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ABSTRACT

Smoking is globally a challenging issue that causes many fatal health problems. In this paper, 
a nonlinear fractional smoking mathematical model is proposed in the context of a modi-
fied form of the Caputo fractional-order derivative. The analytical and approximate-analytical 
solutions are obtained for the proposed mathematical model via the fractional differential 
transform method (FDTM) and Laplace Adomian decomposition method (LADM). The ob-
tained solution is provided as a rapidly convergent series. Simulation results are provided in 
this paper to compare the obtained solutions by FDTM, LADM, Runge Kutta (RK) method, 
and reduced differential transforms method (RDTM) with the exact solution of the proposed 
problem. By comparing both FDTM and LADM solutions, the FDTM solution is closer to the 
exact solution than the LADM solution. All obtained solutions have been analyzed and com-
pared graphically to validate the effiency and applicability of all results.
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INTRODUCTION

Smoking has a negative impact on both individuals 
and societies. [1, 5]. The smoking habit keeps spreading 
between all people of different genders and ages [1, 5]. 
Controlling the spread of smoking habit has been very 
challenging globally. A mathematical model that describes 
the smoking habit among various classifications of smokers 
is needed to be further studied in order to investigate this 
habit mathematically and provide some suggested solutions 

to this issue with a goal to control the spread of this habit 
or at least minimize its negative impact. This topic of 
research has attracted the interests of many researchers 
from various fields of science, engineering, and medicine to 
conduct further research studies concerning the smoking 
mathematical model. [1, 2, 3, 4, 5, 6]. Fractional calculus 
has recently attracted the interests of mathematicians and 
researchers due to the advantages of using fractional deriv-
atives in modelling scientific and engineering phenomena. 
Fractional derivatives can provide a better understanding 
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for the physical system and its dynamics than using the 
integer-order derivatives. Therefore, several research stud-
ies have been conducted on the mathematical analysis of 
fractional derivatives, and on solving fractional differential 
equations using analytical or approximate-analytical tech-
niques. [7, 8, 9, 10, 11, 12, 17, 18]. Some other notable stud-
ies about other proposed techniques for solving integral and 
fuzzy integral equations such as fuzzy b-metric-like spaces 
for solving integral equation [19] and control fuzzy met-
ric spaces with the help of orthogonality for solving fuzzy 
integral equation [20], respectively. Some novel fixed-point 
results of orthogonal neutrosophic metric spaces are pro-
vided in [21]. Two of the most interesting approaches for 
solving these equations of fractional order are FDTM and 
LADM. On one hand, the differential transform method 
was first created by Zhou [13] to obtain approximate-an-
alytical solutions to ordinary differential equations using 
Taylor series formulation. [15]. Then, Arikoglu and Ozkol 
in [14] developed this approach by using the power series 
formulation for fractional-order differential equations (see 
[9] for more background information about the applica-
bility of this technique for solving the second-order wave 
equation). On the other hand, the LADM is considered 
as a coupling Laplace transform method with Adomian 
decomposition which can provide a great help in solving 
nonlinear differential equations analytically [8]. For more 
examples about this method, we refer to [8] where the pro-
posed HIV infection of CD4+T cells model is successfully 
solved via the Laplace Adomian decomposition method. 
An extension of the LADM was proposed by Kaabar et 
al. [10] to form a modified coupling method of double 
Laplace transform with Adomian decomposition to solve 
the nonlinear fractional-order Schrödinger equation with 
second-order spatio-temporal dispersion. Ali et al. [15] has 
applied LADM for the fractional-order immunology and 
AIDS model. Günerhan et al. [16] has also applied LADM 
for a fractional-order model of HIV infection. In this paper, 
the general form of the nonlinear fractional smoking model 
is written as follows:

  

(1)

with initial conditions are written in the following form:

 . (2)

Let N(t) be the total population with respect to time 
which consists of 5 smokers’ classifications [1]: Potential 
smokers, occasional (light) smokers, heavy smokers, 

temporary quitters, and permanently quitters are denoted 
by P(t), W(t), M(t), Q(t), and R(t), respectively. Therefore, 
N(t) can be written as follows:

Each parameter in (1) represents the following [1]:
a represents the natural death rate; b represents the 

connection index between potential and light smokers, c 
represents the connection index between light and heavy 
smokers; d represents the smoking quitting index; e rep-
resents the number of former smokers who quitted smok-
ing permanently with a rate d; f represents the connection 
index between temporary quitters who might go back to the 
smoking habit.

