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ABSTRACT

In this work, we introduce a nonstandard algebra of q-fermions where q is a nonzero complex 
deformation parameter for the algebra of the commuting fermions. In order to show that 
q-fermions provides a proper generalization of the algebra of usual commuting fermions, we 
prove that there is an inhomogeneous quantum structure associated with q-fermions for a 
complex number q with |q| = 1.
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INTRODUCTION 

Many people consider that quantum spaces provide 
a paradigm for the general frame of quantum deformed 
physics [1]. As a special case of quantum space, a quantum 
plane is studied in [2] by constructing the group of linear 
transformations on it, which is called quantum group of 
quantum matrices. In fact, the notion of quantum group 
(q-deformed Lie group), also known as a noncommutative 
or a noncocommutative generalization of a Hopf algebra, 
was first used by V.G. Drinfeld [3] and independently dis-
covered by M. Jimbo [4] at the same time. Inspired by their 
pioneering works, many works were done in the different 
directions of mathematics and physics.

It is well known that the q-boson algebra can be used to 
construct the highest weight representations the quantum 
group SUq(2) (see [5,6]). In addition to the boson algebra, 
many people studied fermions by distinct type algebras. For 

example, an algebra of q-fermion creation and annihilation 
operators is given in [7] by following commutation rela-
tions :

 
/2* * aN

q q q qa a qa a q−+ =

 where Na satisfies

 
* *[ , ] , [ , ] .a q q a q qN a a N a a= = −

It is also shown in [7] that if , then many q-fermions 
can occupy a given state in contrast to the case of ordinary 
fermions. Furthermore, in [8], the algebra of commuting 
fermions is described as an associative algebra generated by 
creation and annihilation operators which are subject to the 
following relations:

 
0i j ij j ic c c cσ+ =

 (1.1)
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* * , 1, 2,..., ,i j ij j i ijc c c c i j dσ δ+ = =

 (1.2)

where each 1 ... 1 ... 1
d i

i
i

c c
−

= ⊗ ⊗ ⊗ ⊗ ⊗


  is called com-

muting fermions and ijσ  is defined as follows

 

1,
 1, .
 

ij

i j
i j

σ
=

= − <  
(1.3)

Note that letting i j=  in (1.1) we obtain 2 *20, 0i ic c= = , 
meaning that the Pauli exclusion principle is satisfied.

By the approach used in [2], Altıntaş et al. presented the 
inhomogenous quantum symmetry group of the commut-
ing fermions in [8]. In this study, we define a new algebra 
of q-commuting fermions containing the algebra of com-
muting fermions given by the relations in (1.1) and (1.2). 
Moreover, we show that the algebra of such q-fermions 
admits an inhomogenous quantum symmetry group when-
ever |q| = 1. Now we need to recall from [2, 8, 9], some basic 
definitions and notions which will be necessary to present 
our results:

Let A be a vector space over K = �  or �  and 
:m K⊗ →A A (the multiplication), : Kη → A

(the unit mapping) be two linear mappings. Then the tri-
ple ( , , )m ηA  is called an algebra if the following conditions 
hold:

 

( id) (id )
( id) (id )

m m m m
m mη η

⊗ = ⊗
⊗ = ⊗

 

   
(1.4)

where id is the identity mapping. A coalgebra A over 
K is a K vector space A , together with two linear map-

pings :∆ → ⊗A A A and : Kε →A satisfying the fol-
lowing rules:

 ( id) (id )∆⊗ ∆ = ⊗∆ ∆   (1.5)

 (( id) ) id ((id ) ).m mε ε⊗ ∆ = = ⊗ ∆     (1.6)

A bialgebra is a unital associative algebra endowed with 
a coalgebra structure admitting the compatibility condi-
tions, that is, ∆ and ε are both algebra homomorphisms 
with (1 ) 1 1 and (1 ) 1Kε∆ = ⊗ =A A A A .

