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ABSTRACT

In this paper, a cubic B -spline finite element method is constructed based on redefined cubic 
B-spline basis functions for solving the generalized reaction-diffusion equations with delay. 
The time discretization process is based on Crank-Nicolson method. Examples are worked 
out to validate the theoretical convergence analysis. The numerical results given in graphs 
and tables demonstrate that the present method approximates the exact solution very well. 
The accurateness of the numerical scheme is confirmed by computing L2 

 and L∞ error norms.
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INTRODUCTION 

In this paper, we consider the generalized reaction dif-
fusion equation with delay of the following type

where 𝑎 > 0 and 𝑏 > 0 represent the diffusion coeffi-
cients 𝑐, 𝑑 ∈ ℝ and 𝜏 > 0 is a delay constant. The generalized 
reaction-diffusion equations with delay have attracted a sig-
nificant interest in the last several decades due to their fre-
quent occurrence in real life situations [1-7]. The governing 
equation has been studied widely in the case where c = d = 
0 [8-13] and b = c = 0 [14-16]. Equation of the type (1) has 
been considered equation [17,18]. A delay term could not 
only make the numerical solutions difficult to be obtained 

but also change the dynamical properties of a system [16]. 
This is the reason why such equations became the attention 
of researchers in numerical analysis and simulations. The 
accessibility of exact solutions, as well as efficient methods 
to obtain numerical approximations of the required preci-
sion, are very important. However, few delay generalized 
reaction-diffusion equations with a certain simple setting 
permit an analytic solution. Hence, computing approximate 
solutions essential are essential. Up to now, many of the 
numerical methods available to approximate the diffusion 
term are based on some classical numerical methods, for 
example, finite difference method [19], compact finite dif-
ference method [20,21], discontinuous Galerkin methods[ 
22], spectral method [23], Haar Wavelet [24], variational 
method [25], waveform relation method [26], and so on.

In [27], an analytical technique for the nonlinear 
dynamic problem with delayed is solved. It is well known 
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that the finite element method (FEM) can be easily 
designed for high order accuracy in space by taking high-
er-order polynomial as the basis (shape) function. The 
advantage of the FEM over the finite difference method is 
its ability to deal with the modeling of complex geometries 
and irregular shapes. The use of various degrees of B-spline 
functions to obtain the numerical solutions of some PDEs 
has been shown to provide easy and simple algorithms, for 
instance, quadratic B-spline least-square method [28], qua-
dratic B -spline method [29,30], cubic B-spline finite ele-
ment method [31-37], quartic B spline method [38], quintic 
B-spline finite element method [39,40], and so on. To the 
best knowledge of the author, the redefined cubic B -spline 
finite element method is not considered for finding the 
approximate solution of delay PDEs. In this paper, we have 
applied a redefined cubic B-spline FEM to find numerical 
solutions of the reaction-diffusion with the delay of the type

(1). Our selection of redefined cubic B-spline basis 
functions improves accuracy to fourth-order. The pro-
posed method give better convergence result than the lin-
ear 𝜃 −method without increasing the computational cost. 
Our best concern in this study is to formulate a numerical 
scheme with a higher order of accuracy by using the rede-
fined cubic B-spline shape functions.

Notations: Denote ‖. ‖ and ‖. ‖𝑟 as the norm 𝐿2 = 𝐿2(Ω) 
and the sobolov space 𝐻𝑟 = 𝐻𝑟(Ω) = 𝑊2(Ω) respectively, so 
that the real valued 𝑣,

and for a positive integer r

Let 𝑣(𝑥), 𝑤(𝑥)(𝑥 ∈ Ω) be real - valued funnctions.

and 𝐶 denotes a positive not necessarily the same at dif-
ferent occurrances, which may depend on 𝑎, 𝑏, 𝑐, 𝑑  and 𝑡 
of (1) but

independent of ℎ and ∆𝑡  (the stepsizes in 𝑡  – direction). 
We denote 𝑢(𝑡 , 𝑥) by 𝑢 or 𝑢(𝑡 ).

