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ABSTRACT

Machine learning models are widely used for decades in various engineering applications, 
such as structural health monitoring, optimization of the properties of engineering systems 
or structures. For instance, in structural engineering, researchers have investigated machine 
learning techniques for the prediction of the natural frequencies, damage detection, and de-
sign optimization of beams, frames, plates, and many other structures. Using machine learn-
ing is advantageous since machine learning can reduce the cost and time consumption to 
solve real-world problems. These techniques do not require powerful computers and soft-
ware, unlike numerical analysis methods to solve such problems. To benefit such positive as-
pects of the machine learning techniques, the prediction of the first ten natural frequencies 
of aluminum and steel very thin, thin, and thick beam structures under fixed-free, fixed-sim-
ply supported, and simply supported boundary conditions by using Radial Basis Function 
Regressor, Random Forest Regressor, Multilayer Perceptrons Regressor, and Support Vector 
Machine Regressor with Pearson VII Universal Function Kernel (Puk) has been presented. 
The dataset required for the analysis is obtained via the Finite Element Analysis considering 
Euler-Bernoulli and Timoshenko Beam Theories. The performance of the machine learning 
models has been investigated and compared by examining (i) the thickness-length ratio, (ii) 
boundary conditions, and (iii) natural frequencies of the beam structures. Results indicate 
that the considered regression machine learning models are effective in predicting the natural 
frequencies of beam structures. Among all four regression machine learning models, Support 
Vector Machine Regressor with Puk and Random Forest models are robust and accurately 
predict the natural frequency values of the structures by an average accuracy of 98.78% and 
98.88% regardless of the boundary conditions and thickness-length ratio of beam structures. 
On the other hand, Radial Basis Function Regressor and Multilayer Perceptron Regressors 
predict the first ten natural frequencies by 96.36% and 94.17%, respectively.
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INTRODUCTION 

Engineers and researchers performed various studies to 
understand the mechanical properties of materials and 
structures by conducting theoretical and experimental 
analyses [1-10]. In some cases, such analyses become costly 
and time-consuming due to the complexity of the problem. 
Therefore, researchers employed machine learning tech-
niques since they not only give accurate results but also 
solve the cost and time-consuming problems. Thanks to 
this positive aspect, they are used in many engineering 
fields [11-17]. In structural engineering, machine learning 
has been especially used in structural health monitoring, 
optimization, and prediction of the properties of a system 
or a structure. Among such properties, the evaluation of the 
natural frequencies of structures is vital, especially in the 
designing phase, to understand whether the excessive 
vibrations cause issues such as failure due to resonance. 
Similarly, detecting damages on these structures is also 
essential since it provides an understanding of whether the 
structure can continue to operate or not. Therefore, engi-
neers perform analyses and optimizations to obtain the nat-
ural frequencies for determining both the natural 
frequencies and the condition of the structure. Sometimes 
these analyses are being costly and take a long time for 
some applications in which an extensive range of parame-
ters are examined. Researchers have investigated alternative 
approaches to provide fast and robust models to perform 
such analyses. Following the advancements in computer 
science, artificial intelligence has become popular as a pow-
erful tool to solve complex, time-consuming, and costly 
problems. Scientists have studied various techniques to 
understand whether they are suitable for specific tasks in 
structural engineering. Some studies that existed in the lit-
erature, including machine learning applications in struc-
tures, are presented as follows. Laory et al. [18] examined 
Multiple Linear Regression, Artificial Neural Networks, 
Regression Tree, Support Vector Regression with RBF ker-
nel, and Random Forest models to predict the natural fre-
quency of the Tamar Suspension Bridge using 3-year 
continuous monitoring data. Besides, they investigated the 
effects of traffic loading and environmental factors on the 
natural frequencies. They concluded that Random Forest 
and Support Vector Regression with RBF kernels are the 
best models for such a problem. Avcar and Saplıoğlu [19] 
employed Artificial Neural Networks to estimate the first 
ten natural frequencies of beams, whose thickness-length 
ratio varies between 1/35-1/20. They investigated the effect 
of the transfer functions on the prediction performance 
considering various cases. They concluded that the effec-
tiveness of the transfer functions depends on the experi-
mental settings of the prediction. Dey et al. [20] used 
Artificial Neural Network (ANN) for uncertainty quantifi-
cation in natural frequencies of composite plates. They 
trained the ANN model employing the Latin hypercube 
sample and quantified the stochastic first two natural 

frequencies via the trained ANN model. Banerjee et al. [21] 
used Cascade Forward Back Propagation Artificial Neural 
Network (CFBP) and Adaptive Fuzzy Inference Systems 
(ANFIS) to predict the first three natural frequencies of 
cracked beams. They employed Timoshenko Beam Theory 
to model the cracked structures. They found out that while 
ANFIS is better for the prediction of the first two natural 
frequencies, CFBP predicts the third natural frequency 
more accurately. Nikoo et al. [22] employed a Genetic 
Algorithm, Particle Swarm Optimization Algorithm, and 
Imperialist Competitive Algorithm to train an Artificial 
Neural Network to predict the first natural frequency of 
cantilever beam structures. They used a dataset with 100 
samples for this purpose. They concluded that the Artificial 
Neural Network trained with Genetic Algorithm gives bet-
ter prediction results when compared with other heuristic 
optimization techniques. Karsh et al. [23] presented 
Artificial Neural Networks (ANN) trained via the Latin 
hypercube to perform stochastic natural frequency analysis 
of functionally graded plates. They concluded that the spar-
sity of the output frequencies increases in accordance with 
the increment of the percentage of variation of input param-
eters. Ali et al. [24] performed natural frequency prediction 
analysis of Fused Deposition Modelling manufactured 
parts by using Artificial Neural Networks (ANN). They 
trained the ANN model by using the Bayesian regulariza-
tion function. They concluded that the prediction error of 
ANN varies between 0.4% - 5.6%. Atilla et al. [25] per-
formed free vibration and buckling analyses of laminated 
composite plate structures having cutouts by employing 
numeric and experimental methods. They used the numer-
ical and experimental data to create an Artificial Neural 
Networks model to predict the first natural frequency and 
the critical buckling load of the composite plate with cut-
out. They concluded that the Artificial Neural Networks 
model successfully predicts the fundamental frequency and 
critical buckling load of the plate structure. Jayasundara et 
al. [26] performed damage detection in deck-type arch 
bridges combining modal flexibility (MMF) and modal 
strain energy indices (MMSE) with Artificial Neural 
Networks (ANN). They trained two ANN models individ-
ually via MMF and MMSE. Besides, they employed a net-
work fusion method to improve the accuracy of damage 
identification. They concluded the ANN model trained by 
vibration data can detect, locate, and quantify damages that 
existed in the arch bridges. Saeed et al. [27] employed 
Artificial Neural Network and Multiple Neuro-Fuzzy 
Inference Systems (ANFIS) to identify cracks in curvilinear 
beams considering the natural first eight natural frequen-
cies and frequency response. They found out that ANFIS 
gives better results when compared with ANN. Hakim and 
Abdul Razak [28] examined the damage detection of steel 
bridge girders by employing Artificial Neural Networks. 
They performed the Finite Element Method to create a 
dataset required for prediction. They concluded that, with a 
6.8% error, ANN can determine the severity of the damage. 
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Yan et al. [29] performed the identification of partial cracks 
in supported beam structures using Back Propagating 
Neural Network and Support Vector Machine models. They 
used the optimal kernel model among Linear, Polynomial, 
Radial Basis Function, and Sigmoid kernels according to 
Mercer conditions. They concluded that the Support Vector 
Machine performs crack identification with smaller errors. 
De Fenza et al. [30] employed Artificial Neural Networks 
and Probability Ellipse for damage detection in composite 
and aluminum plates using Lamb waves. They concluded 
that both methods predict the damage accurately. Satpal et 
al. [31] used Support Vector Machine (SVM) with Radial 
Basis Function kernel to identify damage in aluminum 
beams under fixed-free and fixed-fixed boundary condi-
tions. They employed numeric data obtained via Finite 
Element Analysis to train and test SVM with and without 
noise. They validated the results with actual experimenta-
tions and concluded that SVM accurately predicts the dam-
age locations which makes it a promising model in 
structural health monitoring. Ghiasi et al. [32] used Least 
Square Support Vector Machine with the Littlewood-Paley 
wavelet kernel function to perform damage detection of 
four-story structures. They concluded that the accuracy of 
the presented model is higher than other conventional ker-
nels. Neves et al. [33] developed a model-free damage 
detection method using Artificial Neural Networks for 
structural health monitoring of a fictitious railway bridge. 
They performed a two-stage process to identify whether the 
structure is healthy or damaged. They concluded that the 
proposed method is effective, especially when sensors are 
placed in the middle of the bridge. Kourehli [34] employed 
Least Squares Support Vector Machine (LS-SVM) with 
Gaussian Radial Basis Function kernel to detect uncertainty 
in cantilever plates and three-story plane frames. It is con-
cluded in this study that the LS-SVM is sensitive to both 
location and severity of the damage. Hassan et al. [35] 
examined the rotating bending fatigue behavior of compos-
ite shafts using Artificial Neural Network (ANN) and 
experimental processes. They employed ANN to predict 
the fatigue life of the structure. They concluded that ANN 
successfully predict the fatigue life by a small mean square 
error rate of 0.0076. Ghiasi et al. [36] performed a compar-
ative analysis considering Back-Propagation Neural 
Networks (BPNN), Adaptive Neural-Fuzzy Inference 
System (ANFIS), Radial Basis Function Neural Network 
(RBFN), Large Margin Nearest Neighbors(LMNN), Least-
Square Support Vector Machine (LS-SVM), Extreme 
Learning Machine (ELM), Gaussian Process (GP), 
Multivariate Adaptive Regression Spline (MARS), Kriging, 
and Random Forest in artificial intelligence-based damage 
detection. They concluded that Kriging and LS-SVM mod-
els are better in location and severity of the damage. Tan et 
al. [37] used Artificial Neural Networks (ANN) and vibra-
tion characteristics for damage detection in steel-concrete 
bridges. They concluded that the model is effective since it 
requires only two or three vibration modes. Tran-Ngoc et 

