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ABSTRACT 

This work studied in detail for the first time the bending of laminated composite plates subjected t

 mechanical variations by new theory Trigonometric and Trigonometric-Hyperbolic functions of shear defor

mation. From the Euler-Lagrange hypothesis and the equations of the shear deformation theory, we will de

velop a present method.One of the most important problems of composite plates is the analysis of their be

nding behavior. The correct approach used to study their bending behavior includes two trigonometric and t

rigonometric-hyperbolic functions satisfying the null shear stress condition at the free edges. In this paper t

he bending problem is solved analytically by developing a computational code and numerically solved by F

inite Element Method. In order to simplify the study of the bending behavior,  an approach taking into con

sideration the effect of the transverse shear deformation without the shear  coefficient of correction with on

ly four unknowns has been developed while requiring five or more unknowns for other theories. Convergen

ce analysis has been carried and the results are compared to open literature available for plate bending analysis

. The approach proves to be simple and useful in analyzing the bending behavior of composite layered plates. 
 

Keywords: Composite Plate; Bending; Trigonometry Theory; Hyperbolic Trigonometry; Finite Element 

Method; Computer Programming 

 

Introduction 
Laminated composites due to their strength and high specific stiffness are increasingly used in various 

weight sensitive applications such as automotive, aeronautics and aerospace. Most of these applications have to 

operate in hostile environments; consequently the components of the structures which are subjected to mechanical 

stresses. In some cases, the mechanical load turns out to be one of the factors governing their design. 

Many studies, based on deterministic analysis, have been carried out on the modeling and analysis of 

plate bending. The formed laminate plates require precise structural analysis to predict the correct bending behavior. 

Researchers have developed various plate theories to predict the correct bending behavior of thick plates. 

Kirchhoff’s [1] classical plate theory (CPT) is unsuitable for broad plates due to neglect of transverse shear 

deformation. The first-order shear deformation theory (FSDT) developed by Mindlin [2] is also inappropriate for 

analysis because it does not gratify zero stress conditions on the top and bottom surfaces of the plate and the shear 

dependent on the problem-required correction factors.Reissner [3] developed the FSDT, which takes into 

description the shear deformation effects. Distinct from the FSDT, the HSDT satisfies the equilibrium conditions 

on the top and bottom surfaces without using a shear correction factor. In addition, Reddy [4] developed a third-

order shear deformation theory (TSDT) using polynomial functions for displacement fields. On the other hand, 

most of the HSDTs are computationally expensive due to the additional unknowns introduced in the theory context. 

 In recent times, employing the refined form of the shear deformation theories has been the subject of 

much research. In the intervening time, different forms of polynomial, trigonometric, hyperbolic, and exponential 

functions are implemented to investigate the mechanical behavior of different structures for displacement fields 

[5-10].Analyzing the geometrically nonlinear behavior of laminated composite plates using finite element analysis 

has been studied by a variety of approaches [11-26].For example, but not limited to valuable works on composite 
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materials [27-39] In the present study, two functions have been included and are made to verify the efficiency of 

the theory of shear deformation of the most minor variable functions for the analysis of bending, cross-folds, and 

laminated composite plates. These functions in terms of thickness coordinates are used in the kinematics of the 

theory to account for the effects of shear deformation. The theory applies the distribution of transverse shear 

stresses and satisfies the conditions for zero shear stress on the top and bottom surfaces.  

The theory does not need a problem-dependent shear correction factor. The governing equations and the 

boundary conditions are obtained. Using a trigonometric solution to solve the variable equations. Finally, the 

numerical results obtained are compared with exact solutions in the literature to analyze the bending of laminated 

composite plates. 

 

Theoretical formulation 
Consider the rectangular plate of sides "a" and "b" and of the thickness "h" indicated in Figure1.  

The plate consists of a number k of homogeneous layers. The plate is subjected to a transverse load q (x, 

y) on the superior surface of the plate. 

 
 

 

The displacements u  in x-direction and v  in y direction consist of extension ( )0u , bending ( )bu and

 shear components ( )su . 
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The transverse displacement w comprises two components namely: bending ( )bw and shear ( )sw  
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ANALYTICAL SOLUTION     

Based on the assumptions mentioned above, the following displacement field associated with the present 

theory is obtained.  
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Figure1. Geometry of the laminate plate 
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( )zf is replaced by ( )zf1  and again by ( )zf 2  
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The non-zero normal and shear strain components are obtained using the strain displacement relations. 
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Where 𝚀ij are the reduced elastic constants of the plane stress in the axes material of the plate, and are 

defined as: 
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Where 1E , 2E are the Young’s modules along and transverse direction of the fiber 12G , 13G  and 23G

are the in-plane and transverse shear modules 12 and 21 and the Poisson’s ratios. The force and moment 

resultants of a current theory can be obtained by integrating stresses known by Eq. (5) during the thickness and 

are as follows:  
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Where kh is the thickness ordinate of k layer, the terms ( )xyyx NNN ,,  and ( )b

xy

b

y

b

x MMM ,,  are the in-

plane force and moment resultants related with the classical plate theory whereas, ( )yx QQ , and ( )s

xy

s

y

s

x MMM ,,  

are the transverse shear force and moment resultants allied with the transverse shear deformation. 