While there are many methods for solving nonlin-
ear models, our proposed nonlinear fractional smoking 
mathematical model in the context of a modified version 
of Caputo fractional derivative have not been investigated 
using the FDTM and LADM. Our numerical experiments 
and simulation make our study unique in comparison to 
many other related studies. 

This paper is constructed as follows: In Section 2, some 
fundamental fractional calculus definitions and properties 
are introduced. In Section 3, the proposed smoking math-
ematical model will be solved using FDTM and LADM. In 
Section 4, all obtained results are compared and analyzed. 
In section 5, we conclude our research study.

BASIC DEFINITIONS 

In this section, some basic fractional calculus defini-
tions and properties are introduced which will be applied 
later.

DEFINITION 1. A real function f(x), x > 0  is said to 
be in the space   if there exists a real number P > 
μ  such that  where . Clearly, 
we have the following: Cμ  < Cβ if μ  < β .

DEFINITION 2. A function f(x), x > 0 is said to be in 
the space .

DEFINITION 3. The Riemann-Liouville frac-
tional integral operator of the order α > 0  of a function, 

 is defined as follows:

   (3)

All the properties of the operator Jα are mentioned in 
[36] in which we will discuss only important properties as 
follows:
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  (4)

  (5)

  (6)

There are some advantages of using Riemann–Liouville 
fractional derivative over other fractional derivatives due to 
the fact that this type of fractional derivative can be effi-
ciently applied in modelling scientific phenomena. A mod-
ified form of Caputo fractional operator, denoted by Dα will 
be used in this research work.

METHODOLOGY

In this section, the proposed smoking mathematical 
model will be solved using the FDTM and LADM.

Fractional Differential Transform Method
The fractional differential transform method (FDTM) 

is semi-numerical and analytical approach, and it is con-
sidered as a traditional differential transformed method 
reform. The differential transformation, s(x), can be 
expressed as follows:

  (7)

The differential transform inverse of Sφ(k)  is written as

  (8)

By substituting Eq. (7) into Eq. (8), the following is 
obtaind:

  (9)

Assume that Sφ(k) is the fractional differential trans-
form of S(x). The approximate function S(k) is written as:

  (10)

The above equation (Eq. (10)) represents the differen-
tial transformation that is resulted from using Taylor series 
expansion where the derivatives’ symbolic evaluation is 
not applicable for this technique. In addition, by applying 
the iterative procedure, comparative derivatives have been 

obtained. The orginal function is represented by a lower 
case letter, while the transformed function is represented 
by an upper case letter. According to Eq. (9) and Eq. (10), it 
is obvious to prove that the transformed functions have the 
basic mathematical values as mentioned in Table 2.

By applying FDTM to the proposed smoking mathe-
matical model, and by using with both Table 1 and the Eq. 
(10), a system of equations is obtained as follows:

  

(11)

with the following initial conditions:

From Eq. (11) and the above initail conditions, the 
numerical approximate values of P(t), W(t), M(t), Q(t), and 
R(t), for k = 1,2,3,...  can be obtained for various values of α, 
and the numerical comparisons are shown in the compari-
son of results and discussion section.

