

In the work we obtain some Hermite-Hadamard type inequalities for generalized fractional 
integrals for convex functions by employing a fractional integral operator, establishing, firstly, 
a basic identity that is used throughout the work. In addition, some classical integral inequal-
ities are special cases of our main findings.
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INTRODUCTION

Fractional calculus is a field of mathematical analysis 
that studies integrals and derivatives of arbitrary order. The 
concept of fractional operators appearances almost simul-
taneously with the development of the classical calculus in 
a letter written to l’Hˆopital by Leibniz in 1695, where the 
question of meaning of the fractional derivative has been 
raised.

Despite Fractional calculus was contemporary with 
classical calculus, has been gaining attention in the last 
40 years and has become one of the most active areas in 
Mathematics today. For instance, we can find applications 
in areas like: rheology, viscoelasticity, acoustics, optics, 
chamical and statistical physics, robotics, control theory, 
electrical and mechanical engineering, bioengineerin, etc. 
[30, 31]. In particular, this has led to the emergence of new 

comprehensive operators which are natural generalizations 
of the classical Riemann-Liouville fractional integral. In a 
previous work (see [11]) the authors define a generalized 
operator that contains as a particular case several of those 
reported in the literature.

Some Preliminaries on the Fractional integration
Let ϕ : I ⊆ R → R be a convex function defined on the 

interval I of real numbers and a1,a2 ∈ I with a1 < a2. The 
following inequality

  (1)

holds. This inequality is known in the literature as a 
Hermite-Hadamard integral inequality for convex func-
tions [12]. Some extensions and generalizations of this 
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inequality, with different fractional and generalized oper-
ators and using different convexity operators, can be con-
sulted in [3, 4, 5, 6, 7, 8, 10, 13, 15, 16, 19, 20, 21, 22, 23, 24, 
25, 26,33, 34, 35, 36, 37, 38].

Definition 1. The k-generalized fractional Riemann-
Liouville integral of order α with α ∈ R, and s/= −1 of an 
integrable function ϕ(u) on [0,∞), are given as follows 
(right and left, respectively):

  (2)

  
(3)

With 
.With the functions Γ (see [27, 28, 29, 39, 40]) and Γk defined 
by (cf. [9]):}

  (4)

  (5)

It is clear that if k→1 we have Γk(z)→Γ(z), 
 and  

As well, we define the k-beta function as follows 

 notice that 

 
and 

Remark 2. We want to point out that for adequate ker-
nel F choices, we can obtain as particular cases, several frac-
tional integral operators. So we have:

i) The classic Riemann integral is obtained with F(t,α) = 
tα−1, α = 1 and β = k (with notation changed).

ii) If F(t,α) = tα−1 and β = k we obtain the fractional 
Riemann-Liouville integral.

iii) Considering F(t,α) = ts with s = 1, we 
can write the right sided operator as follows 

 and similarly the 

left sided integral. The k-Riemann-Liouville fractional inte-
gral of Mubeen and Habibullah (see [18]).

iv) Katugampola fractional integral of [14] is obtained, 
taking F(t,α) = t−α (the notation is changed).

v) If we put F = t−s with s = 1, then we get the right sided 
Hadamard fractional integral of [12].

vi) An integral operator with non-singular kernel can 
also be obtained from our Definition 1. Thus, considering 

, if α = 1 we have that F = 1. In this case  

, a slight modifica-
tion of the operator defined by Kirane and Toberek in [2].

The main purpose of this paper, using the generalized 
fractional integral operator of the Riemann- Liouville type, 
from Definition 1, is to establish several integral inequali-
ties of Hermite-Hadamard type, which contain as particu-
lar cases, several of those reported in the literature.

Main Results
Let ϕ : Io →R be a given function, where a1,a2 ∈ Io 

with 0 < a1 < a2 < ∞. We assume that ϕ ∈ L∞[a1,a2] such 

that  and  are well defined. 