 

EQUATIONS OF MOTION 

The equations of motion governing the coherent variations and the boundary conditions related wit

h the existing theory can be derived using the principle of virtual work. The analytical form of the principl

e of virtual work can be written as follows: 
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Where  is the variation operator .The Integrate of Eq (8), by parts and by collecting the coefficients of

000 ,, wvu  and sw the governing equations of equilibrium and the boundary conditions (Euler-Lagrange 

equations) related to the present theory are obtained by using the fundamental lemma of the calculation of the 

variation. The equations governing the equilibrium of the plates are as follows: 
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By substituting the resultants stress in terms of displacement variables of Eq. (7) in Eqs. (9) – 

(12), the governing equilibrium equations can be rewritten as follows: 
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Where ijijijijijijij AccAssBsDAsBA ,,,,,, are the stiffness coefficients of the laminate which are given as: 
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Where 

( ) ( )zfzg '1−=                                                               (18) 

 

 FLEXURAL ANALYSIS OF LAMINATED COMPOSITE PLATES 

The Navier’s solution technique is used for bending to analyze the laminated composite plates simply 

supported on the four edges satisfying the following boundary conditions: 

At 0=x  and 0: 0 ====== s

x

b

xsb MMwwvax                                (19) 

At 0=y  and 0: 0 ====== s

y

b

ysb MMwwuby                                             (20) 

 

Following the technique of the Navy’s solution, the governing equations of the laminate simply supported 

by the composite plates in the case of bending analysis are obtained by eliminating the compression loads in the 

plane ( )000 ,, yxyyxx NNN  resulting from the equations. (13) - (16).  
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The plate is subjected to a transverse load q (x, y) on the upper surface, i.e. 2/hz −= . The transverse load is 

presented in double trigonometric series as shown in Eq. (25). 

( ) 
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=

=
1 1

sinsin,
m n

mn yxqyxq 

                                                 (25) 

As am / = , bn / = and mnq
is the Fourier expansion coefficient.  

If ( == )1,1 nm sinusoidal distributed load 0qqmn = .  

While 0q is the maximum load at the center of the plate. The following solution form is assumed for the 

variables of unknown displacement sb wwvu ,,, 00 satisfying exactly the boundary conditions of simply supported 

plates. 
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Also  

 

smnbmnmnmn wwvu ,,, are the unknown constants to be determined In case of sinusoidal distributed load, the positive 

integers are unity ( )1,1 == nm  .The Substitution of this form of solution and the transverse load 
),( yxq

 in the 

governing equations (21) - (24) leads to the set of algebraic equations which can be written in matrix form as 

follows. 
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Where the elements of the stiffness matrix  P  are the following:P12 = (A12 + A66)αβ, 

 

( ) ( ) 

( )  ( ) 
( )  ( )
( )
( )

.,,,,,

,22

,22

,22,2

2,,2

,2,,

344324421441233213311221

2

44

2

55

4

22

22

6612

4

1144

4

22

22

6612

4

1134

4

22

22

6612

4

1133

2

661222

3

24

2

661222

3

23

2

66

2

2222

2

661211

3

14

2

661211

3

13661212

2

66

2

1111

pppppppppppp

AccAccAssAssAssAssp

BsBsBsBsp

DDDDpAsAsAsp

BBBpAApAsAsAsp

BBBpAApAAp

======

+++++=

+++=

+++=++−=

++−=+=++−=

++−=+=+=











(28) 

By Opening the solution of Eq. (27), unknown constants smnbmnmnmn wwvu ,,,
 can be obtained. 

By means of  the constitutive relations (3) - (5). The transverse shear stresses yzxy  , are obtained. 

The following material properties are used for bending analysis of simply supported laminated composite plates 

subjected to a sinusoidal distributed load 

,25 21 EE =    ,5.0 21312 EGG ==    ,25.0 223 EG =   
,25.012 =
   12

1

2
21 

E

E
=                      (29) 

The Displacements and stresses are presented in the following non-dimensional form: 
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Comparative analysis  

In this step, based on the mathematical formulations, a computer program with the MATLAB language 
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is developed. In this work we have chosen the Shell 99 element and a 40x40 mesh for symmetry reasons, we 

modeled only 1/4 of the plate or the Ansys library [40] (version 14.0) offers more than 150 elements of different 

types defining an application category. These standard elements are differentiated by the number of degrees of 

freedom applied to each node of the test structure the field of use (structural, mechanical, magnetic, thermal, 

electrical, etc.) or even if the elements are defined in a 2D or 3D space. 

To study the bending behavior of simply supported laminated composite plates using two different 

function theories, we are interested in comparing the results obtained from two-ply laminated plates of the same 

thickness and chosen orientation with results available in the literature, illustrated in Table 1 and Figures (2 to 8) 

 

 

 

Table 1. Comparison of non-dimensional displacements and stresses for the two layers   900   square 

composite laminated plate ( )ab =  subjected to a sinusoidal distributed load. 

