Higher order theory based analysis of laminated composite plates using fu nctions trigonometric and trigonometric-hyperbolic

Bouziane BESSAIH ${ }^{1 *}$, Abdelkader LOUSDAD ${ }^{1}$, Abdelaziz LAIREDJ², Abdelmalek ABDELMALEK²

Abstract

This work studied in detail for the first time the bending of laminated composite plates subjected t mechanical variations by new theory Trigonometric and Trigonometric-Hyperbolic functions of shear defor mation. From the Euler-Lagrange hypothesis and the equations of the shear deformation theory, we will de velop a present method.One of the most important problems of composite plates is the analysis of their be nding behavior. The correct approach used to study their bending behavior includes two trigonometric and t rigonometric-hyperbolic functions satisfying the null shear stress condition at the free edges. In this paper t he bending problem is solved analytically by developing a computational code and numerically solved by F inite Element Method. In order to simplify the study of the bending behavior, an approach taking into con sideration the effect of the transverse shear deformation without the shear coefficient of correction with on ly four unknowns has been developed while requiring five or more unknowns for other theories. Convergen ce analysis has been carried and the results are compared to open literature available for plate bending analysis . The approach proves to be simple and useful in analyzing the bending behavior of composite layered plates.

Keywords: Composite Plate; Bending; Trigonometry Theory; Hyperbolic Trigonometry; Finite Element Method; Computer Programming

Introduction

Laminated composites due to their strength and high specific stiffness are increasingly used in various weight sensitive applications such as automotive, aeronautics and aerospace. Most of these applications have to operate in hostile environments; consequently the components of the structures which are subjected to mechanical stresses. In some cases, the mechanical load turns out to be one of the factors governing their design.

Many studies, based on deterministic analysis, have been carried out on the modeling and analysis of plate bending. The formed laminate plates require precise structural analysis to predict the correct bending behavior. Researchers have developed various plate theories to predict the correct bending behavior of thick plates. Kirchhoff's [1] classical plate theory (CPT) is unsuitable for broad plates due to neglect of transverse shear deformation. The first-order shear deformation theory (FSDT) developed by Mindlin [2] is also inappropriate for analysis because it does not gratify zero stress conditions on the top and bottom surfaces of the plate and the shear dependent on the problem-required correction factors.Reissner [3] developed the FSDT, which takes into description the shear deformation effects. Distinct from the FSDT, the HSDT satisfies the equilibrium conditions on the top and bottom surfaces without using a shear correction factor. In addition, Reddy [4] developed a thirdorder shear deformation theory (TSDT) using polynomial functions for displacement fields. On the other hand, most of the HSDTs are computationally expensive due to the additional unknowns introduced in the theory context.

In recent times, employing the refined form of the shear deformation theories has been the subject of much research. In the intervening time, different forms of polynomial, trigonometric, hyperbolic, and exponential functions are implemented to investigate the mechanical behavior of different structures for displacement fields [5-10].Analyzing the geometrically nonlinear behavior of laminated composite plates using finite element analysis has been studied by a variety of approaches [11-26].For example, but not limited to valuable works on composite

[^0]materials [27-39] In the present study, two functions have been included and are made to verify the efficiency of the theory of shear deformation of the most minor variable functions for the analysis of bending, cross-folds, and laminated composite plates. These functions in terms of thickness coordinates are used in the kinematics of the theory to account for the effects of shear deformation. The theory applies the distribution of transverse shear stresses and satisfies the conditions for zero shear stress on the top and bottom surfaces.

The theory does not need a problem-dependent shear correction factor. The governing equations and the boundary conditions are obtained. Using a trigonometric solution to solve the variable equations. Finally, the numerical results obtained are compared with exact solutions in the literature to analyze the bending of laminated composite plates.

Theoretical formulation

Consider the rectangular plate of sides "a" and "b" and of the thickness "h" indicated in Figure1. The plate consists of a number k of homogeneous layers. The plate is subjected to a transverse load q (x , $\mathrm{y})$ on the superior surface of the plate.

