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ABSTRACT

With the invention of powerful processing devices as well as lucrative capabilities in the first 
two decades of the 21st century, machine learning algorithms will soon be able to predict 
speaker age with higher accuracy or much lower error rate. It is an age-old quest for the human 
society to profile individuals remotely which basically includes age. Speaker age estimation 
has been treated in quite few perspectives. However, most of these approaches fail to show 
the effect of utterance length, aka number of frames on speaker age estimation. We present a 
detailed analysis on the effect of number of frames and position of frames for speaker age es-
timation using four magnitude-based and one phase-based spectral feature sets. The optimal 
speech duration for this objective is investigated. In addition, the mismatch between the train-
ing and test utterance duration is explored. The magnitude-based features are mainly derived 
from filter bank analysis. After the filter-bank analysis, an i-vector is generated for each utter-
ance. Least squares support vector regression (LSSVR) is employed for speaker age estimation. 
In the experiments, the aGender database which consists of utterances from four age groups 
of German speakers is used. Increasing number of frames in the training and test increases 
the age estimation accuracy. This can be associated with the notion that more data helps the 
estimation process. Concerning position, the frames located at the centre of utterances tend to 
offer better results for both genders. The backend algorithms offer the best performance when 
the utterance length of training and test sets are equal for longer speech segments, otherwise 
training with medium length utterances and testing with longer ones offers better estimation 
performance especially for the female dataset.
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INTRODUCTION

The intent of associating speech duration with perfor-
mance of speaker age estimation came to our attention 
based on how the length of a conversation helps people to 
recognize the person they are talking to over a telephone. 
It takes several seconds or a couple of minutes in phone 
calls to recognize people from unknown phone numbers. It 
might be extremely hard to recognize our loved ones only 
by the first hello sound. But it gets easier and easier as the 
conversation goes on. In fact it also changes from person 
to person. Some can recognize quickly and others may not 
be able to find out even after the end of their conversation. 
Therefore recognition capability depends not only on the 
length of speech but also does on the training of the precep-
tor as well. By the same token speaker age estimation can 
also depend on length of utterances and training or adapta-
tion of preceptors. Several studies have dealt with varieties 
of feature extraction techniques, classification and estima-
tion schemes for speaker age estimation. For instance Buket 
D. Barkana and Jingcheng Zhou proposed pitch-range (PR) 
based feature set for age and gender classification in their 
article published in May 2015 [1]. PR achieved accuracies 
of 92.86%, 83.61%, 83.02%, 73.58%, 67.35%, and 34.33% for 
middle-aged female, senior female, children, middle-aged 
male, young female and senior male speakers respectively. 
Hence PR is the best to classify middle-aged female speak-
ers whereas it failed to classify even half of the available 
senior male speakers correctly. 

It is plausible to believe that listeners older than at least 
20 years can judge speaker age at accuracy levels much bet-
ter than chance. Actually, speaker age estimation relies on 
numerous perceptual features, including pitch, speech rate, 
loudness and voice quality [2]. In addition, a significant 
number of other factors may influence age perception. These 
can be related to (1) the speaker, e.g. gender, physiological 
condition and language spoken, (2) the listener, e.g. age, cul-
ture and motivation, (3) the speech sample, e.g. stimulus type 
(such as read or spontaneous speech) and length, and (4) the 
task, e.g. whether it involves classifying speakers into two 
or more age groups or making an exact estimation of age. 
The numerous studies with listening experiments are diffi-
cult to compare because of differences in subjects, speech 
material and method. Owing to the probable influence of 
these factors, there is no single answer to the question of how 
accurate listeners’ judgements of speaker age actually are. 
Furthermore, although most studies carried out so far have 
found pitch and speech rate to be the most important percep-
tual cues to speaker age, some recent studies have suggested 
that spectral qualities may also be important.

Mel frequency cepstral coefficient (MFCC) has been 
repeatedly used with several back end schemes for speaker 
age estimation either in the form of regression or classifica-
tion. MFCC gives the effective results in clean environment 
but it drops the results in noisy environment [3]. MFCC 
achieved 88.57% accuracy to identify speakers in noise 

mismatch condition with neural network classifier, in a 
noisy environment. The modified group delay function has 
been used in conjunction with the standard MFCC-based 
feature for speech recognition and improved phoneme rec-
ognition accuracy by 2% absolute over the best baseline 
MFCC-based system [4].