al. [38] proposed an efficient Artificial Neural Network 
(ANN) to detect damages in bridges and beam-like struc-
tures. They increased the efficiency of the ANN model by 
improving the training parameters using Cuckoo Search 
(CS) algorithm. They concluded that ANN-CS is more 
accurate than ANN for damage quantification and 
localization. 

Employing machine learning models for natural fre-
quency evaluation is advantageous since real-world exper-
iments are costly and time-consuming. Besides, numeric 
analysis methods such as the Finite Element Method, 
require powerful computers and software while machine 
learning models can be easily implemented on smaller 
smart devices since they are hardware and software inde-
pendent. Furthermore, using the Finite Element Method or 
other numerical techniques requires complex mathemati-
cal equations which have to be implemented meticulously. 
Designing such structures using Computer-Aided Design 
software also takes time and requires attention since any 
small mistake will adversely impact the analysis results 
obtained via the software. On the other hand, thanks to 
machine learning, it may be sufficient to provide some geo-
metrical and mechanical properties of a structure as input 
values to measure the static or dynamic characteristics of a 
structure. Besides, machine learning models can construct 
designs with low time consumption and high performance 
and help engineers or researchers to optimize a structure’s 
design parameters. In this perspective, this study can be 
considered as a significant work for possible future studies 
that include the evaluation of static and dynamic character-
istics of various structures.

 All of the studies presented in Table 1 have compre-
hensively investigated the performance of some machine 
learning models for the prediction of natural frequency and 
damage detection, respectively. On the other hand, there 
are still gaps in terms of the variety of utilized machine 
learning methods for structural engineering problems. 
Besides, the effects of the thickness and boundary condi-
tions of structures on the prediction performance of these 
machine learning models have not been measured yet. This 
study fills these gaps by using Support Vector Machine with 
Pearson VII Universal Function Kernel (SVM-Puk) and 
Radial Basis Function Regression (RBF Reg.) methods for 
the first time to predict the first ten natural frequencies of 
the very thin, thin, and thick beam structures under fixed-
free, fixed-simply supported, and simply supported bound-
ary conditions. Besides, as an ensemble learning method, 
Random Forest Regressor (RF) and as a conventional 
method, Multilayer Perceptron Regressor (MLP) have been 
examined. 

The dataset has been obtained by utilizing the 
Finite Element Method employing Euler-Bernoulli and 
Timoshenko Beam Theories. For this purpose, a com-
puter code was written in MATLAB to perform the finite 
element free vibration problem. The performance metrics 
(i.e., correlation coefficient, mean absolute error, root mean 
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Figure 1. The prediction process of the natural frequencies using regression machine learning models.

Table 1. Comparison of the present study with existing literature considering various aspects

Study Case Frequency 
Range

Structure NN RF SVM

(RBF Kernel)

SVM

(Puk Kernel)

RBF 
Regressor

Hakim and 
Abdul Razak [28]

Damage Detection 1-5 Bridge Girder +

Laory et al. [18] Natural Frequency 
Prediction

1 Bridge + + +

Satpal et al. [31] Damage Detection 1 Thin Aluminum 
Beams

+

Ghiasi et al. [36] Damage Detection 1-5 31-bar Planar 
Truss
200-bar Double-
layer Grid

+ + +

He et al. [39] Delamination 
Assessment

1-6 Very Thin 
Composite Beams

+ +

Avcar and 
Saplioglu [19]

Natural Frequency 
Prediction

1-10 Thick Beams +

Atilla et al. [25] Natural Frequency 
and Critical Buckling 
Load Prediction

1 Composite Plates 
with Cutouts

+

Present Study Natural Frequency 
Prediction

1-10 Very Thin, 
Thin, and Thick 
Aluminum /Steel 
Beams

+ + + + +
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squared error, and prediction accuracy) of the regression 
machine learning models have been compared considering 
each frequency mode, thickness, and boundary condition 
of the beam structure.

Figure 1 shows the general workflow of the study. The 
contributions of this study are presented as follows.

Proposing alternative techniques to estimate the first 
ten natural frequencies of very thin, thin, and thick beams 
under three different boundary conditions by using Radial 
Basis Function Regressor, Random Forest Regressor, 
Multilayer Perceptron Regressor, and Support Vector 
Machine Regressor with Pearson VII Universal Function 
kernel machine learning. 

(i). Presenting an extensive comparison of the perfor-
mance metrics of Radial Basis Function Regressor, 
Random Forest Regressor, Multilayer Perceptron 
Regressor, and Support Vector Machine with 
Pearson VII Universal Kernel.

(ii). Proposing the Support Vector Machine with 
Pearson VII Universal Kernel for the first time as 
a powerful alternative to other machine learning 
models in structural analysis. 

(iii). Measuring the performance metrics of the Radial 
Basis Function Regressor model for the first time 
as another alternative model for structural engi-
neering problems. 

DATA ACQUISITION

Finite Element Modelling
The dataset used in this study has been created by 

employing Finite Element Vibration Analysis of different 
variances of aluminum and steel beam structures, shown 
in Figure 2. These structures have been considered under 
fixed-free, fixed-simply supported, and simply supported 
boundary conditions. Besides, Euler-Bernoulli Beam 
Theory and Timoshenko Beam Theory have been taken 
into account for stress and strain assumptions of the thin 
and thick beam structures, respectively. A beam element, 
shown in Figure 3, having two nodes and three degrees 
of freedom (DOF) at each node has been considered for 
finite element analysis. As seen in Figure 3, the considered 
element has two translations (u and v) and one rotation θ 
displacements.

The displacement relations of the beam element are 
given as [40],

  

(1)

and,

  

(2)

where an (n=1,2, …, 6) are the constants. The general-
ized displacement vector for nodal displacements can be 
written as

  (3)

Therefore, the displacements of any point on the beam 
can be evaluated as

  (4)

where N is the shape function matrix which is,

  (5)

and,

  

(6)

Figure 2. A beam structure.

,

Figure 3. Beam element.
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where ξi is the value of ξ at the ith node and,

  
(7)

The value, φ, acts as a switch between Euler-Bernoulli 
and Timoshenko Beam Theories. The value is non-zero 
for Timoshenko beams while it is zero for Euler-Bernoulli 
beams [40]. The strain (Ue) and kinetic (Te) energy equa-
tions for the beam element are given as,

  
(8)

where E and G denote the modulus of elasticity and 
shear modulus, respectively. ρ is the density, I represents 
the moment of inertia, and A is the cross-sectional area of 
the beam element. κ is the shear correction factor, which 
is considered 0.85 [40]. The energy expressions, which are 
given in equation (8) can be written in the matrix form as

  (9)

where ke and me denote the element stiffness and mass 
matrix, respectively. The element matrices can be evaluated 
by performing the Gauss-Legendre numerical integration 
method [40].