By using the inverse reduced differential transform of 
Pα(k), Wα(k), Mα(k), Qα(k) and Rα(k), we get the following 
solution:

Table 1. The fractional differential transform method op-
erations

Given Function Transformed Function

( ) ( ) ( )w x d x b x= ± ( ) ( ) ( )W k D k B kϕ ϕ= ±

( ) ( )w x cb x= ( ) ( )W k cB kϕ=

( ) ( )w x q cx= ( ) ( )kW k c Q kϕ=

( ) ( )xw x q
c

=
( )

( ) k

Q k
W k

c
ϕ=

0
( ) ( )m

xw x D q xϕ= ( )
( )

)
Ã 1

) (
1

(
Ã

W k
k m

Q k m
k ϕ

ϕ ϕ
ϕ

=
+

+
+ +

( ) mw x x= ( ) ( )
1

       
0

k m
W k k m

k m
δ

=
= − =  ≠

( ) x cw x e += ( )
!

ceW k
k

=



Sigma J Eng Nat Sci, Vol. 41, No. 2, pp. 331−343, April, 2023334

 

(12)

The Laplace Adomian Decomposition Method
In this section, we will illustrate the basic steps for 

LADM. We discuss the following important definitions or 
our research study:

DEFINITION 3.1 [8] A function f on 0 ≤ t < ∞  is expo-
nentially bounded of order  if satisfies , 
for some real constant M > 0.

DEFINITION 3.2 [7,8, 17] The Caputo fractional 
derivative is defined as follows:

  
(13)

where m = σ + 1 and [α] represents the integer part of σ. 
As a result, the following useful formula is obtained:

  (14)

The last-mentioned definitions can be used in this 
section to discuss the general procedures for solving the 
proposed mathematical model (1). First of all, the Laplace 
transform is applied to both lift-hand and right-hand sides 
of Eq. (1) in the following form:

  

(15)

Then, by applying the formula (13) to Eq. (15), we reach 
the following:

  

(16)

By applying the initial conditions, the following result 
is obtained:

  

(17)

By using this method, the solution is obtained as an 
infinite series. To apply the Adomian decomposition 
method, let the values of A = PM, E = MW and B = PW. 
The solution is expressed as an infinite series in the follow-
ing form:

 (18)

We decompose the two nonlinear parts, named A and 
C, in the following form:

  (19)

Here, An, En, and Bn can be computed using the convo-
lution operation as

  

(20)

Substituting Eq. (18) and Eq. (19) into Eq. (17), we 
obtain the following result:
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  (21)

By matching both left-hand and right-hand sides of Eq. 
(21), we get the following iterative algorithm:

 

(22)

Taking inverse transform of (22) we have:

  

(23)

The remaining terms can be obtained similarly. Then, 
the solution is obtained in the form of infinite series as 
follows:

  

(24)

The solution in Eq. (24) gives the results for the state 
variables for the SITR model of Eq. (1), and those results 
shall be illustrated in the next section.

COMPARISON OF RESULTS AND DISCUSSION

In this section, the results for solving model (1) are 
investigated for various values of α to prove the effective-
ness and validity of the proposed algorithm. The values of 
the parameters that have been used in numerical simula-
tions are summarized in Table 2.

It is noticeable that FDTM and LADM are effective in 
producing approximate solutions of the proposed mathe-
matical model. Numerical simulation of P(t), W(t), M(t), 
Q(t), and R(t) are shown in Figs. 1-10 over a interval of 0 
< t < 1 for different values of α = 1,0.8, 0.5 and all results 
have been compared with the exact solution for the stud-
ied problem. The values of the parameters that have been 
used in numerical simulations are summarized in Table 
2. Figs. 11-12 show the responses of the model investi-
gated in this work at α= 1. In Figs. 13-17, we compared 
the obtained result from FDTM and LADM with the 
results from using other techniques such as Runge Kutta 
(RK) method and reduced differential transforms method 
(RDTM) [1] with the same values of the parameters that 
are shown in Table 2.

According to our comparative results, FDTM provides 
more reliable solutions than LADM. We conclude that the 
FDTM solution is closer to the exact solution than LADM 
solution. Therefore, our proposed technique is reliable and 
efficient. Numerical experiments have been conducted 
using the applied methods for various values of α which 
have successfully provided good results for the studied 
problem.