A study conducted on speaker age estimation using 
i-vectors briefly mentioned that speech duration, environ-
ment, recording device and channel conditions are some of 
the technical factors which influence the estimation accu-
racy of speaker age [5]. In other words, in a typical practical 
scenario, the quality of the available speech signal and the 
recording conditions are not controlled and the duration of 
the speech signal may vary from a few seconds to several 
hours. We have used the aGender database which consists 
of utterances as short as below half a second and as long as 
a little over 10 seconds [6].

Cepstral trajectories corresponding to lower (3-14 Hz) 
modulation frequencies provide best discrimination [7]. 
Accordingly modulation cepstrum achieved 50.2% over-
all accuracy for 7 age classes. This fact hinted the possible 
front-end options which can contribute for speaker age 
estimation positively. 

Muller, Christian, Frank Wittig, and Jorg Baus argue 
that context and user diversity needs to be accommodated 
in order to come over the challenge of universal usability 
in their 2003 article for European conference on speech 
communication and technology [8]. They indicated that 
unlike linguistic features acoustic and prosodic features 
can be extracted relatively easily before the actual speech 
recognition process. In [9], the role of language variations 
in speakers for age estimation is investigated. Accordingly, 
a multilingual speaker age estimation study conducted on 
6 languages widely spoken in South Africa mean abso-
lute error (MAE) ranging from 7.7 to 12.8 years for same 
languages predictors is obtained. On the other hand the 
cross-language predictor offered an MAE value of 14.5 
years. This clearly shows that the best predictions are 
obtained when training and test utterances are drawn from 
the same language. On the contrary to this a study con-
ducted on human listeners showed that being able to speak 
someone’s language does not help to predict his/her age [9].

Recently deep neural networks (DNN) have been giv-
ing impressive performances in numerous speech process-
ing applications. To mention some of their achievements 
in speaker age estimation; a mean absolute error (MAE) 
of 4.9 is achieved by applying x-vector neural network 
architecture on national institute for standard and tech-
nology (NIST) SRE08 dataset for training and NIST SRE10 
for evaluation [10]. This architecture uses a series of time 
delay layers (TDNN) followed by a temporal pooling layer 
which summarizes the feature sequence into a single fixed 
dimension embedding. The embedding is fed into a series 
of feed-forward layers to predict the age value. The x-vector 
alone outperformed the i-vector baseline by 14%. In addi-
tion combining both the i-vector and x-vector improved the 
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i-vector baseline result by 9%. Recurrent neural networks 
(RNNs) are used in temporal information or sequences and 
hence suitable for speech processing applications unlike the 
convolutional neural networks (CNNs) which are widely 
used in image and pattern recognition. A typical RNN; long 
short-term memory (LSTM-RNN) is proposed for speaker 
age estimation and are able to deal with short utterances 
(from 3 to 10 s) [11]. LSTM-RNN can be easily deployed in 
a real-time architecture and has been tested using data from 
NIST speaker recognition evaluation 2008 and 2010 data 
sets. It has been compared to state-of-the-art i-vector sys-
tems and achieved from 18% to 28% relative improvement 
in terms of mean absolute error.

(Büyük and Arslan, 2018) contributed an article on 
how the combined effect of long term and short term fea-
tures ımproves the performance of speaker age classifica-
tion [12]. Gaussian mixture model (GMM) combined with 
DNN offered the best standalone performance with 74.22% 
accuracy and a 4% increase is achieved bringing short term 
and long term features together, which exhibited 77.5% 
accuracy. These authors proposed feed forward neural net-
works for age identification in another study which offered 
74% classification accuracy [13]. An investigation of multi-
lingual speaker age classification has been made with DNN 
and other two classifiers [14].

Recently, age dependent insensitive loss has been used 
to estimate speaker age and short duration speech data has 
been employed for speaker profiling [15-16]. The former 
study reported improvements in the mean absolute error 
(MAE) value ranging 3.1% to 5.2% using the NIST SRE 
10 database as an evaluation set. And the later achieved 
MAE values of 5.2 years, and 5.6 years for male and female 
speakers respectively. Regression algorithms have also been 
proposed for emerging fast surrogate models in order to 
mitigate the high CPU computational cost due to massive 
simulations which is regarded as the major bottle neck 
in electromagnetic (EM) antenna design [17]. In a much 
anticipatory study to DNN surrogates, fully connected 
regression model (FCRM) based on Bayesian optimization 
is proposed for accurate modelling of frequency selective 
surfaces [18]. DNN based regression models have shown 
impressive performances with the increase of hardware 
processing speed recently. In this regard, a fully-connected 
regression model which combines a DNN surrogate with 
automated architecture and hyper-parameter determina-
tion using Bayesian optimization is proposed for improved 
modeling in microwave structures [19].