The dynamic response of a conservative system can be 
obtained through Lagrange’s equation of motion as 

  (10)

where [M] and [K] are the global mass and stiffness 
matrices of the structure. These matrices have been evalu-
ated by assembling the element mass and element stiffness 
matrices obtained from Eq. (9). During the evaluation of 
element stiffness and mass matrices, the φ value should be 
considered meticulously since it is only present when the 
structure is thick [40]. The free vibration problem can be 
solved by considering Eq.(10) as an eigenvalue problem as

  (11)

where ω contains the natural frequencies of the 
structure.

Numerical Results
The finite element vibration analyses of the beam struc-

ture under fixed-free, fixed-simply supported, and simply 
supported boundary conditions have been performed via a 
computer code written in MATLAB environment to obtain 
the dataset. A number of 20 elements have been considered 
for the Finite Element Analysis. It is considered that all 

structures have square cross-sections. Since the acquisition 
of the dataset is performed by the constructed mathemati-
cal model, it is required to check its correctness. Therefore, 
the validity of the finite element code is checked by con-
ducting the free vibration analysis of fixed-free very thin, 
thin, and thick beams via ANSYS to check the validity of 
the constructed mathematical model. For this purpose, the 
amount of 40 of the BEAM188 element has been consid-
ered to model the same structure under the same boundary 
conditions in ANSYS. The scenarios considered for conver-
gence analysis are given in Table 2. According to the con-
vergence analysis results, given in Figure 4, the considered 
Finite Element Method is in close agreement with ANSYS.

In addition to convergence analysis, the transition 
analysis has been conducted to determine when Euler-
Bernoulli (EBT) or Timoshenko Beam Theories (TBT) 
should be considered during the acquisition of the data-
set. According to the results given in Tables 3-5, the Euler-
Bernoulli Beam Theory gives more accurate results for the 

Table 2. Material properties and structural cases for con-
vergence analysis

Material Properties
Modulus of Elasticity (E) 72 GPa
Shear Modulus (G)

Density (ρ) 2810 kg/m3

Poisson’s Ratio (υ) 0.33

Structural Cases
Property Scenario 1 Scenario 2 Scenario 3
Length (L) 1 m 1 m 3 m
Width (b) 0.01 m 0.05 m 0.05 m
Thickness (h) 0.01 m 0.05 m 0.05 m

Figure 4. The convergence analysis results.
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thickness-length ratios smaller than 1/50 when compared 
with Timoshenko Beam Theory. For the thickness ratio 
of 1/50, the error rates vary between 0.009% and 0.704% 
for the Euler-Bernoulli Beam Theory based model. The 
upper limit of the error rate drops to 0.149% for the thick-
ness ratio of 1/75. On the other hand, the error values of 
the model based on the Timoshenko Beam Theory vary 
between 0.009% and 1.584% for the thickness value of 1/50, 

whereas these values change between 0.002% and 1.737% 
for that of 1/75. The error percentages decrease for that 
model as the thickness ratio of the structure increases to 
1/48, fluctuating between 0% and 1.415%. Therefore, the 
value of φ has been considered as zero (see Equation 7) for 
thickness-length ratios smaller than 1/50. In brief, the Finite 
Element code has employed Euler-Bernoulli Beam Theory 
for thickness-length ratios smaller than 1/50, while it uses 

Table 3. Transition analysis results for case A

Frequency Mode Ansys (Hz) TBT (Hz) Error TBT EBT (Hz) Error EBT
1 13.552 13.552 0.000% 13.555 0.022%
2 84.816 84.767 0.058% 84.909 0.110%
3 237.030 236.640 0.165% 237.570 0.228%
4 463.260 461.730 0.330% 465.060 0.389%
5 763.260 759.230 0.528% 767.780 0.592%
6 1049.000 1049.200 0.019% 1049.200 0.019%
7 1135.700 1127.100 0.757% 1145.200 0.836%
8 1579.000 1563.500 0.982% 1596.700 1.121%
9 2091.600 2066.300 1.210% 2122.000 1.453%
10 2671.700 2633.900 1.415% 2720.400 1.823%
Case A (L=1.2, b=h=0.025, h/L=1/48)

Table 4. Transition analysis results for case B

Frequency Mode Ansys (Hz) TBT (Hz) Error TBT EBT (Hz) Error EBT
1 11.295 11.294 0.009% 11.296 0.009%
2 70.729 70.687 0.059% 70.769 0.057%
3 197.850 197.510 0.172% 198.060 0.106%
4 387.200 385.900 0.336% 387.840 0.165%
5 639.050 635.560 0.546% 640.560 0.236%
6 952.860 945.330 0.790% 955.920 0.321%
7 1049.000 1049.200 0.019% 1049.200 0.019%
8 1328.000 1314.000 1.054% 1333.700 0.429%
9 1763.900 1740.600 1.321% 1773.600 0.550%
10 2259.800 2224.000 1.584% 2275.700 0.704%
Case A (L=1.2, b=h=0.024, h/L=1/50)

Table 5. Transition analysis results for case C

Frequency Mode Ansys (Hz) TBT (Hz) Error TBT EBT (Hz) Error EBT
1 9.036 9.036 0.002% 9.037 0.009%
2 56.615 56.581 0.060% 56.623 0.014%
3 158.490 158.220 0.170% 158.500 0.006%
4 310.520 309.450 0.345% 310.450 0.023%
5 513.240 510.350 0.563% 512.930 0.060%
6 766.600 760.310 0.821% 765.800 0.104%
7 1049.000 1049.200 0.019% 1049.200 0.019%
8 1070.600 1058.700 1.112% 1069.000 0.149%
9 1425.400 1405.200 1.417% 1422.400 0.210%
10 1830.900 1799.100 1.737% 1826.300 0.251%
Case C (L=1.2, b=h=0.016, h/L=1/75)
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Timoshenko Beam Theory for those bigger than or equal to 
1/50. The structures are denoted as “very thin” if their thick-
ness-length ratio is smaller than or equal to 1/100, they are 
called “thin” if between 1/50 - 1/100, and “thick” if bigger 
than or equal to 1/50.

Dataset
The dataset created in this study comprises very thin, 

thin, and thick beams under fixed-free, fixed-simply sup-
ported, and simply supported boundary conditions. Table 
6 gives the geometric property intervals of the considered 
beam structures. Table 7 presents the properties of the 
materials considered for each structure given in Table 6. 
Since all structures have a square cross-section, the dataset 
contains a total of 2205 structures (441 unique geometry x 
5 unique materials). Besides, the dataset includes 16 attri-
butes for each boundary condition. These attributes com-
prise six input and ten output values. The input parameters 
have been chosen as the modulus of elasticity (E), shear 
modulus (G), density (ρ) moment of inertia (I), cross-sec-
tional area (A), and beam length (L). The output values are 
the first ten natural frequencies.

PREDICTION ANALYSIS

The prediction analyses have been performed by employ-
ing four different regression machine learning models, 
Radial Basis Function Regressor, Random Forest Regressor, 
Multilayer Perceptron Regressor, and Support Vector 

Machine Regressor with Pearson VII Universal Function 
Kernel (Puk) for prediction of the first ten natural fre-
quency values of very thin, thin and thick beam structures. 
The experiments have been built for each machine learning 
model considering various boundary conditions (fixed-
free, fixed-simply supported, and simply supported) and 
the first ten natural frequencies. Consequently, 120 exper-
iments have been conducted, in total. To avoid overfitting 
and evaluating an optimal model, a 10-fold cross-validation 
method is employed for train-test procedures. For these 
procedures, input and output data are normalized between 
0 and 1 considering min-max normalization. As for perfor-
mance metrics, correlation coefficient, mean absolute error, 
root mean squared error, and prediction accuracy values 
have been taken into account. The correlation coefficient is 
briefly the measure of the correlation strength between two 
variables. The well-known indicator “R2” is the square of 
the correlation coefficient indicating whether the model fits 
with the problem through the variance. A value close to 1 
gives a high correlation (good-fit) model whereas that of 
close to 0 indicates low correlation. The correlation coeffi-
cient can be mathematically expressed as

  
(12)

where  is the sum of squares of regression or 
in other words, explained sum of squares and  
represents the total sum of squares of the outcome y.