A Hopf algebra is a bialgebra A endowed with an alge-
bra antihomomorphism from →A A satisfying the follow-
ing condition

 (( id) ) ((id ) ).m S m Sη ε⊗ ∆ = = ⊗ ∆      (1.7)

A quantum plane is identified with an associative poly-
nomial algebra generated by x and y satisfying q-commu-
tation rule

 xy qyx=  (1.8)

where q is a nonzero complex parameter. Moreover, the 
homogeneous quantum symmetry group of this quantum 
plane is considered in [2] as a group of linear transforma-
tions acting on a quantum plane as follows

 

'  
' .

x ax by
y cx dy
= +
= +  

(1.9)

where x’ and y’ are q-commutative in the sense of (1.8), 
and the matrix entries a, b, c, d are commutative with the 
generators x, y. Thus, an element of the quantum group act-
ing on the quantum plane is defined as a matrix M of the 
following form

 

a b
M

c d
 

=  
   

(1.10)

where a, b, c, d hold the following noncommutative 
relations:

 

1, , ( ) ,
, , .

ab qba ac qca ad da q q bc
bc cb bd qdb cd qdc

−= = = + −
= = =  

(1.11)

Manin also defined the determinant of such a quantum 
matrix as follows

 
1 .qdet M ad qbc da q bc−= − = −

 
(1.12)

So, if ( ) 0det M ≠ , then its inverse is described as 
follows

 

1
1

(
.1

)
 

d q b
qc

M
de at M

−
− −

 
− 

=
 

(1.13)

The Quantum invariance group of q-commuting 
fermions

Let A be an associative algebra generated by ic ’s and 
their hermitian conjugates *

ic ’s which are subject to the fol-
lowing relations

 
0i j ij j ic c c cσ+ =

 (2.1)
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* *

, 1, 2,...,
i j ij j i ijc c c c

i j d
σ δ+ =

=
 

(2.2)

where ijσ  is defined as follows

 

11,
 and ,

,
 

ij ij ji

i j
q i j

σ σ σ −=
= =− <  

(2.3)

for a complex number q with |q| = 1. Note that this alge-
bra becomes the algebra of commuting fermions given in [8] 
when q = 1. We also remark that one can obtain 2 0ic ,

*2 0ic  whenever i j=  in (2.1). Thus it is seen that the 
Pauli exclusion principle is also satisfied for this algebra, as 
well. Now, following the approach used in [8], one can con-
sider the inhomogeneous linear quantum transformation 
acting on the generators ic  and *

ic  as follows

 

*

1 1
1

d d

i ij j ij j i
j j

c c cα β γ′
= =

= ⊗ + ⊗ + ⊗∑ ∑
 

(2.4)

 

* * * * *

1 1
1.

d d

i ij j ij j i
j j

c c cα β γ′

= =
= ⊗ + ⊗ + ⊗∑ ∑

 
(2.5)

This transformation matrix is expressed in the matrix 
form as follows

 

* * *

0 0 1

ij ij i

ij ij iT
α β γ
β α γ
 
 
 




=


  
0 1
A Γ 

=  
  , 

(2.6)

 
* *
ij ij

ij ij
A

α β
β α
 

=  
  , 

(2.7)

and

 
* .i

i

γ
γ
 

Γ =  
    

(2.8)

Here the matrices * *( ), ( ), ( ), ( )ij ij ij ijα α β β  are d d× , A 
is 2 2d d× , *( ), ( )i iγ γ  are 1d ×  and is 2 1dΓ × . If we 
require that the new elements ic  and *

ic  hold the com-
mutation relations (2.1) and (2.2), one can obtain the fol-
lowing relations among the entries of T matrix:

 

* * * *

* * * *

1

, ,

, ,
, ,

, ,

,

ij kl ik lj kl ij ij kl ik lj kl ij

ij kl ik lj kl ij ij kl ik lj kl ij

ij kl ik lj kl ij ij k ik k ij

ij kl ik lj kl ij ij k ik k ij

d

ij k ik k ij i k ik k i ij kj
j

α α σ σ α α β β σ σ β β

α α σ σ α α β β σ σ β β

α β σ σ β α β γ σ γ β

α β σ σ β α β γ σ γ β

α γ σ γ α γ γ σ γ γ α β
=

= =

= =

= = −

= = −

= − + + ∑
1

* * * * * *

1 1

0

, .