In a vast majority of studies speaker age estimation has 
not been dealt in utterance length perspective emphatically. 
Although we do not have control on the nature of incom-
ing speech during a real time application, we can design a 
robust estimation algorithm which accommodates speech 
length diversity. Therefore, we decided to address this gap 
in our study. Accordingly the aim of this study is:

1) to prove that increasing the number of frames 
has a positive impact on speaker age estimation 

performance and to investigate on training-test utter-
ance length mismatch effects. This helps to develop 
and implement a robust system for speaker age 
estimation.

2) to find out which set of frames contribute better per-
formances; the frames found at the beginning, cen-
tre or end of utterances. 

Universal back ground model (UBM) is used before 
i-vector extraction to determine the universal supervector 
[20]. Using the universal supervector we defined a total 
variability matrix (TV) which compensate the session and 
space variability [21]. The factor analysis and concepts 
related to i-vectors are well explained in a lecture note 
organized by academic members in Hong Kong university 
[22]. Five feature extraction schemes are employed as a 
frontend approach. Four of these being magnitude spectral 
features which only differ in filter banks and the remain-
ing is a phase spectral feature called modified group delay 
(MODGD)[23].

The remaining part of this study is organized as fol-
lows: section 2 presents front end analysis and some fea-
ture extraction schemes applied in our experiments, section 
3 focuses on the regression techniques used in our setup 
where a brief discussion of radial basis functions (RBF) and 
least squares support vector regression are made. Section 4 
presents the experimental setup, and results are presented 
in section 5 and a discussion about outcomes follow in the 
same section. Finally a concluding remark is made in sec-
tion 6. Resources and reference materials are listed at the 
end of the article.

FRONT-END ANALYSIS AND FEATURE 
EXTRACTION

The front-end analysis begins with accessing each audio 
file from its location and ends with generating a set of real 
numbers called features. Figure 1 below shows the complete 
diagram starting from speech production at the articula-
tory system which consists of lung, larynx and vocal tract. 
Once the speech is produced it is recorded. The recording 
device as well as the communication medium affects the 
performance of speaker age estimation. There is a missing 
block though which basically applies a pre-emphasis filter 
on each entire utterance before cutting it in to pieces using 
framing windows. The pre-emphasis filter is applied for the 
following purposes:

1) to amplify high frequency components 
2) to balance the frequency spectrum 
3) to avoid numerical problems during discrete Fourier 

transform (DFT) operations and 
4) to improve the signal to noise ratio (SNR) of speech 

utterances [24]. 
Given a discrete speech sequence x[n] accessed using a 

Matlab command, { [x, fs]= audiored(wavFilePath); }, the 
pre-emphasis is defined as:

 y[n] = x[n] - αx[n - 1] (1)
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y[n] is processed in the last and bigger block set shown 
in Figure 1 above. The first thing to do after pre-emphasis 
is framing to split the longer speech segment in to pieces 
to get relatively static frames using a hamming window of 
length 20 milliseconds and 10 milliseconds overlap given 
in equation (2) [25]. Following windowing the frequency 
domain representation of each frame is determined using 
DFT since spectral features depend on spectrums rather 
than time domain amplitudes. 

The 3rd step after framing and DFT Inside the feature 
extraction block shown in Figure 1 above is employing fil-
ter banks. The filter banks can be designed in a variety of 

ways based on their shape, number and spacing. The four 
magnitude-based feature sets are mel frequency cepstral 
coefficient (MFCC), parabolic filter mel frequency ceps-
tral coefficient (PFMFCC) [26], rectangular filter cepstral 
coefficient (RFCC) and linear frequency cepstral coeffi-
cient (LFCC). The shape of these feature sets are displayed 
in Table 1 shown below with their impulse response filter 
function shown at the left of the table. RFCC offered an 
impressive performance for an experiment aimed at detect-
ing replay or spoofing attack [27]. MFCC and PFMFCC use 
mel scale to split the range of frequencies between the min-
imum and the maximum while LFCC and RFCC use linear 
scales in our experiments.

  
(2)

The next step after splitting the entire speech segment 
in to pieces is calculating the DFT of each frame. Frames 
are assumed to be more static than the entire utterance 
given their short duration 20 milliseconds, it is reasonable 
to believe so.

  
(3)

Figure 1. Speech production to feature extraction cycle. 