Figure1. Geometry of the laminate plate
The displacements u in x -direction and v in y direction consist of extension $\left(u_{0}\right)$, bending $\left(u_{b}\right)$ and shear components $\left(u_{s}\right)$.

$$
\begin{align*}
& u=u_{0}+u_{b}+u_{s} \tag{1}\\
& v=v_{0}+v_{b}+v_{s}
\end{align*}
$$

The transverse displacement w comprises two components namely: bending $\left(w_{b}\right)$ and shear $\left(w_{s}\right)$

$$
\begin{equation*}
w=w_{b}+w_{s} \tag{2}
\end{equation*}
$$

ANALYTICAL SOLUTION

Based on the assumptions mentioned above, the following displacement field associated with the present theory is obtained.

$$
\begin{align*}
& u(x, y, z, t)=u_{0}(x, y, z, t)-z \frac{\partial w_{b}(x, y, t)}{\partial x}-(f(z)) \frac{\partial w_{s}(x, y, t)}{\partial x} \\
& v(x, y, z, t)=v_{0}(x, y, z, t)-z \frac{\partial w_{b}(x, y, t)}{\partial y}-(f(z)) \frac{\partial w_{s}(x, y, t)}{\partial y} \tag{3}\\
& w(x, y, t)=w_{b}(x, y, t)+w_{s}(x, y, t)
\end{align*}
$$

$f(z)$ is replaced by $f_{1}(z)$ and again by $f_{2}(z)$
With

$$
\begin{align*}
f_{1}(z) & =z-\frac{h}{\pi} \sin \frac{\pi z}{h} \\
g_{1}(z) & =f_{1}^{\prime}(z) \tag{3.a}\\
f_{2}(z) & =z-\varphi(z) \\
g_{2}(z) & =f_{2}^{\prime}(z) \tag{3.b}
\end{align*}
$$

By way of

$$
\begin{equation*}
\varphi(z)=z-\frac{2 z \sinh \left(\frac{z^{2}}{h^{2}}\right)}{2 z \sinh \left(\frac{1}{4}\right)+\cosh \left(\frac{1}{4}\right)} \tag{3.c}
\end{equation*}
$$

The non-zero normal and shear strain components are obtained using the strain displacement relations.

$$
\begin{align*}
& \left\{\begin{array}{l}
\boldsymbol{\varepsilon}_{x} \\
\boldsymbol{\varepsilon}_{y} \\
\boldsymbol{\gamma}_{x y}
\end{array}\right\}=\left\{\begin{array}{l}
\frac{\partial u}{\partial x} \\
\frac{\partial v}{\partial x} \\
\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}
\end{array}\right\}=\left\{\begin{array}{l}
\frac{\partial u_{0}}{\partial x} \\
\frac{\partial v_{0}}{\partial x} \\
\frac{\partial u_{0}}{\partial y}+\frac{\partial v_{0}}{\partial x}
\end{array}\right\}-z\left\{\begin{array}{l}
\frac{\partial^{2} w_{b}}{\partial x^{2}} \\
\frac{\partial^{2} w_{b}}{\partial y^{2}} \\
2 \frac{\partial^{2} w_{b}}{\partial x \partial y}
\end{array}\right\}-f(z)\left\{\begin{array}{l}
\frac{\partial^{2} w_{s}}{\partial x^{2}} \\
\frac{\partial^{2} w_{s}}{\partial y^{2}} \\
2 \frac{\partial^{2} w_{s}}{\partial x \partial y}
\end{array}\right\} \tag{4}\\
& \left\{\begin{array}{l}
\boldsymbol{\gamma}_{y z} \\
\boldsymbol{\gamma}_{x z}
\end{array}\right\}=\left\{\begin{array}{l}
\frac{\partial v}{\partial z}+\frac{\partial w}{\partial y} \\
\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}
\end{array}\right\}=g(z)\left\{\begin{array}{l}
\frac{\partial w_{s}}{\partial y} \\
\frac{\partial w_{s}}{\partial x}
\end{array}\right\}
\end{align*}
$$

And

$$
\left\{\begin{array}{l}
\boldsymbol{\sigma}_{x} \tag{5}\\
\boldsymbol{\sigma}_{y} \\
\boldsymbol{\tau}_{x y}
\end{array}\right\}^{k}=\left[\begin{array}{ccc}
Q_{11} & Q_{12} & 0 \\
Q_{12} & Q_{22} & 0 \\
0 & 0 & Q_{66}
\end{array}\right]^{k}\left\{\begin{array}{l}
\boldsymbol{\varepsilon}_{x} \\
\boldsymbol{\varepsilon}_{y} \\
\boldsymbol{\gamma}_{x y}
\end{array}\right\}^{k} \quad \text { And } \quad\left\{\begin{array}{l}
\boldsymbol{\tau}_{y z} \\
\boldsymbol{\tau}_{x z}
\end{array}\right\}^{k}=\left[\begin{array}{cc}
Q_{44} & 0 \\
0 & Q_{55}
\end{array}\right]^{k}\left\{\begin{array}{l}
\boldsymbol{\gamma}_{y z} \\
\boldsymbol{\gamma}_{x z}
\end{array}\right\}^{k}
$$