The mean absolute error stands for the sum of the aver-
age absolute errors of each observation and actual output. 
The mean absolute error (MAE) can be calculated as

  
(13)

where N is the size of the dataset, y is the actual value 
and  is the predicted value. The root mean squared error 
(RMSE) is a quadratic metric that measures the distance 
between each prediction and actual value by taking the 
square root of the sum of the average error. RMSE can be 
mathematically evaluated as

  

(14)

The prediction accuracy has been evaluated by de-nor-
malizing the predicted values and comparing them with the 
first ten natural frequencies of specific cases including very 
thin, thin, and thick beams under three boundary condi-
tions. Since the regression analysis does not include accu-
racy as a performance metric, the prediction accuracy and 
prediction error has been evaluated as

Table 6. Geometric properties of the beam structure dataset

Geometric Parameters Initial Value Final Value Interval
Beam Length (L) 1 m 3 m 0.1 m
Beam Width (b) 0.01 m 0.05 m 0.002 m
Beam Thickness (h) 0.01 m 0.05 m 0.002 m

Table 7. Material properties of the beam structure dataset

Aluminum Materials

Property Al 7075 Al 2024 Al 7475
Modulus of Elasticity (GPa) 72 73.1 65
Shear Modulus (GPa) 26.9 28 24
Density (kg/m3) 2810 2780 2520
Poisson’s Ratio 0.33 0.33 0.33

Steel Materials

Property Aernet 100 AISI 18Ni(300)
Modulus of Elasticity (GPa) 194 190
Shear Modulus (GPa) 74.60 73.07
Density (kg/m3) 7890 8000
Poisson’s Ratio 0.3 0.3
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  (15)

The regression machine learning models considered 
within this study have been explained briefly as follows.

Radial Basis Function Regressor
Radial Basis Functions are used for many purposes in 

many studies [19, 31, 34]. They can be employed for both 
classification and regression problems. In this study, the 
Gaussian radial basis regression function has been consid-
ered as.

  
(16)

where x1, x2, …, xm denotes the vector of attribute values 
of the considered instance, g() is the identity function, p rep-
resents the amount of the basis functions, Wk (k=0,1,2,...) 
corresponds to the weight of each basis function, ai

2 stands 
for the weight of the ith feature, cj is the center of the basis 
function and σj

2 is the variance of the basis function. In this 
study, the number of the basis functions has been chosen as 
five. Besides, feature weights are used and variance param-
eter is chosen for scale per unit. The optimal settings for 
feature weights and variance are evaluated on the training 
data by defining a local minimum of the penalized square 
error function [41] which is

  
(17)

Random Forest Regressor
Random Forest Regressor is an Ensemble Learning 

model that combines Random Trees or Regression Trees, 
which grows randomly [42]. It is aimed to reduce the 
variance by obtaining a community including low-cor-
related Random Trees and averaging the outcomes. The 
low-correlated trees are obtained via randomization in two 
processes in which the first is the growth of trees by obser-
vations of randomly selected sub-dataset and the second 
includes splitting of the nodes of each tree by utilizing input 
variables of a randomly selected sub-dataset. Following the 
growing process of R amount of Random or Regression 
Trees using R sub-datasets, these trees are combined to cre-
ate Random Forest. The prediction made by the Random 
Forest is based on bagging which can be written mathemat-
ically as 

  
(18)

where O(x) is the prediction for a new observation 
called x, Oi(x) is the evaluated prediction by using each 
Regression Tree, and err is the error.

Multilayer Perceptron (Feed-Forward Artificial Neural 
Network) Regressor

Multilayer Perceptron or Feed-Forward Artificial 
Neural Networks is a machine learning model that is used 
for many applications as a powerful tool [43]. The funda-
mental structure of this model includes input, hidden, and 
output layers. The output is evaluated by the summation of 
the combinations of the derived attributes and activation 
function. A simple mathematical expression for Multilayer 
Perceptron can be written as

  (19)

where D=D1, D2, …, DM is the derived attributes, which 
are represented by hidden layers, θ is the activation func-
tion, Sn is the linear combination of the derived attributes, 
On(I) is the output as a function of the input parameters, 
I, err is the random error, and α and φ are the unknown 
parameters. In this study, the sigmoid activation function 

 is considered since the problem is 
non-linear and unlike other activation functions, the sig-
moid function exists only between the interval [0, 1] where 
all data is normalized. Besides, three hidden layers are 
employed to predict the natural frequencies of the struc-
tures. In such problems, it is important to determine the 
number of hidden layers. In general, one to three hidden 
layers is sufficient, while a big and complex dataset requires 
up to five hidden layers [44-46].

Support Vector Machine Regressor
Support Vector Machine Regressor or Support Vector 

Regression (SVR) is employed in many studies in struc-
tural engineering. The basic idea behind the SVR is recon-
structing nonlinear relationships that existed in the original 
space to linear relationships defined in the feature space by 
employing a kernel function to interpret those relationships 
in an easy and effective way [47]. Therefore, the linear func-
tion in the feature space is given as

  (20)

where W denotes the weight vector, θ is the mapping 
function used for the transformation of the input vector 
X into the feature space, b is the bias constant, and err is 
the error. An SVR model is created via minimization of the 
objective function, which is

  
(21)
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where φ denotes the regularization parame-
ter. The minimization is provided by subtracting 

 from P(W,err). This process is 
solved by using the Lagrangian function as

  
(22)

where γ is the Lagrange coefficient. Applying the 
Lagrange optimality conditions and removing weight and 
error gives the set of linear equations that are

  (23)

where OM=[1,1, …, 1]T
1xM, IM is the M x M identity 

matrix, Y=[y1, y2, …, yM]T, γ=[ γ1, γ2, …, γM], and ψ is the M 
x M kernel matrix expressed by the corresponding kernel 
function as

  (24)

The kernel selection is critical since it determines the 
mathematical definition of the feature space and map-
ping function. Within the scope of this study, Pearson 
VII Universal Function Kernel (Puk) is employed since it 
is derived from a Gaussian shape, which is considered for 
many structural engineering applications. Therefore, the 
function of the Puk kernel [48] is,

  

(25)

Following the solution of Eq. (19) to find the values of φ 
and b, the prediction is performed by

  
(26)

PREDICTION ANALYSES RESULTS

The prediction analyses results have been presented 
considering the correlation coefficient (Cor.), mean absolute 
error (MAE), and root mean squared error (RMSE). Besides, 
the prediction accuracy of the machine learning models has 
been evaluated by de-normalizing the outputs for various 
test cases presented in Table 8. 

For simplicity, the boundary conditions have been 
abbreviated. The fixed-free boundary condition is denoted 
as “FF”, the fixed-simply supported boundary condition 

is given as “FSS”, and the simply supported is represented 
by “SS”. These abbreviations are combined with the cases 
given in Table 7 to indicate the case and considered bound-
ary conditions. For instance, the structure considered in 
Case B1 under fixed-free boundary conditions is denoted 
as “FF-B1”.

The performance of the machine learning models has 
been measured considering (i) the thickness-length ratio 
and corresponding theory, (ii) boundary conditions, and 
(iii) natural frequencies. The kernel of the support vec-
tor machine has been chosen as Pearson VII Universal 
Function Kernel (Puk) since it outperforms the Radial 
Basis Kernel (RBF), which is mostly employed for struc-
tural engineering problems in which Support Vector 
Machine has been considered. For instance, considering 
the prediction performance of the fundamental natural 
frequencies of the FF-B1, FF-B2, and FF-B3 structures, 
the correlation factor, mean absolute error, and root mean 
squared error of RBF has been evaluated as 0.8944, 0.0531, 
and 0.0984, respectively while these values have been eval-
uated as 0.9997, 0.0017, and 0.0047 for Puk. Besides the 
prediction accuracy of RBF is considerably off when com-
pared with that of Puk. The prediction error rates of RBF 
for the first natural frequency of the FF-B1, FF-B2, and 
FF-B3 cases have been obtained as 35%, 16%, and 75%, 
respectively, whereas the prediction error rates of Puk 
for these cases have been evaluated as 0.68%, 0.53%, and 
4.48%, respectively. 

Tables 9 - 11 give the statistical performance metrics 
results of Radial Basis Function Regressor (RBF Reg), 
Random Forest Regressor (RF), Multilayer Perceptron 
Regressor (MLP), and Support Vector Machine 
Regressor with Puk kernel (SVM-Puk) considering the 
randomly selected testing data under FF, FSS, and SS 
boundary conditions, respectively. The highest correla-
tion factor values, the lowest mean absolute errors, and 
the lowest root mean squared errors are highlighted 
with bold font.