Table 1. List of filter banks in magnitude spectral feature extractions

Features Filter banks used
MFCC:

PFMFCC:

RFCC:
We used trapezoid functions

LFCC:
Functions are the same as MFCC but the spacing is linear 
rather than mel scale as in MFCC.
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The DFT of the jth frame is X[j,k] where M is the number 
of frames in a certain utterance which varies according to 
the duration of the speech, N is the DFT point and w[n − j]  
is the jth framing hamming window having equal length L 
for all j given by equation (2). The shortest speech segment 
is with M = 92 and the longest is M = 1077 frames long for 
the female dataset where as M = 111 and M = 1055 frames 
long respectively for the male dataset. The average length of 
the children dataset is 269 frames long.

Once we peak our filter banks H[i,k] from Table 1 above, 
we apply them on DFT of each frame X[j,k] as defined by 
equation (4) below. The effect is summed over the lower Li 
and upper Ui frequencies of each particular filter bank i. 

  (4)

  (5)

  (6)

Calculating the M static features using cepstral trans-
form which in turn applies logarithm on MF[i] values uses 
either DCT or inverse DFT for eventual generation of these 
features. We use equations (7), (8), and (9) to determine the 
static, dynamic and acceleration features respectively. The 
dynamic and acceleration features are commonly called as 
delta and double delta respectively.

  
(7)

  (8)

  (9)

where R is the total number of band bass filter banks 
used which is 30, t is an index used to identify adjacent 
frames whereas t + Q and t − Q are indexes of the farthest 
neighbour frames involved in calculation of the tth frame 
dynamic and acceleration features. R could be a parameter 
of interest for further study. 

In addition to the magnitude-based spectral features 
shown in Table 1 above, our study included several inves-
tigations on a phase-based spectral feature called modified 
group delay (MODGD) for speaker age estimation using 
LSSVR. These feature sets are extracted from the phase 
component of the DFT of speech frames as defined in (10). 
MODGD is the negative rate of change of the phase spec-
trum θ(ω) with respect to frequency ω [4] [23]. 

  (10)

θ(ω) is taken from X(jω) written in its magnitude 
and phase components using polar representation as 
|X(jω)|ejθ(ω). This feature set is used for speaker age estima-
tion with LSSVR in our study for the first time.

i-Vector
After the acoustic features are extracted for each frame 

i-vectors are determined for the entire speech segment of 
each utterance. For this computation UBM is trained using 
our development set and a universal mean super vector m 
is obtained and a total variability matrix T which compen-
sates the space and session variability is generated using the 
Microsoft speaker recognition research (MSR)[28] identity 
matlab toolbox [29]. Finally the i-vectors ωi for the ith utter-
ance consisting of acoustic feature frames Xi discussed in 
Table 1 above are determined as shown below. We carried 
out two tier feature extraction operation; first the acoustic 
features Xi and then the i-vectors ωi [30]. The tables and fig-
ures in section 5 display the performance of our regression 
model which is presented in section 3 below on i-vector 
sequences generated from (MFCC, PFMFCC, RFCC, FCC 
and MODGD) feature sets. While the acoustic features are 
a matrix of N rows by M columns where N represents num-
ber of features in each frame and M denotes the number of 
frames in each utterance after removing non speech frames, 
i-vectors are column vectors consisting of fixed number of 
sequences. We used 200 vector sizes in our experiments and 
256 for universal super vector in UBM training 

  
(11)

REGRESSION

Regression is a supervised learning problem where 
there is an input, X, an output, Y, and the task is to learn 
the mapping from the input to the output. The approach 
in machine learning is that we assume a model: Y = f(X) 
defined using a set of parameters θ where f(.) is the model 
and Y is a number in regression and is a class code (e.g., 0/1) 
in the case of classification. f(.) is the regression function or 
in classification, it is the discriminant function separating 
the instances of different classes. Machine learning algo-
rithms optimize the parameters, θ, such that the approxi-
mation error is minimized, that is, our estimates are as close 
as possible to the actual values given in training sets [31].

Multiple regression process incorporates multiple fea-
tures or covariates to determine the outcome. The choice 
of this regression technique depends on the relationship 
between each feature and the outcome variable too. As a 
particular input sample involves vectors or matrix a multi-
variate regression is carried out using matrix computation. 
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The multivariate regression model can be approached in 
the following ways: 

Let us assume the following notations for simplicity of 
our approach:

Input vector assumed to be 
Output value assumed to be 
Parameters 
Then we set up the model as 

  (12)

Given the training data  the least square 
cost or loss L(β)  is defined as 

  (13)

Here 

 

In addition, N and d are the number of samples in our 
training set and number of features in each sample respec-
tively. To find a minimum loss an optimization technique is 
applied and optimal parameters βj that could lead to a linear 
model are obtained. For this purpose we need to take par-
tial derivative of the loss function in (12) with respect to β.