Where $Q_{i j}$ are the reduced elastic constants of the plane stress in the axes material of the plate, and are defined as:

$$
\begin{equation*}
Q_{11}=\frac{E_{1}}{1-\boldsymbol{v}_{12} \boldsymbol{v}_{21}}, Q_{12}=\frac{\boldsymbol{v}_{12} E_{2}}{1-\boldsymbol{v}_{12} \boldsymbol{v}_{21}}, Q_{22}=\frac{E_{2}}{1-\boldsymbol{v}_{12} \vartheta_{21}}, Q_{66}=G_{12}, Q_{55}=G_{13}, Q_{44}=G_{23} \tag{6}
\end{equation*}
$$

Where E_{1}, E_{2} are the Young's modules along and transverse direction of the fiber G_{12}, G_{13} and G_{23} are the in-plane and transverse shear modules \boldsymbol{v}_{12} and \boldsymbol{v}_{21} and the Poisson's ratios. The force and moment resultants of a current theory can be obtained by integrating stresses known by Eq. (5) during the thickness and are as follows:

$$
\begin{align*}
& \left\{\begin{array}{l}
N_{x} \\
N_{y} \\
N_{x y}
\end{array}\right\}=\sum_{k=1}^{n} \int_{-h / 2}^{h / 2}\left\{\begin{array}{l}
\boldsymbol{\sigma}_{x} \\
\boldsymbol{\sigma}_{y} \\
\tau_{x y}
\end{array}\right\} d z ;\left\{\begin{array}{l}
M_{x}^{b} \\
M_{y}^{b} \\
M_{x y}^{b}
\end{array}\right\}=\sum_{k=1}^{n} \int_{-h / 2}^{h / 2}\left\{\begin{array}{l}
\boldsymbol{\sigma}_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\} z d z ; \\
& \left\{\begin{array}{l}
M_{x}^{s} \\
M_{y}^{s} \\
M_{x y}^{s}
\end{array}\right\}=\sum_{k=1}^{n} \int_{-h / 2}^{h / 2}\left\{\begin{array}{l}
\boldsymbol{\sigma}_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\} f(z) d z ;\left\{\begin{array}{l}
Q_{x} \\
Q_{y}
\end{array}\right\}=\sum_{k=1}^{n} \int_{-h / 2}^{h / 2}\left\{\begin{array}{l}
\tau_{x z} \\
\tau_{y z}
\end{array}\right\} g(z) d z \tag{7}
\end{align*}
$$

Where h_{k} is the thickness ordinate of k layer, the terms $\left(N_{x}, N_{y}, N_{x y}\right)$ and $\left(M_{x}^{b}, M_{y}^{b}, M_{x y}^{b}\right)$ are the inplane force and moment resultants related with the classical plate theory whereas, $\left(Q_{x}, Q_{y}\right)$ and $\left(M_{x}^{s}, M_{y}^{s}, M_{x y}^{s}\right)$ are the transverse shear force and moment resultants allied with the transverse shear deformation.

EQUATIONS OF MOTION

The equations of motion governing the coherent variations and the boundary conditions related wit h the existing theory can be derived using the principle of virtual work. The analytical form of the principl e of virtual work can be written as follows:

$$
\begin{align*}
& \int_{0}^{a} \int_{0}^{b} \int_{-h / 2}^{h / 2}\left[\sigma_{x} \boldsymbol{\delta} \boldsymbol{\varepsilon}_{x}+\boldsymbol{\sigma}_{y} \boldsymbol{\delta} \boldsymbol{\varepsilon}_{y}+\tau_{x y} \boldsymbol{\delta} \boldsymbol{\gamma}_{x y}+\tau_{y z} \boldsymbol{\delta} \boldsymbol{\gamma}_{y z}+\tau_{x z} \boldsymbol{\delta} \boldsymbol{\gamma}_{x z}\right] d z d x d y \\
& -\int_{0}^{a b} q\left(\boldsymbol{\delta} w_{b}+\boldsymbol{\delta} w_{s}\right) d y d x \tag{8}\\
& -\int_{0}^{a b} \int_{0}^{a}\left[\begin{array}{l}
N_{x x}^{0} \frac{\partial^{2}\left(w_{b}+w_{s}\right)}{\partial x^{2}}+N_{y y}^{0} \frac{\partial^{2}\left(w_{b}+w_{s}\right)}{\partial y^{2}} \\
+2 N_{x y}^{0} \frac{\partial^{2}\left(w_{b}+w_{s}\right)}{\partial x \partial y}
\end{array}\right]\left(\delta w_{b}+\boldsymbol{\delta} w_{s}\right) d x d y=0
\end{align*}
$$