Table 2. Parameters values defined in Eq. (1)

Parameters Values
P(0) 0.603

W(0) 0.24

M(0) 0.10628

Q(0) 0.0326

R(0) 0.01811

a 0.04

b 0.23

c 0.3

d 0.2

e 0.4

f 0.25
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Figure 1. (I) Exact solution for P(t), (II) Approximate solution by using LADM with α = 1, (III) Approximate solution with 
α = 0.8, (IV) Approximate solution with α = 0.5  for 0 < t < 1.

Figure 2. (I) Exact solution for P(t), (II) Approximate solution by using FDTM with α = 1, (III) Approximate solution with 
α = 0.8, (IV) Approximate solution with α = 0.5  for 0 < t < 1.
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Figure 4. (I) Exact solution for W(t), (II) Approximate solution by using FDTM with α = 1, (III) Approximate solution 
with α = 0.8, (IV) Approximate solution with α = 0.5  for 0 < t < 1.a

Figure 3. (I) Exact solution for W(t), (II) Approximate solution by using LADM with α = 0.1, (III) Approximate solution 
with α = 0.8, (IV) Approximate solution with α = 0.5  for 0 < t < 1.
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Figure 6. (I) Exact solution for M(t), (II) Approximate solution by using FDTM with α = 1, (III) Approximate solution 
with α = 0.8, (IV) Approximate solution with α = 0.5  for 0 < t < 1.

Figure 5. (I) Exact solution for M(t), (II) Approximate solution by using LADM with α = 1, (III) Approximate solution 
with α = 0.8, (IV) Approximate solution with α = 0.5  for 0 < t < 1.
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Figure 7. (I) Exact solution for Q(t), (II) Approximate solution by using LADM with α = 1, (III) Approximate solution with 
α = 0.8, (IV) Approximate solution with α = 0.5  for 0 < t < 1.

Figure 8. (I) Exact solution for Q(t), (II) Approximate solution by using FDTM with α = 1, (III) Approximate solution with 
α = 0.8,  (IV) Approximate solution with α = 0.5  for 0 < t < 1.
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Figure 9. (I) Exact solution for R(t), (II) Approximate solution by using LADM with α=1,  (III) Approximate solution with 
α=0.8, (IV) Approximate solution with α=0.5 for 0 < t < 1.

Figure 10.  (I) Exact solution for R(t), (II) Approximate solution by using FDTM with α=1,  (III) Approximate solution 
with α=0.8, (IV) Approximate solution with α=0.5 for 0 < t < 1.
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Figure 11. The relation between P(t), W(t), M(t), Q(t) and R(t) by using FDTM at α = 1.

Figure 12. The relation between P(t), W(t), M(t), Q(t) and R(t) by using LADM at α = 1.

Figure 13. The solution of P(t) obtained by FDTM (star), LADM(Triangle), RK method (Square), and RDTM(Circle) for α = 1.
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CONCLUSION

In this research work, the proposed nonlinear frac-
tional smoking mathematical model in the context of a 
modified version of Caputo fractional derivative has been 
successfully solved using two different approaches: the frac-
tional differential transform method and Laplace Adomian 
decomposition method. All obtained results have been 
analyzed and compared for various cases. Finally, all results 
prove the validity and efficiency of those methods in solv-
ing nonlinear fractional differential equations. Our results 
and methods in this work can be further extended or gener-
alized in solving other interesting nonlinear models arising 
from some phenomena in physics and engineering. In addi-
tion, our results can also be applied for models formulated 
using other fractional derivatives.
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Figure 15. The solution of M(t) obtained by FDTM (star), 
LADM(Triangle), RK method (Square), and RDTM(Circle) 
for α = 1.

Figure 14. The solution of W(t) obtained by FDTM (star), 
LADM(Triangle), RK method (Square), and RDTM(Circle) 
for α = 1.

Figure 17. The solution of R(t) obtained by FDTM (star), 
LADM(Triangle), RK method (Square), and RDTM(Circle) 
for α = 1.

Figure 16. The solution of Q(t) obtained by FDTM (star), 
LADM(Triangle), RK method (Square), and RDTM(Circle) 
for α = 1.
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