  (14)

  (15)

Non-linear model is required when a linear model does 
not fit in available data to replace the independent vari-
ables xj in equation (12) above with a non-linear function 

 and these functions are named as non-lin-
ear features here after. The new estimation function f(x) 
is expressed in a similar fashion in equation (16) below. 
Nonlinear regression provides the most flexible curve-fit-
ting functionality. However it can take considerable effort 
to choose the nonlinear function that creates the best fit for 
the particular shape of the curve. 

  (16)

The expression for optimal parameter β remains 
the same as shown in equation (15) above except the 
independent variables xj

T are replaced by non-linear 
features φ(xj

T). These features depend on the choice 
of the model attempt to apply. Selected non-linear 

models will briefly be discussed in this section. Therefore, 
 for non-linear 

models or kernels.
One of the most widely used non-linear models in 

acoustic modeling is the radial basis function (RBF) which 
is briefly discussed below. Some kernel functions are shown 
in Table 2 below.

Radial Basis Function (RBF)
Neural Networks are very powerful models for classifica-

tion tasks. But we used them for regression in our study to 
develop the least square support vector regression (LSSVR). 
We used our training dataset and we projected the training 
trend into the test set to make predictions. Regression has 
been discussed earlier at the beginning of this section and has 
many applications in wide range of areas including in finance, 
physics, medicine, meteorology, biology and many others. 
Radial basis function (RBF) is a neural network architecture 
commonly used in non-linear regression as well as func-
tion approximation in addition to their popular application 
in classification. An RBF network is a 2-layer network apart 
from the output layer. We have an input that is fully connected 
to a hidden layer. The output of the hidden layer is taken to 
perform a weighted sum to get our final output. Hence, its 
architecture is not deep. Unlike the neurons in conventional 
neural networks and deep neural networks (DNN), the neu-
rons in RBF networks contain Gaussian RBF. And hence the 
Gaussian RBFs are used as the activation functions. 

The figure above shows some Gaussian densities with dif-
ferent parameters and their combined effect. These Gaussian 
densities makeup radial basis function. As it can be clearly 
observed in the figure, the values of individual densities are 
bound to [0,1]. The resultant density depends on the means 

Table 2. List of some kernel functions for regression models

Kernel functions Description
Linear  
Polynomial :  
Radial basis 
function:
Splines : , where k is polynomial 

order, and m is number of polynomial 
kernel function gj(x). The approximation 
f(x)is a fitting functions while βj’s are 
coefficients.

Wavelets:

String − kernel : These kernels measure the similarity of 
pairs of strings [32]. For instance, assuming 
str1 and str2 as two strings the kernel 
measure φ(str1, str2) would provide a 
higher value for higher similarity between 
str1 and str2.
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and variances of all the individual densities. The individual 
densities follow normal distribution whose mathematical 
expression for univariate and multivariate random variables 
is given by equation (17) and (18) respectively.

  (17)

For a multivariate dataset like ours equation (17) is 
rewritten as:

  (18)

Here  is the Mahalanobis dis-
tance and  |Σ| is the determinant of the covariance matrix 
of the dataset X. 

The mean μ determines the center of the symmetrical 
graph where half of the whole dataset lays to the left of this 
vertical line and the other half remains to the right of the 
symmetrical vertical line representing (x = μ). In Figure 2, 
the Gaussians have different colors and are weighted differ-
ently. Taking the sum of all the probability densities gives 
a continuous function. The parameter which indicates the 
closeness of individual data sample is the variance σ2 or in 
some literatures is the standard deviation σ which is the 
square root of the variance. Accordingly a large variance 
shows a wide variation between data samples therefore the 
resulting bell curve is shorter in height, flat and wide open. 
On the other hand, a small variance results in a long, steep 
in shape and indicates very close individual data samples.

Technically, the  probability density function 
(pdf)  described in equations (17) and (18) is used to 
determine the probability of observing an input x or X in 
multivariate case given that specific normal distribution. 
However the bell-curve properties of the Gaussian are more 
important than the fact that it represents a probability dis-
tribution for the application of radial basis function (RBF). 
It is logical to observe an inverse relation between the maxi-
mum of the probability density function, which occurs at (x 
= μ) and evaluated as  since the total area 
covered by the bell curve is supposed to be unity. A linear 
combination of Gaussian density functions with a certain 
number of centers and a wide range of variances can be 
used to approximate any function. 