Where ∂ is the variation operator .The Integrate of Eq (8), by parts and by collecting the coefficients of $\partial u_{0}, \partial v_{0}, \partial w_{0}$ and ∂w_{s} the governing equations of equilibrium and the boundary conditions (Euler-Lagrange equations) related to the present theory are obtained by using the fundamental lemma of the calculation of the variation. The equations governing the equilibrium of the plates are as follows:

$$
\begin{align*}
& \boldsymbol{\delta} u_{0}: \frac{N_{x}}{\partial x}+\frac{N_{x y}}{\partial y}=0 \tag{9}\\
& \boldsymbol{\delta} v_{0}: \frac{N_{y}}{\partial y}+\frac{N_{x y}}{\partial x}=0 \tag{10}
\end{align*}
$$

$$
\begin{align*}
& \delta w_{b}: \frac{\partial^{2} M_{x}^{b}}{\partial x^{2}}+2 \frac{\partial^{2} M_{x y}^{b}}{\partial x \partial y}+\frac{\partial^{2} M_{y}^{b}}{\partial y^{2}} \\
& +N_{x x}^{0} \frac{\partial^{2}\left(w_{b}+w_{s}\right)}{\partial x^{2}}+N_{y y}^{0} \frac{\partial^{2}\left(w_{b}+w_{s}\right)}{\partial y^{2}} \tag{11}\\
& +2 N_{x y}^{0} \frac{\partial^{2}\left(w_{b}+w_{s}\right)}{\partial x \partial y}+q=0 \\
& \delta w_{s}: \frac{\partial^{2} M_{x}^{s}}{\partial x^{2}}+2 \frac{\partial^{2} M_{x y}^{s}}{\partial x \partial y}+\frac{\partial^{2} M_{y}^{s}}{\partial y^{2}}+\frac{\partial Q_{x z}^{s}}{\partial x}+\frac{\partial Q_{y z}^{s}}{\partial y} \\
& +N_{x x}^{0} \frac{\partial^{2}\left(w_{b}+w_{s}\right)}{\partial x^{2}}+N_{y y}^{0} \frac{\partial^{2}\left(w_{b}+w_{s}\right)}{\partial y^{2}} \tag{12}\\
& +2 N_{x y}^{0} \frac{\partial^{2}\left(w_{b}+w_{s}\right)}{\partial x \partial y}+q=0
\end{align*}
$$

By substituting the resultants stress in terms of displacement variables of Eq. (7) in Eqs. (9) (12), the governing equilibrium equations can be rewritten as follows:

$$
\begin{align*}
& \delta u_{0}:-A_{11} \frac{\partial^{2} u_{0}}{\partial x^{2}}-A_{66} \frac{\partial^{2} u_{0}}{\partial y^{2}}-\left(A_{12}+A_{66}\right) \frac{\partial^{2} v_{0}}{\partial x \partial y} \\
& +B_{11} \frac{\partial^{3} w_{b}}{\partial x^{3}}+\frac{\partial Q_{y z}^{s}}{\partial y}+\left(B_{12}+2 B_{66}\right) \frac{\partial^{3} w_{b}}{\partial x \partial y^{2}}+ \tag{13}
\end{align*}
$$

$$
A s_{11} \frac{\partial^{3} w_{s}}{\partial x^{3}}+\left(A s_{12}+2 A s_{66}\right) \frac{\partial^{3} w_{s}}{\partial x \partial y^{2}}=0
$$

$$
\delta v_{0}:-\left(A_{12}+A_{66}\right) \frac{\partial^{2} u_{0}}{\partial x \partial y}-A_{22} \frac{\partial^{2} v_{0}}{\partial y^{2}}-A_{66} \frac{\partial^{2} v_{0}}{\partial x^{2}}
$$

$$
\begin{equation*}
+B_{22} \frac{\partial^{3} w_{b}}{\partial y^{3}}+\left(B_{12}+2 B_{66}\right) \frac{\partial^{3} w_{b}}{\partial y \partial x^{2}}+ \tag{14}
\end{equation*}
$$