d

ik kj ij
j

d d

ij k ik k ij i k ik k i ij kj ik kj ij ik
j j

σ α β

α γ σ γ α γ γ σ γ γ α α σ β β δ

=

= =

+ =∑

= − + + + =∑ ∑
 

(2.9)

Let B  be an algebra generated by the entries of T with 
the commutation relations in (2.9). Using the definitions

( ) , ( )T T T T Iε∆ = ⊗ = , we obtain the action of coproduct 
and counit on the generators of B  as follows

 

*

* * * *

*

* * * *

*

* * * * *

( )

( )

( )

( )

( ) 1,

( ) 1,

(

,

,

,

,

1) 1 1,

ij in nj in nj
n n

ij in nj in nj
n n

ij in nj in nj
n n

ij in nj in nj
n n

i in n in n i
n n

i in n in n i
n n

α α α β β

α α α β β

β α β β α

β α β β α

γ α γ β γ γ

γ α γ β γ γ

∆ = ⊗ + ⊗∑ ∑

∆ = ⊗ + ⊗∑ ∑

∆ = ⊗ + ⊗∑ ∑

∆ = ⊗ + ⊗∑ ∑

∆ = ⊗ + ⊗ + ⊗∑ ∑

∆ = ⊗ + ⊗ + ⊗∑ ∑

∆ = ⊗  

(2.10)

and 

 
* * *

( ) 1, ( ) 0, ( ) 0,

( ) 0, ( ) 1, ( ) 0.
ij ij i

ij ij i

ε α ε β ε γ

ε β ε α ε γ

= = =

= = =
 

(2.11)

Thus, it is clear that the condition (1.5) holds for the 
matrix T. Furthermore, one can straightforwardly show 
that ∆  leaves invariant the relations in (2.9). Indeed, for 
example, we show this for some relations given in (2.9):

1- ( ) ( ) ( )ij kl ij klα α α α∆ = ∆ ∆

 

* *

* * * *

,
)

( ) ( )

(

in nj in nj km ml km ml
n n m m

in km nj ml in km nj ml in km nj ml in km nj ml
m n

α α β β α α β β

α α α α α β α β β α β α β β β β

⊗ + ⊗ ⊗ + ⊗∑ ∑ ∑=

=

∑

⊗ + ⊗ + ⊗ ⊗∑ +
 

*

,

* * *

* *

[ ( ) ( )

( ) ( )]

( )( )

( ) ( )

ik mn nm lj km in mn lj ik mn nm lj km in ml nj
m n

ik mn nm lj km in ml nj ik mn nm lj km in ml nj

ik lj km ml km ml in nj in nj
m m n n

ik lj kl ij

ik lj

σ σ σ σ α α α α σ σ σ σ β α β α

σ σ σ σ α β α β σ σ σ σ β β β β

σ σ α α β β α α β β

σ σ α α

σ σ

= ⊗ + ⊗∑

+ ⊗ + ⊗

⊗ + ⊗ ⊗ + ⊗∑ ∑ ∑ ∑

∆ ∆

=

=

= ∆( )kl ijα α

 ( ) ( )ij kl ik lj kl ijα α σ σ α α∆ = ∆

2- ( ) ( ) ( )ij k ij kβ γ β γ∆ = ∆ ∆

 

* *

* *

,

* * *

( )( 1)

(

)

in nj in nj km m km m k
n n m m

in km nj m in km nj m in k nj in km nj m
m n

in km nj m in k nj

α β β α α γ β γ γ

α α β γ α β β γ α γ β β α α γ

β β α γ β γ α

⊗ + ⊗ ⊗ + ⊗ + ⊗∑ ∑ ∑ ∑

⊗ + ⊗ + ⊗ + ⊗

+ ⊗ + ⊗

=

∑=
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*

,

* * * *

* *

( ) ( )

( ) ( ) ]

( 1)( )

( ) (

[

)

ik mn nm km in m nj ik mn nm km in m nj ik k in nj
m n

ik mn nm km in m nj ik mn nm km in m nj ik k in nj

ik km m km m k in nj in nj
m n

ik k ij

σ σ σ α α γ β σ σ σ β α γ β σ γ α β

σ σ σ α β γ α σ σ σ β β γ α σ γ β α

σ α γ β γ γ α β β α

σ γ β

=

=

= − ⊗ − ⊗ − ⊗∑

− ⊗ − ⊗ − ⊗

− ⊗ + ⊗ + ⊗ ⊗ + ⊗∑ ∑

− ∆ ∆

= − ( )ik k ijσ γ β∆

 ( ) ( )ij k ik k ijβ γ σ γ β∆ = − ∆

3- * *( ) ( ) ( )ij kl ij klα β α β∆ = ∆ ∆  

 