It is seen from Tables 9-11 that the best metrics have 
been obtained for SVM-Puk. The correlation coefficients of 
all machine learning models are above 0.99, which proves 
that the created models have a good fit for the prediction 
problem. The average mean absolute error and root mean 
squared error values indicate that RF and SVM-Puk are 

Table 8. Considered beam cases to test the employed ma-
chine learning techniques

Case ID B1 B2 B3
Beam Length (L) 1.2 m 2 m 2.8 m
Beam Width (b) 0.04 m 0.024 m 0.014 m
Beam Thickness (h) 0.04 m 0.024 m 0.014 m
Material Al 7075 AISI 18Ni(300) Al 2024
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Table 9. Statistical performance metrics results for FF (Avg.: Average)

Mode
RBF Reg. RF MLP SVM-Puk

Cor. MAE RMSE Cor. MAE RMSE Cor. MAE RMSE Cor. MAE RMSE
1 0.9995 0.0042 0.0059 0.9992 0.0048 0.0081 0.9986 0.0067 0.0094  0.9997  0.0017  0.0047 
2 0.9991 0.0048 0.0077 0.9991 0.005 0.0083 0.9986 0.0067 0.0094  0.9997  0.0017  0.0046 
3 0.9994 0.0042 0.006 0.9991 0.005 0.0085 0.9986 0.0067 0.0094  0.9997  0.0017  0.0047 
4 0.9995 0.0045 0.0065 0.9991 0.0055 0.0091 0.9987 0.0074 0.0103  0.9998  0.0016  0.0036 
5 0.9988 0.0074 0.0113 0.9994 0.0056 0.009 0.9962 0.0152 0.0204  0.9995  0.0027  0.0072
6 0.9973 0.0087 0.0131 0.9992 0.0048 0.0081 0.994 0.0147 0.0195  0.9994  0.0029  0.0066 
7 0.9979 0.008 0.0112 0.9991 0.0048 0.0083 0.9972 0.0104 0.0132  0.9993  0.0030  0.0066 
8 0.9988 0.0077 0.0102 0.9992 0.0057 0.0093 0.9976 0.0118 0.0148  0.9997  0.0029  0.0053 
9 0.9986 0.0073 0.0108  0.9993 0.0052  0.0086 0.9948 0.0149 0.0211 0.999  0.0039 0.0093
10 0.9978 0.0085 0.0124 0.9992 0.0049 0.0084 0.995 0.0138 0.0187  0.9994  0.0034  0.0068
Avg. 0.9987 0.0065 0.0095 0.9992 0.0051 0.0086 0.9969 0.0108 0.0146  0.9995  0.0026  0.0059

Table 10. Statistical performance metrics results for FSS (Avg.: Average)

Mode
RBF Reg. RF MLP SVM-Puk

Cor. MAE RMSE Cor. MAE RMSE Cor. MAE RMSE Cor. MAE RMSE
1 0.9995 0.004 0.0057 0.999 0.005 0.0087 0.9986 0.0067 0.0094  0.9997  0.0016  0.0047 
2 0.9994 0.0043 0.0064 0.9991 0.005 0.0084 0.9986 0.0067 0.0094  0.9997  0.0017  0.0047 
3 0.9996 0.0038 0.0053 0.9991 0.005 0.0084 0.9986 0.0067 0.0094  0.9997  0.0016  0.0046 
4 0.9993 0.0066 0.0094 0.9993 0.0061 0.0098 0.9978 0.0121 0.0165  0.9998  0.0024  0.0049 
5 0.9972 0.0091 0.0137 0.9992 0.0049 0.0084 0.9941 0.0157 0.0203  0.9994  0.0029  0.0066 
6 0.9978 0.0079 0.0114  0.9992 0.0047 0.0081 0.996 0.012 0.0156  0.9992  0.0030  0.0069 
7 0.9986 0.008 0.0104 0.9992 0.0056 0.0091 0.9967 0.0127 0.0161  0.9997  0.0028  0.0053 
8 0.9986 0.0071 0.0113  0.9993 0.0055 0.0089 0.9959 0.0139 0.0193 0.9991  0.0038  0.0093 
9 0.9981 0.0081 0.0116 0.9992 0.0049 0.0083 0.9936 0.0159 0.0213  0.9994  0.0033  0.0066 
10 0.9983 0.0081 0.0122 0.9992 0.0057 0.0093 0.9967 0.0124 0.017  0.9996  0.0034  0.0062 
Avg. 0.9986 0.0067 0.0097 0.9992 0.0052 0.0087 0.9967 0.0115 0.0154  0.9995  0.0027  0.0060 

Table 11. Statistical performance metrics results for SS (Avg.: Average)

Mode
RBF Reg. RF MLP SVM-Puk

Cor. MAE RMSE Cor. MAE RMSE Cor. MAE RMSE Cor. MAE RMSE
1 0.9995 0.0041 0.0057 0.9991 0.005 0.0084 0.9986 0.0067 0.0094  0.9997  0.0016  0.0047 
2 0.9994 0.0042 0.0061 0.9991 0.0049 0.0083 0.9986 0.0067 0.0094  0.9997  0.0017  0.0047 
3 0.9995 0.004 0.0057 0.9991 0.005 0.0084 0.9986 0.0067 0.0094  0.9997  0.0016  0.0047 
4 0.9993 0.0063 0.0086 0.9993 0.0062 0.0097 0.9986 0.009 0.0123  0.9998  0.0021  0.0046 
5 0.9962 0.0107 0.0169 0.9993 0.0048 0.008 0.9925 0.0178 0.0237  0.9995  0.0030  0.0064 
6 0.9979 0.0074 0.0112 0.9991 0.0047 0.0082 0.9951 0.0128 0.0173  0.9993  0.0030  0.0069 
7 0.9986 0.0075 0.0099 0.9991 0.0051 0.0086 0.9972 0.0108 0.0139  0.9996  0.0028  0.0056
8 0.999 0.0071 0.0097 0.9993 0.0057 0.0092 0.9979 0.0105 0.0143  0.9995  0.0034  0.0068
9 0.9983 0.0079 0.0114 0.9993 0.0049 0.0079 0.9923 0.0177 0.024  0.9995  0.0033  0.0064 
10 0.9983 0.0076 0.0114 0.9992 0.0054 0.009 0.9961 0.0128 0.0174  0.9995  0.0035  0.0065
Avg. 0.9986 0.0067 0.0097 0.9992 0.0052 0.0086 0.9966 0.0112 0.0151  0.9996  0.0026  0.0057 
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Table 12. Prediction accuracy results of the machine learning models for FF-B1 (Avg. :Average)

Mode Actual
RBF Reg. RF MLP SVM-Puk

Predicted Err. (%) Predicted Err. (%) Predicted Err. (%) Predicted Err. (%)
1 22.709 22.99872 1.28% 22.62288 0.38% 22.94784 1.05% 22.86352 0.68%
2 142.130 141.7774 0.25% 142.1563 0.02% 143.6329 1.06% 142.8673 0.52%
3 397.160 389.8571 1.84% 389.5369 1.92% 401.3874 1.06% 399.7805 0.66%
4 775.970 775.6896 0.04% 768.1638 1.01% 807.6732 4.09% 781.6367 0.73%
5 1054.800 1067.067 1.16% 1064.306 0.90% 1044.449 0.98% 1058.924 0.39%
6 1277.900 1252.991 1.95% 1265.330 0.98% 1277.557 0.03% 1280.086 0.17%
7 1900.300 1928.809 1.50% 1903.447 0.17% 1906.769 0.34% 1911.473 0.59%
8 2640.300 2668.179 1.06% 2604.605 1.35% 2688.703 1.83% 2671.011 1.16%
9 3171.000 3212.051 1.29% 3189.941 0.60% 3291.221 3.79% 3217.831 1.48%
10 3494.800 3666.098 4.90% 3441.424 1.53% 3565.216 2.01% 3493.057 0.05%
Avg. 1.53% 0.89% 1.62% 0.64%

Table 13. Prediction accuracy results of the machine learning models for FF-B2 (Avg. :Average)

Mode Actual
RBF Reg. RF MLP SVM-Puk

Predicted Err. (%) Predicted Err. (%) Predicted Err. (%) Predicted Err. (%)
1 4.723 4.598047 2.65% 4.747752 0.52% 4.2927 9.11% 4.748146 0.53%
2 29.578 28.02578 5.25% 29.8816 1.03% 26.87681 9.13% 29.64805 0.24%
3 82.732 81.79053 1.14% 83.23424 0.61% 75.15606 9.16% 83.36932 0.77%
4 161.88 158.024 2.38% 163.1512 0.79% 147.895 8.64% 162.4824 0.37%
5 267.1 261.2125 2.20% 273.132 2.26% 240.5566 9.94% 266.6485 0.17%
6 398.16 416.2829 4.55% 401.8567 0.93% 414.9792 4.22% 397.5558 0.15%
7 554.81 532.6539 3.99% 555.8012 0.18% 527.1096 4.99% 555.2045 0.07%
8 609.33 583.827 4.19% 615.9853 1.09% 594.4284 2.45% 608.9149 0.07%
9 736.87 742.6907 0.79% 749.7833 1.75% 629.2094 14.61% 734.511 0.32%
10 944.2 918.6864 2.70% 951.629 0.79% 800.4082 15.23% 940.8858 0.35%
Avg. 2.98% 0.99% 8.75% 0.30%