 

  Cas1       
h

a =4 
    

Parameter Ansys 

Present 

Trigonometric 

Function 

Present 

trigonometric 

Hyperbolic 

Function 

Present 

Exact 

Pagano 

HSDT 

Reddy 

FSDT 

Mindlin 

 

CPT 

Kirchhoff 

 

u   0.0120 0.0115 0.0117 …….. 0.0114 0.0088 0.0088 

w  2.0911 2.0706 2.0728 2.0670 2.0256 1.9682 1.0636 

x  
1.0312 1.0139 1.0271 0.8410 0.9172 0.7157 0.7157 

y
 

0.1200 0.1108 0.1129 0.1090 0.0932 0.0843 0.0843 

xy
 

0.0910 0.0801 0.0819 0.0591 0.0713 0.0525 0.0525 

xz
 

0.1322 0.1290 0.1301 0.1200 0.1270 0.0910 ……. 

yz
 

0.1452 0.1366 0.1389 0.1350 0.1270 0.0910 …….. 

  Cas 2 
h

a =10 
    

u  0.0121 0.0099 0.0101 ……… 0.0095 0.0088 0.0088 

w  1.2828 1.2483 1.2528 1.2250 1.2479 1.2083 1.0636 

x
 

0.8510 0.8008 0.8100 0.7302 0.7652 0.7157 0.7157 

y
 

0.1100 0.0909 0.1045 0.0886 0.0889 0.0843 0.0843 

xy
 

0.0811 0.0698 0.0709 0.0535 0.0680 0.0525 0.0525 

xz
 

0.1414 0.1351 0.1386 0.1210 0.1310 0.0910 ……… 

yz
 

0.1416 0.1343 0.1370 0.1250 0.1310 0.0910 ………. 

 

 

.  
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Figure2. Comparison of non-dimensional displacement 𝑢̅ for the two layers[0° 90°⁄ ]  square composite 

laminated plate (𝑏 = 𝑎) subjected to a sinusoidal distributed load. 

 

 

 

 

Figure3. Comparison of non-dimensional displacement 𝑤̅ for the two layers[0° 90°⁄ ]  square composite 

laminated plate (𝑏 = 𝑎) subjected to a sinusoidal distributed load. 
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Figure4. Comparison of non-dimensional stress for the two layers[0° 90°⁄ ]  square composite laminated plate 

(𝑏 = 𝑎) subjected to a sinusoidal distributed load. 

 

 

Figure5. Comparison of non-dimensional stress for the two layers[0° 90°⁄ ]  square composite laminated plate 

(𝑏 = 𝑎) subjected to a sinusoidal distributed load. 
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Figure 6: Comparison of non-dimensional stress for the two layers[0° 90°⁄ ]  square composite laminated plate 

(𝑏 = 𝑎) subjected to a sinusoidal distributed load. 

 

 

Figure7. Comparison of non-dimensional stress for the two layers[0° 90°⁄ ]  square composite laminated plate 

(𝑏 = 𝑎) subjected to a sinusoidal distributed load. 
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Figure8. Comparison of non-dimensional stress for the two layers[0° 90°⁄ ]  square composite laminated plate 

(𝑏 = 𝑎) subjected to a sinusoidal distributed load. 

 

Discussion 

The applicability of the proposed method for analyzing plates laminated with one is demonstrated, using 

a   900 laminated plate under several sets of boundary conditions. The plate has a length / thickness ratio 
h

a

and an equality of width / length ratio ( )ab = , and is subjected to a sinusoidal transverse load distribution as defined 

in the equation. Note that simple types of supports are used in these examples. The results mentioned above indicate 

excellent agreement between the current results and those obtained by other solutions from authors indicated on 

the figures. Many analyzes are performed in this study by using a finite element model of the plate . The model 

was developed using linear layered structural shell elements in ANSYS 14.0. From the results of a simply 

supported two-ply symmetrical laminated composite plate it was observed that the bending is greater for this 

chosen modulus ratio .A comparison of the same with that of the literature values of Reddy, Pagno and Mindlin in 

respect of normal displacement are in good agreement. The present solution gives about 0.5% higher values in 

comparison with the results of Reddy, Pagno and Mindlin. 

 

Conclusion 

The study conducted in this article sheds light on the mechanical behavior of laminated plates subjected 

to bending. The approach developed and the results obtained significantly contribute to the study of the bending 

of laminated plates made of composite materials having an anisotropic mechanical behavior. Results for 

deflections and stresses of the laminated composite plate as a function of thickness ratios are obtained. 

The calculations of the approximate solutions (displacement and stresses) are carried out by a program 

developed in MATLAB. For the second case by the numerical approach, the checking and the validation of the 

results are made by the computer code (ANSYS). 

The absence of taking into account the transverse shearing also constitutes an important effect on the 

behavior in bending the plates. The results obtained were compared with the literature and it can be said that they 

are in good agreement. 
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