Assumptions: In this paper, assume that 𝑢(𝑡): = 𝑢(𝑡, . 
),  𝑢𝑡(𝑡): = 𝑢𝑡(𝑡, : ), 𝑢𝑡𝑡(𝑡): = 𝑢𝑡𝑡(𝑡, : ), 𝑢𝑡𝑡𝑡(𝑡): = 𝑢𝑡𝑡𝑡(𝑡, : ) ∈ 
𝐻0

1(Ω),  and at 𝑡 = 𝑛𝜏(𝑛 = −1,0.1 … . ),the derivative of 𝑡 is 
denotes as the left derivative.

Cubic B-spline Finite Element Method 
Let Δ𝑡 = 𝜏/(𝑚 + 1) be a given step size with m ≥ 1, the 

grid points tn = n∆t (n = 0, 1, … ) and be a given be the 

approximation in 𝑆h
𝑇 of u(t) at t = tn = n∆t. For positive 

integer 𝑁,  let  be a uniform partition on [0, π] in the 
x direction, such that 𝑥𝑘 = kh, where h = π/(N + 1) is the 
step size. Define the space

 

where 𝑃3 is the space of all polynomial of degree ≤ 3. 
Extending the partition  using 𝑥𝑘 = kh,  𝑘 = −3, −2. 
−1, N + 2, N + 2, N + 4.. As a basis for s,we choose the B 
-splines, , where

  (2)

and let 𝑓1(𝑥) = 𝑥3 ,  𝑓1(𝑥) = 1 +  3𝑥 + 3𝑥2 − 3𝑥3. We 
want to construct a basis for the space

  (3)

The cubic B -spline  can be redefined by

  (4)

As the cubic B-spline 𝑄𝑗,  the cubic  have support of at 
least 4 subintervals. We want to find an approximation 𝑈𝑛 
∈ 𝑆h

𝑇 such that

  (5)

The application of Galerkin Crank - Nicolson method 
to (1) leads to a numerical process of the following type

  (6)

Where 𝑈𝑛(. ) = 𝜑(. , 𝑡 𝑛) for −𝑚 ≤ 𝑛 ≤  0.
Let 

  (7)

Using (7) and choosing χ =  ; 𝑖 = 0, 1, … , 𝑁 +  1. Then 
(6) can be reduced to

  (8)
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Equation (8) can be written

  (9)

Defining the following matrices

  (10)

  (11)

Equation (9) is an (N + 2) × (N + 2) linear system

  (12)

We can write the entries of the matrices E and D in (10) 
and (11) as stiffness matrix

and the mass matrix

with  is the initial approximation of  and 

Convergence Analysis
We shall prove the optimal convergence order for the 

numerical scheme.
Let 𝑢ℎ and 𝑢 be the solutions of (1). Then error can be 

quantified by bounding the norm of the error
𝑢ℎ(𝑡 ) − 𝑢(𝑡 ) 𝑖 𝑛 terms of the mesh spacing h of the finite 

element mesh.
Remark 1. Using polynomial with degrees 𝑝 ≥ 1 as basis 

we expect an error bound of

‖𝑢ℎ(𝑡 ) − 𝑢(𝑡 ) ‖ ≤ 𝐶ℎ𝑝+ 1 , 

where 𝐶 is a problem-dependent constant independent 
of h and the constant 𝑝 + 1 indicates the order of conver-
gence of the FEM, as the mesh spacing h decreases.