* * * *

* * * * * *

,

* *

( )( )

(

)

in nj in nj km ml km ml
n n m m

in km nj ml in km nj ml in km nj ml
m n

in km nj ml

α α β β α β β α

α α α β α β α α β α β β

β β β α

= ⊗ + ⊗ ⊗ + ⊗∑ ∑ ∑ ∑

⊗ + ⊗ + ⊗∑

+ ⊗

=

 

* * *

,

* * * * *

* * * *

*

( ) ( )

( ) ( )]

( )( )

( ) (

[

)

ik mn nm lj km in ml nj ik mn nm lj km in ml nj
m n

ik mn nm lj km in ml nj ik mn nm lj km in ml nj

ik lj km ml km ml in nj in nj
m m n n

ik lj kl ij

σ σ σ σ α α β α σ σ σ σ β α α α

σ σ σ σ α β β β σ σ σ σ β β α β

σ σ α β β α α α β β

σ σ β α

⊗ + ⊗∑

+ ⊗ + ⊗

⊗ + ⊗ ⊗ + ⊗∑ ∑ ∑ ∑

∆ ∆

=

=

=

= *( )ik lj kl ijσ σ β α∆  

 
* *( ) ( )ij kl ik lj kl ijα β σ σ β α∆ = ∆

4- ( ) ( ) ( ) ( ) ( )i k ik k i i k ik k iγ γ σ γ γ γ γ σ γ γ∆ + = ∆ ∆ + ∆ ∆  
* *

* *

( 1)( 1)

( 1)( 1)

in n in n i km m km m k
n n m m

ik km m km m k in n in n i
m m n n

α γ β γ γ α γ β γ γ

σ α γ β γ γ α γ β γ γ

= ⊗ + ⊗ + ⊗ ⊗ + ⊗ + ⊗∑ ∑ ∑ ∑

+ ⊗ + ⊗ + ⊗ ⊗ + ⊗ + ⊗∑ ∑ ∑ ∑
 

* *

, ,

* * * *

* *

, ,

* * *

[ [

] [ 1]

[ ] [

]

]

+

(

in km n m in km n m in k n in km n m
n m n m

in km n m in k n i km m i km m i k

ik km in m n km in m n km i m km in m n
n m n m

km in m n m i m

m

k

α α γ γ α β γ γ α γ γ β α γ γ

β β γ γ β γ γ γ α γ γ β γ γ γ

σ α α γ γ α β γ γ α γ γ β α γ γ

β β γ γ β γ γ

= ⊗ + ⊗ + ⊗ ⊗∑ ∑

+ ⊗ + ⊗ ⊗ + ⊗ + ⊗∑

+ ⊗ + ⊗ + ⊗ + ⊗∑ ∑

+ ⊗ + ⊗

+

*[ 1])k in n
n

k in n k iγ α γ γ β γ γ γ+ ⊗ + ⊗ + ⊗∑

 

* *

,

* * * *

*

,

* *

[

] [ 1

(

]

[

in km n m in km n m in k n in km n m
n m

in km n m in k n i km m i km m i k
m

ik ki nm in km m n ki nm in km m n ki i km m
n m

ki nm in km m n ki nm in km m

α α γ γ α β γ γ α γ γ β α γ γ

β β γ γ β γ γ γ α γ γ β γ γ γ

σ σ σ α α γ γ σ σ β α γ γ σ γ α γ

σ σ α β γ γ σ σ β β γ

= ⊗ + ⊗ + ⊗ ⊗∑

+ ⊗ + ⊗ + ⊗ + ⊗ + ⊗∑

⊗ + ⊗ − ⊗∑

+ + ⊗

+

⊗ * *

*

]