Table 14. Prediction accuracy results of the machine learning models for FF-B3 (Avg. :Average)

Mode Actual
RBF Reg. RF MLP SVM-Puk

Predicted Err. (%) Predicted Err. (%) Predicted Err. (%) Predicted Err. (%)
1 1.465 1.551948 5.94% 1.489847 1.70% 1.455635 0.64% 1.399404 4.48%
2 9.18 9.935605 8.23% 9.273723 1.02% 9.117408 0.68% 8.981916 2.16%
3 25.7 28.58218 11.21% 25.52818 0.67% 25.50368 0.76% 25.38764 1.22%
4 50.35 54.61441 8.47% 50.97032 1.23% 57.14192 13.49% 48.64671 3.38%
5 83.211 91.51653 9.98% 85.7839 3.09% 74.48148 10.49% 81.90109 1.57%
6 124.28 121.3863 2.33% 123.4173 0.69% 133.9821 7.81% 120.9892 2.65%
7 173.55 162.386 6.43% 175.8086 1.30% 134.9531 22.24% 168.6191 2.84%
8 231.06 272.3136 17.85% 234.0916 1.31% 241.6475 4.58% 224.3742 2.89%
9 296.85 308.7233 4.00% 296.054 0.27% 350.4705 18.06% 294.8535 0.67%
10 370.99 358.464 3.38% 373.1357 0.58% 433.8045 16.93% 371.3326 0.09%
Avg. 7.78% 1.19% 9.57% 2.20%
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more suitable than RBF Reg and MLP since the error values 
of RF and SVM-Puk are much lower than those of RBF Reg 
and MLP. The statistical performance metrics are essen-
tial since they provide insight and significant information 
about the fitting performance of machine learning models. 
However, the predicted observations have to be taken into 
account to evaluate the realistic performance of a model. 
Tables 12-14 give the predicted observations for the ran-
domly selected testing data and corresponding errors of 
the considered machine learning algorithms for fixed-free 
boundary conditions. The lowest prediction error of the 
model is indicated with the bold font for each vibration 
mode.

According to the results given in Tables 12-14, the 
SVM-Puk model has the lowest prediction error for 
FF-B1 and FF-B2 cases (0.64% and 0.30%) while the RF 
model has shown the best performance for the FF-B3 
case by 1.19% error. It is seen that each machine learning 
model has made accurately predicted almost all-natural 
frequencies of the FF-B1 structure. However, for both 
RBF Reg. and MLP, the average prediction error rates 
have increased for B2 to 2.98% and 8.75% and for B3 to 
7.78% and 9.57%, respectively. This indicates that these 
models are effective for thick beams since the average 
prediction error values of these models are 1.53% for RBF 
Reg. and 1.62% for MLP considering the thick structure, 
B1. On the other hand, SVM-Puk and RF models give 
accurate predictions in all cases, although their perfor-
mances are slightly affected by the thickness-length ratio. 
In general, the prediction error rates have decreased for 
higher thickness-length ratios. The RF model predicted 
the first ten natural frequencies of the FF-B3 case by an 
average error rate of 1.19% while the average prediction 
error has diminished to 0.99% for the FF-B2 case and 
0.89% for the FF-B1 case. The average prediction error of 
SVM-Puk performed a prediction of the first ten natural 

frequencies of the FF-B1 structure by an average error of 
0.64%. This average prediction error rate diminished for 
the FF-B2 structure to 0.30% and increased for the FF-B3 
structure to 2.20%. Considering the RF model, it is seen 
that the average accuracy values are evaluated by 0.89% 
for the FF-B1 case, 0.99% for FF-B2, and 1.29% for the 
FF-B3 structure.

Tables 15-17 present the predictions, actual values 
and corresponding errors of the four different regression 
machine learning algorithms for fixed-simply supported 
FSS boundary conditions considering the randomly 
selected testing data. The lowest prediction error of the 
model is indicated with the bold font for each vibration 
mode.

It is seen from Tables 15-17 that the SVM-Puk model 
has the best performance for FF-B1 and FF-B2 cases by 
0.82% and 0.41% errors, while the RF model has the low-
est prediction error for the FF-B3 case (1.32%). A similar 
interpretation made for the prediction results of the first 
ten natural frequencies of FF structure can be made for 
the FSS case. The prediction performance slightly changes 
for all machine learning models when compared to FF. 
Among those models, the most considerable changes in 
terms of prediction accuracy have occurred for RBF Reg. 
whose average prediction error has been decreased by 
1.40% for the case FSS-B3, and for MLP whose perfor-
mance has been improved by 1.56% for the case FSS-B2. 
Just as for the FF case, the prediction accuracy has gener-
ally increased as the thickness-length ratio increases. The 
average error values for the RBF Reg. model are 1.20% 
for the FSS-B1 case, 2.48% for FSS-B2, and 6.38% for the 
FSS-B3 structure. For the MLP model, these values are 
2.01%, 7.19%, and 9.40%, respectively. The average pre-
diction error values of the RF model are 1.04% for FSS-
B1, 1.36% for FSS-B2, and 1.32% for the FSS-B3 structure. 

Table 15. Prediction accuracy results of the machine learning models for FSS-B1 (Avg. :Average)

Mode Actual
RBF Reg. RF MLP SVM-Puk

Predicted Err. (%) Predicted Err. (%) Predicted Err. (%) Predicted Err. (%)
1 99.55 98.7976 0.76% 97.85503 1.70% 100.5944 1.05% 100.0921 0.54%
2 322.14 321.3988 0.23% 314.5614 2.35% 325.5367 1.05% 324.1209 0.61%
3 670.57 684.8276 2.13% 663.8414 1.00% 677.6728 1.06% 674.629 0.61%
4 1054.8 1065.107 0.98% 1060.999 0.59% 1064.299 0.90% 1060.779 0.57%
5 1143.1 1177.854 3.04% 1140.283 0.25% 1123.319 1.73% 1142.089 0.09%
6 1737.5 1756.746 1.11% 1716.397 1.21% 1736.361 0.07% 1747.891 0.60%
7 2451 2438.888 0.49% 2420.953 1.23% 2555.964 4.28% 2471.857 0.85%
8 3171 3245.146 2.34% 3198.22 0.86% 3250.935 2.52% 3210.272 1.24%
9 3280.6 3285.188 0.14% 3314.436 1.03% 3473.595 5.88% 3339.94 1.81%
10 4223.2 4189.96 0.79% 4229.196 0.14% 4158.989 1.52% 4276.536 1.26%
Avg. 1.20% 1.04% 2.01% 0.82%
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Considering the SVM-Puk model, these values are 0.82%, 
0.41%, and 2.57%, respectively.

Tables 18-20 present the predictions, actual values, 
and corresponding errors of the four different regression 
machine learning algorithms for simply supported bound-
ary conditions considering the randomly selected testing 
data. The lowest prediction error of the model is indicated 
with the bold font for each vibration mode.

It is seen from Tables 18-20 that the SVM-Puk model 
has the lowest prediction error for FF-B1 and FF-B2 cases 
(0.67% and 0.65%), while the RF model has the best per-
formance for the FF-B3 case by 1.32% error. The predic-
tion performance metrics that have been evaluated for SS 
cases slightly change for almost all machine learning mod-
els when compared with the FSS cases. The most consid-
erable differences have occurred for MLP, whose average 

prediction error decrease by 1.05% for the case SS-B2, and 
3.24% for the case SS-B3. The performance of machine 
learning models has been generally higher for thicker struc-
tures. The average prediction error values of the RBF Reg. 
model are 1.30% for the SS-B1 case, 2.52% for SS-B2, and 
6.63% for the SS-B3 structure. Considering the MLP model, 
these values are 1.72%, 6.14%, and 6.16%, respectively. The 
average error values for the RF model are 0.86% for SS-B1, 
1.12% for SS-B2, and 1.35% for SS-B3 structure. For the 
SVM-Puk model, these values are 0.67%, 0.65%, and 2.73%, 
respectively.