Theorem 2 Let 𝑢 and 𝑈𝑛 be the exact and approx-
imation solution of Eq.(1) respectively. Assume that 
‖𝑢(𝑡 ) − 𝑅ℎ𝑢(𝑡 )‖ ≤  𝐶ℎ4‖𝑢(𝑡 )‖𝑟 ,  ‖𝑢𝑡 (𝑡 ) − 𝑅ℎ𝑢𝑡 (𝑡 )‖𝑖  ≤  
𝐶ℎ4‖𝑢𝑡 (𝑡 )‖𝑟, −𝜏 ≤ 𝑖 ≤  0, and ‖𝜑ℎ(𝑡 ) − 𝜑(𝑡 )‖𝑖  ≤  𝐶ℎ4. 𝑡 ℎ𝑒𝑛

Proof .Denote 

and 𝜌𝑛(𝑡 ) = 𝜌(𝑡 𝑛) is bounded as in [26].

  (15)

 where 

Choosing , gives

By using Schwartz inequalty 

So 

Without loss of generality ,assume that 𝑛 ∈ ((𝑘 − 1)𝑚 , 
𝑘𝑚 ], 𝑘 ∈ 𝑁.Then,

Therefore,
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By the assumption of the theorem and using the discrete 
Gronwall inequality (see [42])

  (16) 

We write 

So

  (17)

Further,

So that 

  (18)

which together with Eq. (17) and Eq. (18) and the 
assumption of the theorem

Numerical Simulation
We carry out numerical experiments to illustrate the 

theoretical results. To evaluate errors, 𝐿2 and 𝐿∞ norms are 
applied as follows:

Order of convergence is denoted by

Example 1 We consider the following equation:

  (19) 

We set the parameters 𝑎 = 2, 𝑏 = 0.5, 𝑐 = 1,  𝑑 = 0.5, 
𝜏 = 1 and 𝑇 = 2 and solve problem Eq.(19) on [0,  𝜋] × 
[0, 2] with different temporal and spatial step sizes (∆𝑡 = 𝜏/
(𝑚 + 1), ℎ = 𝜋/(𝑁 + 1)). The exact solution is 𝑢(𝑥. 𝑡 ) =
𝑒𝑥𝑝(−𝑡 )𝑠𝑖 𝑛(𝑥).

Numerical errors and the corresponding orders are 
listed in Table 1 - 5. There is a noticeable decrease in both 
error norms when mesh sizes decrease. These results con-
firm that the numerical method is convergent. The results 
in Tables 3, 4 and 5 show that our result is more accurate 
than in comparison with those obtained by [18]. In Figure 
1 and 5, the graph of approximation solutions for example 
1 and 2 at different times respectively are given. In figures 2 
and 6, the approximation and exact solution are drawn on 
the same coordinate axis. Approximation and exact solu-
tion are depicted in Figures 3, 4,7, and 8. It can be observed 
that the graphs are similar.

Table 1. Error norms and convergence orders for 𝑇 = 2, 𝜏 = 1(∆𝑡 ≈ ∆𝑥2)

N L2  Order L∞  Order
7 7.8685E-04 - 8.5506E-04 -
14 6.4117E-05 3.9887 6.9156E-05 4.006
28  4.4172E-06 4.0580 4.7832E-06 4.0520
56 2.7781E-07 4.0937 3.0115E-07 4.0921
112 1.7472E-08 4.0424 1.8946E-8 4.0419

Table 2. Error norms and convergence orders for 𝑇 = 2, 𝜏 = 1(∆𝑡 ≈ ∆𝑥2)

N L2  Order L∞  Order
10 2.3378E-04 - 2.5206E-04 -
20 1.6027E-05 4.1447 1.7332E-05 4.1340
40 1.0649E-06 4.0539 1.1530E-06 4.0508
80 6.7117E-8 4.0585 7.2770E-8 4.0577
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 (a) (b)
Figure 1. Approximate solutions for fixed time and step sizes (𝑁 = 10 , 𝑚 = 100) for example 1.

  
 (a) (b)
Figure 2. Comparison between approximate and exact solutions for example 1 where (a) 𝑇 = 1.5, 𝑇 = 1, 𝑇 = 0.5 with step 
sizes (𝑁 = 10, 𝑚 = 100). (b) 𝑇 = 0.75. 𝑇 = 0.5, 𝑇 = 0.25 with step sizes (𝑁 = 10, 𝑚 = 100).