The centers cj for each kernel function φj(.) of the RBF 
are determined using k-mean algorithms. The regression 
process begins after initializing the necessary variables and 
parameters. The input at the very beginning is a set of fea-
tures for each sample speaker in our study which is given 
by  where d is the dimension of 
the input or number of features representing each speaker. 
The approximation function which produces the estimate 
age  where N represents the num-
ber of utterances in the specified dataset, is given by:

  (19)

  (20)

The sum of the squared error is given by the cost for-
mula shown below.

  (21)

Now we apply optimization algorithms step by step to 
find optimal weight parameters ωj and the bias b. For this 
purpose we take the partial derivative of the error function 
with respect to ωj and bias b separately to compute optimal 
weights and optimal bias respectively. 

 

The new weights will be updated considering the error 
they have incurred in the previous iteration using the learn-
ing rate η. The result of the partial derivative is given by:

 
Then we deduce the updated weights are

. 
Similarly for the new bias parameter we take the partial 

derivative of the error function with respect to b. Algorithm 
1 below procedurally implements the instructions depicted 
in Figure 3.

Figure 2. Gaussian probability density functions forming 
kernel functions.

Figure 3. Radial basis functions and age estimation process 
for multivariate data.
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  Giving  

Algorithm 1: The process of training weight and bias 
parameters

Step. 1. Define the radial basis function RBF:
 def rbf(x, c, s):
 return np.exp(-1 / (2 * s**2) * (x-c)**2)
Step. 2. Define the approximation function using 

superposition of weighted radial basis func-
tions (RBFs)

 def predict(self, X):
  y_pred = []
  for i in range(X.shape[0]):
  a = np.array([self.rbf(X[i], c, s) for c, s, in
  zip(self.centers, self.stds)])
  F = a.T.dot(self.w) + self.b
  y_pred.append(F)
 return np.array(y_pred)
Step. 3.  Compute the error subtracting values gener-

ated by approximation function from actual 
values

Step. 4. Update the weights and bias parameters 
Step. 5.  Continue the process until the error reaches 

a specified level or a certain iteration is 
reached.

EXPERIMENTAL SETUP

We created a separate text file containing only actual 
chronological speaker age values. The age distribution 
ranging from 6 years old child to 80 years old senior speaker 
is shown in Figure 4 below. The utterances vary in duration; 
the shortest is 0.28 seconds in the children dataset and the 
longest is 10.79 seconds in the female dataset. The entire 
audio is sampled at 8 KHz.

We used Matlab on an Intel Core i-3 CPU processor 
with 8 GB RAM and 2.5 GHz processing speed to carry out 

the simulation. It approximately takes 4 hours to complete 
the simulation for a single feature type. Therefore, it has 
nearly consumed a total of 32 hours to complete the exper-
iment for both male and female datasets. However, we have 
later confirmed that a core i-7 CPU processor with 16 GB 
and 3.2 GHz processing speed reduced the processing time 
10 times, 

The experiment begins with accessing training and test 
utterances from the directory they have been stored. Right 
after a feature set is generated from a certain audio segment, 
an i-vector is extracted from it and is appended to a big 
matrix containing all i-vectors for the entire training audios 
using Matlab concatenation command. LSSVR follows after 
the training matrix is created. We used 100 kernels for the 
RBF in a single layer network and a learning rate of 0.01 
in the LSSVR framework. This is basically equivalent to a 
single layer conventional neural network with 100 neurons 
whose activation function is equal to the Gaussian radial 
basis function. An evaluation process is made based on the 
estimated speaker ages for test sets using the regression 
model and the actual chronological speaker age. The per-
formance of our model is evaluated using mean absolute 
error (MAE) and Pearson correlation coefficient (ρ) given 
by (22) and (23) respectively.

  (22)

  (23)

Figure 4. Age structure of the aGender database [6].

Figure 5. Audio to age prediction regression process.
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RESULTS AND DISCUSSION

Results
Experimental results for performance evaluation of 

i-vectors extracted from 4 magnitude-based and one phase-
based spectral features applied on LSSVR regression model 
are presented in this section, which basically exploits RBF 
for speaker age estimation. Except MFCC, the remaining 
feature sets have never been tested for speaker age estima-
tion with LSSVR to the best of our knowledge. Performance 
evaluation of speaker age estimation for the female dataset 
is displayed on Figures 6 and 7 in terms of mean absolute 
error (MAE) and ρ respectively. 