Evaluating all results given in Tables 11-20 considering 
the thickness-length ratio of the structure indicates that 
the SVM-Puk model gives the most accurate predictions 
for the B1 and B2 cases under FF, FSS, and SS boundary 
conditions. The average accuracy values of the SVM-Puk 

Table 16. Prediction accuracy results of the machine learning models for FSS-B2 (Avg. :Average)

Mode Actual
RBF Reg. RF MLP SVM-Puk

Predicted Err. (%) Predicted Err. (%) Predicted Err. (%) Predicted Err. (%)
1 20.701 20.19235 2.46% 20.71169 0.05% 18.81112 9.13% 20.81425 0.55%
2 67.021 67.37737 0.53% 68.22448 1.80% 60.8737 9.17% 67.20129 0.27%
3 139.64 134.4552 3.71% 137.9326 1.22% 126.7644 9.22% 140.2462 0.43%
4 238.37 229.3974 3.76% 239.971 0.67% 232.9104 2.29% 238.4767 0.04%
5 362.98 365.4822 0.69% 366.7592 1.04% 370.6424 2.11% 364.2867 0.36%
6 513.26 500.0339 2.58% 518.6542 1.05% 497.7832 3.02% 517.8904 0.90%
7 609.33 605.5353 0.62% 615.2939 0.98% 615.754 1.05% 608.6666 0.11%
8 689 708.1252 2.78% 697.3252 1.21% 584.3548 15.19% 693.6794 0.68%
9 890.05 925.0864 3.94% 915.2962 2.84% 723.226 18.74% 883.7839 0.70%
10 1116.4 1157.847 3.71% 1146.566 2.70% 1138.442 1.97% 1115.508 0.08%
Avg. 2.48% 1.36% 7.19% 0.41%

Table 17. Prediction accuracy results of the machine learning models for FSS-B3 (Avg. :Average)

Mode Actual
RBF Reg. RF MLP SVM-Puk

Predicted Err. (%) Predicted Err. (%) Predicted Err. (%) Predicted Err. (%)

1 6.424 6.970579 8.51% 6.541047 1.83% 6.380304 0.68% 6.279705 2.24%
2 20.814 22.5584 8.38% 21.14222 1.58% 20.65785 0.75% 20.01794 3.82%
3 43.416 42.46771 2.18% 42.92019 1.14% 43.04837 0.85% 41.84486 3.62%
4 74.227 76.56476 3.15% 75.70274 1.99% 62.85615 15.32% 73.50398 0.97%
5 113.24 130.1967 14.97% 114.6331 1.23% 130.2786 15.05% 110.9761 2.00%
6 160.46 149.8426 6.62% 160.4997 0.02% 115.6219 27.94% 159.0938 0.85%
7 215.92 201.8659 6.51% 222.5772 3.08% 233.9427 8.35% 210.0093 2.74%
8 279.64 274.5886 1.81% 282.2142 0.92% 293.6118 5.00% 278.3035 0.48%
9 351.69 347.8065 1.10% 355.0647 0.96% 405.2811 15.24% 355.7157 1.14%
10 432.18 386.4051 10.59% 434.067 0.44% 411.2843 4.83% 398.3442 7.83%
Avg. 6.38% 1.32% 9.40% 2.57%
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Table 18. Prediction accuracy results of the machine learning models for SS-B1 (Avg. :Average)

Mode Actual
RBF Reg. RF MLP SVM-Puk

Predicted Err. (%) Predicted Err. (%) Predicted Err. (%) Predicted Err. (%)
1 63.73 64.59937 1.36% 63.45709 0.43% 64.39938 1.05% 64.14834 0.66%
2 254.57 260.0077 2.14% 248.4182 2.42% 257.2664 1.06% 256.1416 0.62%
3 571.5 585.2803 2.41% 570.6218 0.15% 577.597 1.07% 574.3468 0.50%
4 1012.9 1008.136 0.47% 1019.68 0.67% 980.0798 3.24% 1002.652 1.01%
5 1054.8 1061.455 0.63% 1059.85 0.48% 1051.136 0.35% 1059.817 0.48%
6 1576.5 1575.145 0.09% 1577.413 0.06% 1557.179 1.23% 1587.823 0.72%
7 2259.7 2280.248 0.91% 2230.153 1.31% 2355.098 4.22% 2273.851 0.63%
8 3059.5 2990.019 2.27% 3013.205 1.51% 2989.894 2.28% 3023.134 1.19%
9 3171 3211.686 1.28% 3190.24 0.61% 3247.579 2.41% 3166.888 0.13%
10 3972.8 3916.197 1.42% 3932.683 1.01% 3984.937 0.31% 4002.951 0.76%
Avg. 1.30% 0.86% 1.72% 0.67%

Table 19. Prediction accuracy results of the machine learning models for SS-B2 (Avg. :Average)

Mode Actual
RBF Reg. RF MLP SVM-Puk

Predicted Err. (%) Predicted Err. (%) Predicted Err. (%) Predicted Err. (%)
1 13.256 12.90514 2.65% 13.24938 0.05% 12.04746 9.12% 13.32911 0.55%
2 52.986 53.91493 1.75% 52.84378 0.27% 52.36531 1.17% 52.99757 0.02%
3 119.08 116.0069 2.58% 120.4249 1.13% 108.1688 9.16% 120.1463 0.90%
4 211.38 199.2251 5.75% 212.5976 0.58% 201.4007 4.72% 212.5078 0.53%
5 329.67 326.8634 0.85% 340.9062 3.41% 314.4625 4.61% 331.8493 0.66%
6 473.73 498.2249 5.17% 481.7362 1.69% 468.8363 1.03% 472.4063 0.28%
7 609.33 607.1535 0.36% 615.0826 0.94% 607.0502 0.37% 609.3277 0.00%
8 643.37 652.404 1.40% 642.5943 0.12% 633.4077 1.55% 660.1905 2.61%
9 838.42 819.2894 2.28% 847.598 1.09% 663.0391 20.92% 830.9912 0.89%
10 1058.8 1084.768 2.45% 1079.279 1.93% 966.4437 8.72% 1059.665 0.08%
Avg. 2.52% 1.12% 6.14% 0.65%

Table 20. Prediction accuracy results of the machine learning models for SS-B3 (Avg. :Average)

Mode Actual
RBF Reg. RF MLP SVM-Puk

Predicted Err. (%) Predicted Err. (%) Predicted Err. (%) Predicted Err. (%)
1 4.1122 4.453032 8.29% 4.064699 1.16% 4.085515 0.65% 3.95292 3.87%
2 16.447 16.58876 0.86% 16.51598 0.42% 16.33212 0.70% 15.92152 3.20%
3 36.999 36.14376 2.31% 37.76693 2.08% 36.71105 0.78% 36.25738 2.00%
4 65.762 75.03942 14.11% 66.83969 1.64% 70.98043 7.94% 63.77482 3.02%
5 102.73 109.5017 6.59% 105.6112 2.80% 124.0949 20.80% 101.014 1.67%
6 147.91 139.235 5.87% 149.042 0.77% 134.3855 9.14% 145.7377 1.47%
7 201.32 186.6648 7.28% 200.1847 0.56% 203.5079 1.09% 197.6184 1.84%
8 262.98 279.62 6.33% 264.3827 0.53% 269.2584 2.39% 259.1527 1.46%
9 332.97 369.1922 10.88% 336.3276 1.01% 388.1859 16.58% 338.0006 1.51%
10 411.37 395.9507 3.75% 421.8041 2.54% 417.8999 1.59% 381.4503 7.27%
Avg. 6.63% 1.35% 6.16% 2.73%
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for FF-B1, FF-B2, FSS-B1, FSS-B2, SS-B1, and SS-B2 are 
99.36%, 99.70%, 99.18%, 99.59%, 99.33%, and 99.35%, 
respectively. On the other hand, RF is the best model for 
the B3 case under all boundary conditions. The average 
prediction accuracy values of the RF model are 98.81% 
for FF-B3, 98.68% for FSS-B3, and 98.65% for SS-B3 cases. 
The prediction accuracy values of the RBF Reg. and MLP 
models are not high as those of SVM-Puk and RF models. 
Nevertheless, the predictions made by the RBF Reg. and 
MLP models are also accurate. The prediction accuracy 
values of those models change between 91.43% (MLP for 
the case FF-B3) and 98.80% (RBF Reg. for the case FSS-B1) 
depending on the boundary conditions and dimensions of 
the structure.