We define  
and 
. Notice that by using the change of variables  

, we have that (2) becomes in

  
(6)

where u > a1.
Theorem 3. For α,k > 0 and s≠-1. If φ is a convex func-

tion on [a1,a2], then we get

  (7)

Proof. For w ∈ [0,1], let η1 = a1w+(1−w)a2 and η2 = 
(1−w)a1+a2w. As φ is convex, we obtain 

 

That is,

  (8)

Now, multiplying both sides of (8) by 

 

and integrating over (0,1) with respect to w, we have

Additionally, we note that 
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Using the identity 

, from 

(6) we get

and

Therefore, we obtain

  
(9)

Analogously, multiplying both sides of (8) by

 

integrating over (0,1) with respect to w, and from (6), 
we also have

  
(10)

Thus, from inequalities (9) and (10), we obtain

which is the left-hand side of (7). Besides, since φ is con-
vex, for w ∈ [0,1] we get

 (11)

Multiplying both sides of (11) by

 

and integrating over (0,1) with respect to w, we get

That is,

  
(12)

Similarly, if we multiple both sides of (11) by

 

integrating over (0,1) with respect to w, and from (6), 
we obtain

  (13)

Finally, adding (12) and (13), we get

Therefore, the proof is complete.
Remark 4. If in the Theorem 3 we put F(τ,s)=τs, we have 

 , so the above Theorem 

becomes Theorem 2.1 of [1].
The next result will be crucial going forward.
Lemma 5. For α,k > 0 and s≠-1. If φ is a differentiable 

function on Io such that φʹ ∈ L[a1,a2], then we have

  
(14)

where

Proof. Integrating by parts, we get
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  (15)

Similarly, we obtain

 

  (16)

Now, using the fact that , and 
computing (15) and (16), we have

 (17)

Notice that we have

Thus, we can obtain

  

(18)

and

   

(19)

Thus, from (17), (18) and (19) we obtain (14).
Remark 6. Under the Remark 4 conditions, this result 

becomes Lemma 2.1 of [1].
Now, for α,k > 0, s≠-1 and u,v ∈ [a1,a2], we introduce the 

following operator:

Using Lemma 5, we can get the following result.
Theorem 7. For α,k > 0 and s≠-1. If φ is a differentiable 

function on Io such that φʹ ∈ L[a1,a2] and | φ ʹ| is convex on 
[a1,a2], then

  

(20)

where

Proof. Using Lemma 5 and the convexity of |φʹ|, we have

  

(21)

Observe that 

 

where

Note that ρ is non-decreasing func-
tion on [a1,a2]. Moreover, we get ρ(a1)<0 and  

. Thus, we obtain

Thus, we get

, where

We note that λ1 = ψ(s,a2,a2) and λ2= −ψ(s,a2,a1), and 
using the change of variable r = a2+a1−w, we obtain that  
 λ3 = −ψ(s,a1,a1) and  λ4= −ψ(s,a1,a2). Therefore, we get

  (22)

Similarly, we obtain
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  (23)

Therefore, the inequality (20) follows from (21), (22) 
and (23).

Remark 8. As before, this result contains as a particular 
case Theorem 2.2 of [1].

CONCLUSIONS

We want to point out, by way of conclusion, that we have 
obtained some results, including a Hermite-Hadamard 
Inequality, which generalize several previous results for 
k-integral operators and that, if we choose other functions 
F(τ, s), we will obtain additional inequalities not reported 
in the literature. Thus, putting F(τ, s) = τs and k = 1, we 
obtain integral inequalities for the Katugampola fractional 
integral, not known by the authors.

Regarding the above, we can add the following. If in 
the Theorem 3 we consider the integral operator of the 
Definition 1 with F ≡ 1 and k = 1, that is, we have the 
Riemann-Liouville fractional integral , this result is a slight 
variant of Theorem 2 from [32].

The above is still valid for Lemma 1 of [17], if we put 
F(τ, s) = ψʹ(τ) and k = 1.
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