  
 (a) (b)
Figure 3. Approximation solution and analytical solution (𝑁 = 10, 𝑚 = 5, 𝑎𝑛𝑑 𝜏 = 1).
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 (a) (b)

Figure 4.Comparisons between approximate and exact solutions of example 1 with step size (𝑁 = 10, 𝑚 = 200).

Table 4. Error norms and convergence orders for 𝑇 = 2, 𝜏 = 0.5 (∆𝑡 ≈ ∆𝑥2)

N
Linear θ−method (θ=1)[18]  Present method

L2 Order L∞ Order L2 Order L∞ Order
10 4.34E-03 2.31 3.47E-03 2.24 2.13E-04 3.85 2.11E-04 3.65
20 9.83E-04 2.14 7.84E-04 2.14 1.64E-05 3.96 1.73E-05 3.86
40 2.38E-04 2.04 1.90E-04 2.04 1.06E-06 4.00 1.14E-06 4.07
80 5.94E-05 2.01 4.72E-05 2.01 6.70E-08 4.05 7.25E-08 4.04

Table 3. Error norms and convergence orders for 𝑇 = 2, 𝜏 = 0.5(∆𝑡 ≈ 0.5∆𝑥2)

N
Compact θ−method (θ=1)[18]  Present method

L2 Order L∞ Order L2 Order L∞ Order
10 2.96E-04 4.20 3.36E-04 4.13 6.11E-05 4.45 6.27E-05 4.31
20 1.82E-05 4.03 1.45E-05 4.03 4.05E-06 4.20 4.33E-06 4.14
40 1.13E-06 4.00 9.05E-07 4.00 2.67E-07 4.06 2.88E-07 4.05
80 7.09E-08 4.00 5.65E-08 4.00 1.68E-08 4.06 1.82E-08 4.06

Table 5. Error norms and convergence orders for 𝑇 = 2, 𝜏 = 0.5 (∆𝑡 ≈ 0.5∆𝑥2)

N
Linear θ−method (θ=1/2)[18]  Present method

L2 Order L∞ Order L2 Order L∞ Order
5 1.40E-03  - 1.06E-03 - 9.17E-04 - 8.55E-04 -
10 3.81E-04 1.87 3.04E-04 1.80 6.11E-05 4.45 6.27E-05 4.31
20 9.67E-05 1.98 7.72E-05 1.98 4.05E-06 4.20 4.33E-06 4.13
40 2.61E-05 1.89 2.09E-05 1.89 2.67E-07 4.06 2.88E-07 4.05
80 6.15E-06 2.09 4.91E-06 2.09 1.68E-08 4.06 1.82E-08 4.06
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 (a) (b)
Figure 7. Approximation solution and analytical solution (N = 10, m = 5, and τ = 1).

  
 (a) (b)
Figure 6. Comparisons between approximate and exact solutions of example 2 (N = 10, m = 100).

 
 (a) (b)
Figure 5. Approximate solutions for fixed time and step sizes (N = 10, m = 100) for example 2.
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CONCLUSION

A finite element method based on redefined cubic 
B-spline shape function has been developed to solve the 
generalized reaction-diffusion equation with delay. The 
convergence analysis is studied. From this result, we can 
conclude that the cubic B-spline finite element method 
is feasible. The approximation solutions are tested by 
comparing with analytical solutions. Our selection of 
redefined cubic B-spline basis functions improves accu-
racy to fourth-order. The advantage of the FEM over the 
finite difference method is its ability to deal with the mod-
eling of complex geometries and irregular shapes. The 
proposed method gives a better convergence result than 
the linear θ -method without increasing the computa-
tional costs. The numerical results are obtained by applying 
MATLAB software. This method can be easily extended to 
tackle a broad class of PDEs.
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