Although the evaluation of the first ten natural fre-
quencies is significant, predicting the fundamental fre-
quency of a structure is critical since in most cases, the 
phenomenon called resonance can be observed in the 
structures at their first natural frequency. Therefore, con-
sidering the predictions of the fundamental natural fre-
quencies indicate that the most accurate predictions have 
been performed by MLP for very thin (B3) structures by 
an average accuracy value of 99.34%. On the other hand, 
the RF model predicts the fundamental frequencies of 
thick (B1) and thin (B2) structures by an average accuracy 
value of 99.48%.

Comparing the sensitivity of the models to the struc-
ture’s thickness shows that RF is the most robust model 
against the differences in thickness-length ratio since the 
error rates change in a small interval, which is between 
0.89% and 1.35%. On the other hand, SVM-Puk is also a 
strong model for thick and thin structures, while the per-
formance has slightly decreased for the very thin beams 
under all boundary conditions. The prediction error rates 
of RBF Reg. are acceptable for thick structures, while the 
performance has been decreased for the thin and specifi-
cally for the very thin beam structures. MLP gives a good 
prediction performance for the thick structure, whereas its 
prediction performance drastically for thin and very thin 
beams. The most sensitive model is the MLP model since 
the error rates vary in a large interval, which is between 
1.62% and 9.57%. This is because the MLP technique is 
sensitive to feature scaling, such as normalization. Another 
reason is the existence of non-convex loss functions where 
more than a single local minimum can be observed. This 
causes the initialization of the weights randomly which 
resulted in differences in accuracy values for each predict-
ing case.

Figures 5 and 6 show the average prediction error of the 
regression models for each natural frequency of the B1, B2, 
and B3 structures regardless of their boundary conditions. 
Figures 5 and 6 indicate that the RBF Regressor and MLP 
are sensitive to the length-thickness ratio since their pre-
diction accuracies have been adversely affected as the struc-
tures become thinner. On the other hand, the performance 
metrics of the SVM-Puk and RF have not been considerably 

affected by the structure’s thickness. Therefore, it can be 
concluded that the SVM-Puk and RF are robust against the 
length-thickness ratio of the structure.

Figures 7 and 8 show the boundary condition effects on 
the performance of the regression machine learning models 
considering the average error of each prediction for each 
vibration mode of the beam structure regardless of their 
thickness-length ratio. 

It is seen from Figures 7 and 8 that the prediction 
accuracies of the SVM-Puk and RF are robust and have 
not been considerably affected by the change of boundary 
conditions. RBF Reg. has been slightly affected by differ-
ent boundary conditions. On the other hand, the predic-
tion performance of RBF Reg. can be ordered from the 

Figure 5. Average prediction error of the RBF Reg. and RF 
for each vıbratıon mode of B1, B2, and B3 beams.

Figure 6. Average prediction error of the MLP and SVM-
Puk for each vibration mode of B1, B2, and B3 beams.
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highest to the lowest as SS, FSS, and FF, respectively. MLP 
is the most sensitive model whose prediction performance 
has been affected by the boundary condition, especially 
for the B2 and B3 cases. Overall, the performance of MLP 
can be ordered from the highest to the lowest as, SS, FSS, 
and FF, respectively.

Figure 9 shows the average prediction error of the 
regression machine learning models per vibration mode 
regardless of thickness-length ratio and boundary condi-
tions. It is seen from Figure 9 that the SVM-Puk and RF 
models have shown the best prediction performance with 
error rates varying between 1% and 2%. The overall error 
rates of RBF Reg. change between 3% and 4%, while the 
average error rates differ between 4% - 12% for MLP.

CONCLUSIONS

In this study, the prediction of the first ten natural fre-
quencies of very thin, thin, and thick beams has been inves-
tigated using RBF Regressor (RBF Reg.), Random Forest 
Regressor (RF), Multilayer Perceptron Regressor (MLP), 
and Support Vector Machine Regressor with Puk kernel 
(SVM-Puk). The prediction analyses have been conducted 
using a dataset obtained by performing the Finite Element 
Free Vibration Analysis of beam structures under fixed-free, 
fixed-simply supported, and simply supported boundary 
conditions, considering Euler-Bernoulli and Timoshenko 
Beam Theories. The prediction analysis results have been 
measured by considering the statistical metrics and pre-
diction performance of the machine learning models con-
sidering structural thickness, boundary conditions, and 
natural frequencies. Therefore, the following conclusions 
have been drawn.

• All machine learning models have successfully pre-
dicted the first ten natural frequency values of thick 
structures for all boundary conditions. Therefore, 
RBF Reg, RF, MLP, and SVM-Puk are powerful 
machine learning models for predicting the natural 
frequencies of thick beam structures.

• SVM-Puk and RF models have predicted the first 
ten natural frequencies of very thin, thin, and thick 
beams, accurately. The structural thickness-based 
average accuracy values of the SVM-Puk model are 
99.29% for B1, 99.55% for B2, and 97.5% for B3, 
while they are 99.17%, 98.84%, and 98.71% for RF, 
respectively. On the other hand, the prediction per-
formance of RBF Reg. and MLP has been decreased 
as the thickness of the structure has decreased. 
The structural thickness-based average prediction 

Figure 7. Average prediction error of the RBF Reg. and RF 
for each vibration mode of FF, FSS, and SS beams.

Figure 8. Average prediction error of the MLP and SVM-
Puk for each vibration mode of FF, FSS, and SS beams.

Figure 9. Average prediction error of all machine learn-
ing models considering all boundary conditions and 
length-thickness ratios length-thickness ratios.
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accuracy values of the RBF Reg. model are 98.66% 
for B1, 97.34% for B2, and 93.17% for B3, while they 
are 98.12%, 92.34%, and 91.65% for MLP, respec-
tively. It can be concluded that SVM-Puk and RF 
models are robust to the thickness difference since 
the average error rates differ in a small range. The 
errors change between 0.45% and 2.5% for SVM-
Puk and 0.93% and 1.29% for RF. On the other hand, 
RBF Reg. and MLP models are sensitive to different 
thickness values of the beam structures due to the 
high range of their average error rates. The error 
rates fluctuate between 1.34% and 6.93% for RBF 
Reg., while they change between 1.78% and 8.35% 
for MLP.

•  The prediction performance of SVM-Puk and RF 
models has not been affected considerably by dif-
ferent boundary conditions. They have predicted 
the first ten natural frequency values accurately, 
regardless of boundary conditions. Considering 
the boundary condition-based accuracy values, 
the SVM-Puk model predicted the first ten natural 
frequencies by 99.36% for FF, 99.70% for FSS, and 
97.80% for SS, while they are 99.19%, 99.01%, and 
98.81% for RF, respectively. On the other hand, the 
prediction performance of RBF Reg. and MLP has 
been considerably affected as the boundary condi-
tions have changed. The boundary condition-based 
accuracy values of RBF Reg. are 98.47% for FF, 
97.02% for FSS, and 92.28% for SS. For the MLP 
model, these values are evaluated as 98.38%, 91.25%, 
and 90.43% respectively. Therefore, RBF Reg. and 
MLP models are much more sensitive than SVM-
Puk and RF to different boundary conditions of the 
beam structures.

•  The prediction results indicate that RF and SVM-
Puk are the most effective models for predicting the 
first ten natural frequency values of the very thin, 
thin, and thick beams under various boundary con-
ditions. The prediction errors of these models vary 
between 1% - 2% per frequency, while the average 
errors have been evaluated as 1.22% and 1.12%, 
respectively. Therefore, the overall prediction accu-
racy is 98.88% For RF and 98.78% for SVM-Puk. 
Those values become 96.36% and 94.17% for RBF 
Reg. and MLP, respectively.

•  It is seen that MLP model can predict the funda-
mental frequency of the very thin structures by 
an average accuracy of 99.34%. For thin and thick 
structures RF shows the best performance by an 
average accuracy of 99.48%.

•  The prediction analysis results of this study indi-
cate that the SVM-Puk can be a powerful alterna-
tive regression machine learning model for various 
structural engineering problems.

•  The prediction performance of the RBF Reg model is 
good for the thick beams and thin beams. However, 

the prediction accuracy considerably has decreased 
for very thin beams. Therefore, it has been con-
cluded that RBF Reg is an effective model for thick 
and thin beams while it is not suitable for very thin 
beams.

•  Considering the success of the RF model, it is sug-
gested that the effectiveness of that model should be 
investigated more deeply for various cases of struc-
tural engineering.
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