The experimental results for speaker age estimation 
performance in terms of MAE and Pearson’s correlation 
coefficient (ρ) for male dataset are shown in Figures 8 and 
9 respectively. These results further strengthen the perfor-
mance improvement observed in the female dataset shown 
in Figures 6 and 7 above. The results proved that increasing 
speech duration (number of frames) would likely improve 
the speaker age estimation performance.

The experimental results displayed in Figures 6 to 9 
above indicate significant changes in performance as the 
number of frames increases from 50 frames to 400 frames 

but, it slowly saturates and the changes remain sluggish for 
nearly all the feature sets after the 500th frame. Therefore, 
we can consider 4-5 seconds of speech as optimal to get an 
acceptable performance at least compared to speech dura-
tions ranging 0.5 to 10 seconds. We can avoid consider-
able amount of computational overhead with this optimal 
number of frames. However we suggest further research on 
speech durations longer than 10 seconds. 

The performance evaluation of the proposed algo-
rithm for different combination of mismatches in utter-
ance length is shown in Tables 3 and 4 for female and male 
datasets respectively. The values located along the diagonals 
represent matched performances while off-diagonal values 
represent performance of mismatch experimental results. 
In addition, the bold values show the best performances 
among mismatch experimental setups. 

Performance comparison of LSSVR model on direct 
acoustic features and i-vectors as a second tier feature 
extraction for utterance lengths of 3, 5 and 10 seconds as 
short medium and long speech utterances respectively is 
shown in Table 5. A similar analysis is carried out employ-
ing artificial neural networks (ANN) and long short-term 
memory (LSTM neural networks [11]. However, the study 
was carried out on the NIST SRE 2008/2010 database 
instead of aGender. 

Figure 7. Effect of number of female speech frames on 
LSSVR performance using the i-vectors extracted from five 
feature sets expressed in terms of Pearson correlation coef-
ficient ρ.

ρ

Figure 6. Effect of number of female speech frames on 
LSSVR performance using the i-vectors extracted from five 
feature sets expressed in terms of MAE.

MAE

No of Frames

Figure 8. Effect of number of male speech frames on LSSVR 
performance using the i-vectors extracted from five feature 
sets expressed in terms of MAE.

MAE

No of Frames

Figure 9. Effect of number of male speech frames on LSSVR 
performance using the i-vectors extracted from five feature 
sets expressed in terms of Pearson correlation coefficient ρ.

ρ

No of Frames
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Table 4. i-Vector followed by LSSVR performance evaluation for utterance length mismatch in terms of 
MAE for male dataset. (rows are training and columns are test frames)

a) PFMFCC-ivector-LSSVR b) MFCC-ivector-LSSVR

Number of test frames Number of test frames

200 500 1000 200 500 1000

N
um

be
r o

f t
ra

in
in

g 
fr

am
es

200 6.3400 6.1726 6.7498 6.2309 6.1849 6.1544

500 6.4308 6.1736 6.1982 6.1500 6.0680 6.0424

1000 6.3770 6.1555 6.1285 6.1354 6.0387 6.0147

c) RFCC-ivector-LSSVR d) LFCC-ivector-LSSVR

Number of test frames Number of test frames

200 500 1000 200 500 1000

200 7.1306 7.0903 7.0717 6.9685 6.9723 6.9873

500 7.1092 7.0687 7.0480 6.9442 6.9328 6.9380

1000 7.0919 7.0715 7.0459 6.9337 6.9219 6.9243

Table 3. i-Vector followed by LSSVR performance evaluation for utterance length mismatch in terms of 
MAE for female dataset. (rows are training and columns are test frames)

a) PFMFCC-ivector-LSSVR b) MFCC-ivector-LSSVR

Number of test frames Number of test frames

200 500 1000 200 500 1000

N
um

be
r o

f t
ra

in
in

g 
fr

am
es

200 6.6330 6.4602 6.4346 7.2220 6.8266 6.7969

500 6.7843 6.4467 6.4255 7.2520 6.8224 6.7935

1000 6.8052 6.4717 6.3630 7.2793 6.8467 6.8160

c) RFCC-ivector-LSSVR d) LFCC-ivector-LSSVR

Number of test frames Number of test frames

200 500 1000 200 500 1000

200 6.7310 6.3952 6.3650 6.8040 6.4187 6.3945

500 6.6540 6.2619 6.2190 6.6744 6.3622 6.3350

1000 6.6500 6.2607 6.2190 6.6514 6.3380 6.4570
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DISCUSSION

Our experimental results clearly show that longer 
speech segments performed better than the shorter ones. 
This proves that our assumption on longer speech durations 
contribute positively is right. All the feature sets showed 
consistency in proving positive impact of utterance length 
for speaker age estimation for both male and female data-
sets. In fact listeners usually need to hear enough before 
they recognize the speaker or predict speaker age. There 
was an attempt in a previous article which used LSTM for 
speaker age estimation to explore performance of 3 speech 
durations (3 s, 5 s and 10 s) [11]. However, the emphasis 
was on backend mechanisms rather than the nature of the 
speech. 