[ 1])
n ki i km m

ik ki in k n ki in k n k i
n

γ σ γ β γ

σ σ α γ γ σ β γ γ γ γ

− ⊗

+ − ⊗ − ⊗ + ⊗∑
  

* *

,

* * * * * *

[ ( ) ( )

( ) ( )]
( ) 1

in km n m nm m n in km n m nm m n
n m

in km n m nm m n in km n m nm m n

i k ik k i

α α γ γ σ γ γ α β γ γ σ γ γ

β α γ γ σ γ γ β β γ γ σ γ γ
γ γ σ γ γ

= ⊗ + + ⊗ +∑

+ ⊗ + + ⊗ +
+ + ⊗

 

,

* *

* * * * * *

[ ( )

( ( )

( ( ) ( )

1

[

]

( )

in km nj mj nm mj nj in km
n m j

nm nj mj nm mj nj nm in km
j

mn mj nj mn nj mj in km nj mj nm mj nj
j j

in kn ik kn in
n n

in km nj mj in km nj
j

mj

α α α β σ α β α β

δ α α σ β β σ β α

δ α α σ β β β β β α σ β α

α β σ α β

α α α β α α β α α

= ⊗ − − + ⊗∑ ∑

− + + ⊗∑

− + + ⊗ − −∑ ∑

+ − − ⊗∑ ∑

= ⊗ + ⊗ +∑ * *

,

* * * *

, ,

* *

]

]

[

( ) 1

in km nj mj in km nj mj
n m

in km nm in km nj mj in km nj mj in km nj mj
n m n m

in km nj mj nm in km mn in kn ik kn in
n n

j

β α α α β β β

α β δ β α α α β α β β β β β α

β β α β σ β α δ α β σ α β

⊗ + ⊗∑

+ ⊗ ⊗ + ⊗ + ⊗∑ ∑ ∑

+ ⊗ + ⊗ + − − ⊗∑ ∑

−

 

* *

,

* * * * * *

* *]

[

]

[ [ ]

[

in km nj mj in km nj mj in km nj mj in km nj mj
j n m

in km nj mj in km nj mj in km nj mj in km nj mj

in nj in nj km mj km mj
n j j m j j

in nj in n
n j j

α α α β α α β α α β α α α β β β

β α α α β α β β β β β α β β α β

α α β β α β β α

α β β α

= ⊗ + ⊗ + ⊗ + ⊗∑ ∑

+ ⊗ + ⊗ + ⊗ + ⊗

= − ⊗ + ⊗ ⊗ + ⊗∑ ∑ ∑ ∑ ∑ ∑

− ⊗ + ⊗∑ ∑ ∑ * *] [ ]

( ) ( ) ( ) ( ) ( )

( )

j km mj km mj
m j j

ij kj ij kj ij kj ij kj
j j j j

ij kj ik kj ij
j j

α α β β

α β β α α β β α

α β σ α β

⊗ + ⊗∑ ∑ ∑

= − ∆ ∆ − ∆ ∆ = ∆ − −∑ ∑ ∑ ∑

= ∆ − −∑ ∑

 
( ) ( )i k ik k i ij kj ik kj ij

j j
γ γ σ γ γ α β σ α β∆ + = ∆ − −∑ ∑

CONCLUSIONS

Consequently, the condition (1.6) holds for the matrix 
T, implying that B  is a bialgebra. Now, it remains to show 
that the condition (1.7) holds the matrix T . Really, by letting

 

1 1,  
 ,ij ij ij

i j
q p

q i j
σ − =

= = = − <  
(2.12)

in the quantum group , (2 )
ij ijq pGl d  of [10], we easily 

see that the matrix A given in (2.7) belongs to the quantum 
group , (2 )

ij ijq pGl d . Thus, T is invertible, implying that 
the inverse of T is of the following form

 

1 1
1 .

0 1
A A

T
− −

−  − Γ
=  
   

(2.13)

That is, it is clear that 1( )S T T −= , implying that the coin-
verse condition (1.7) holds for such an S. Thus, as the alge-
bra of entries of T acting on q-fermions, B  corresponds to 
the inhomogeneous quantum group induced by the follow-
ing comappings

1

( )
( )
( ) .

T T T
T I

S T T
ε

−

∆ = ⊗
=

=
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