Due to the nature of our database which consists of an 
average length of 2 seconds we preferred to peak only fifty 
frames at the beginning, middle and end of each utterance 
and perform effect of their position in speaker age esti-
mation performance. It turns out that the frames at the 
middle showed insignificant but better performance than 
the remaining two positions. This could mainly be due to 
noise at the beginning and end of utterances. And it implies 
noise reduction can improve the overall performance. 
Accordingly MAE values of 8.004, 7.845 and 7.981 are 
recorded using the PFMFCC and i-vector LSSVR method 
for beginning, middle and end female frames respectively. 
The same method offered MAE values of 7.598, 7.452 
and 7.577 for beginning, middle and end male frames 
respectively

Utterance length is addressed slightly using least square 
support vector regression for acoustic feature sets on 
national institute of standard and technology (NIST 2008 
and 2010) speaker recognition evaluation (SRE) database 
[5]. MAE values of 10.63, 9.77 and 6.47 as well as Pearson 
correlation coefficient values of 0.76, 0.8 and 0.18 were 
obtained for male, female and children datasets respectively 
by applying LSSVR speaker age estimation on acoustic 

features in a recent study using the same aGender data-
base we used in our experiments. Our (i-vector+ LSSVR) 
approach has improved these performances by 43.41% and 
36.34% for male and female datasets using longer utter-
ances for the same database, respectively. 

Training with medium duration utterances and testing 
with longer ones showed a relatively better performance 
compared to other combinations in the female dataset. In 
addition this combination is second best if not the best 
choice among the list of combinations we used in male 
dataset. As training dataset is large our experimental ret 
that using medium utterances could save processing time 
without affecting the performance significantly. Training 
with longer utterances on the other hand, takes much time 
for simulation and could fail to recognize patterns from 
short duration test samples. 

CONCLUSION

In all our experiments, we observed increasing speaker 
age estimation performance as the length of utterances 
increases, irrespective of backend regression models or 
choice of feature extraction techniques. Hence our pre-
sumption is confirmed. In addition, the improvement till 
400 frames is significant and easily observable whereas it 
eventually slows down after the 400 frame middle thresh-
old. Hence, the improvement saturates once the increase 
in number of frames reached the 400 frames point. 
Accordingly we conclude that the 400-500 frames range is 
an optimal speech duration based on our simulation results. 

The best performance by the center frames compared 
to other positions indicates that the frames at the begin-
ning and end of speech segments suffer from noise and 
none speech frames mostly occur at the two ends. This 
gives more insight in to the significance of speech quality in 
speaker age estimation. 

The mismatches in length of training and test utterances 
offer poor performances compared to longer utterances for 

Table 5. Performance of our estimation algorithms on short, medium and long utterances for female and male datasets

Duration 
Female

MAE/ρ
Feature set used and 
improvement

Male 

MAE/ρ
Feature set used and 
improvement

3s 
Feature + LSSVR 11.704/0.580 RFCC, 44.98%

improvement
11.093/ 0.500 MFCC, 44.77%

improvementFeat +i-vector + LSSVR 6.439/0.781 6.127/0.746
5s 
Feature + LSSVR 11.628/0.592 RFCC, 46.15%

improvement
11.063/0.504 MFCC, 45.15%

improvementFeat +i-vector + LSSVR 6.262/0.796 6.068/0.7526
10s 
Feature + LSSVR 11.555/0.594 RFCC, 46.179%

improvement
11.012/ 0.506 MFCC, 45.38%

improvementFeat +i-vector + LSSVR 6.219/0.799 6.015/0.746
Note: Feat = {MFCC, RFCC, LFCC, PFMFCC, MODGD}
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both datasets. However, our regression models trained with 
medium utterances are capable of getting more informa-
tion, which is good enough to estimate speaker age from 
longer test sets than the other mismatch options. Whereas 
a model trained with longer utterances lacks knowledge of 
certain patterns from short or medium test sets to make 
good decisions. This result is consistent in female data-
set across all features however; the inconsistency in the 
male dataset needs further investigation. Our future study 
focuses on applying these mismatch preliminary investiga-
tions to more end to end speaker age estimations such as 
x-vector architecture using time delay neural networks.
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