$\delta w_{b}:-B_{11} \frac{\partial^{3} u_{0}}{\partial x^{3}}-\left(B_{12}+2 B_{66}\right) \frac{\partial^{3} u_{0}}{\partial x \partial y^{2}}-B_{22} \frac{\partial^{3} v_{0}}{\partial y^{3}}-\left(B_{12}+2 B_{66}\right) \frac{\partial^{3} v_{0}}{\partial y \partial x^{2}}+D_{11} \frac{\partial^{4} w_{b}}{\partial x^{4}}+$
$D_{22} \frac{\partial^{4} w_{b}}{\partial y^{4}}+2\left(D_{12}+2 D_{66}\right) \frac{\partial^{4} w_{b}}{\partial x^{2} \partial y^{2}}+B s_{11} \frac{\partial^{4} w_{s}}{\partial y^{4}}+2\left(B s_{11}+2 B s_{66}\right) \frac{\partial^{4} w_{s}}{\partial x^{2} \partial y^{2}}$
$B s_{22} \frac{\partial^{4} w_{s}}{\partial y^{2}}=q+N_{x x}^{0} \frac{\partial^{2}\left(w_{b}+w_{s}\right)}{\partial x^{2}}+N_{y y}^{0} \frac{\partial^{2}\left(w_{b}+w_{s}\right)}{\partial y^{2}}+2 N_{x y}^{0} \frac{\partial^{2}\left(w_{b}+w_{s}\right)}{\partial x \partial y}$

$$
A s_{22} \frac{\partial^{3} w_{s}}{\partial y^{3}}+\left(A s_{12}+2 A s_{66}\right) \frac{\partial^{3} w_{s}}{\partial y \partial x^{2}}=0
$$

$$
\begin{align*}
& \delta w_{s}:-A s_{11} \frac{\partial^{3} u_{0}}{\partial x^{3}}-\left(A s_{12}+2 A s_{66}\right) \frac{\partial^{3} u_{0}}{\partial x \partial y^{2}}-A s_{22} \frac{\partial^{3} v_{0}}{\partial y^{3}}-\left(A s_{12}+2 A s_{66}\right) \frac{\partial^{3} v_{0}}{\partial y \partial x^{2}}+B s_{11} \frac{\partial^{4} w_{b}}{\partial x^{4}}+ \\
& B s_{22} \frac{\partial^{4} w_{b}}{\partial y^{4}}+2\left(B s_{12}+2 B s_{66}\right) \frac{\partial^{4} w_{b}}{\partial x^{2} \partial y^{2}}+A s s_{11} \frac{\partial^{4} w_{s}}{\partial x^{4}}+2\left(A s s_{12}+2 A s s_{66}\right) \frac{\partial^{4} w_{s}}{\partial x^{2} \partial y^{2}} \tag{16}\\
& +A s s_{22} \frac{\partial^{4} w_{s}}{\partial y^{2}}=q+N_{x x}^{0} \frac{\partial^{2}\left(w_{b}+w_{s}\right)}{\partial x^{2}}+N_{y y}^{0} \frac{\partial^{2}\left(w_{b}+w_{s}\right)}{\partial y^{2}}+2 N_{x y}^{0} \frac{\partial^{2}\left(w_{b}+w_{s}\right)}{\partial x \partial y}
\end{align*}
$$

Where $A_{i j}, B_{i j}, A s_{i j}, D_{i j}, B s_{i j}, A s s_{i j}, A c c_{i j}$ are the stiffness coefficients of the laminate which are given as:

$$
\begin{align*}
& \left\{A_{i j}, B_{i j}, A s_{i j}, D_{i j}\right\}=\sum_{k=1}^{n} \bar{Q}_{i j}^{k} \int_{-h / 2}^{h_{k}}\left\{1, z, f(z), z^{2}\right\} d z ;(i=j=1,2,6) \\
& \left\{{\left.B s_{i j}, A s s_{i j}\right\}=\sum_{k=1}^{n} \bar{Q}_{i j}^{k} \int_{-h / 2}^{h_{k}} f(z)\{z, f(z)\} d z ;(i=j=1,2,6)}_{\left\{A c c_{i j}\right\}=\sum_{k=1}^{n} \bar{Q}_{i j}^{k} \int_{-h / 2}^{h_{k}}[g(z)]^{2} d z ;(i=j=4,5)}\right. \tag{17}
\end{align*}
$$

Where

$$
\begin{equation*}
g(z)=1-f^{\prime}(z) \tag{18}
\end{equation*}
$$

FLEXURAL ANALYSIS OF LAMINATED COMPOSITE PLATES

The Navier's solution technique is used for bending to analyze the laminated composite plates simply supported on the four edges satisfying the following boundary conditions:

$$
\begin{equation*}
\text { At } x=0 \text { and } x=a: v_{0}=w_{b}=w_{s}=M_{x}^{b}=M_{x}^{s}=0 \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\text { At } y=0 \text { and } y=b: u_{0}=w_{b}=w_{s}=M_{y}^{b}=M_{y}^{s}=0 \tag{20}
\end{equation*}
$$

Following the technique of the Navy's solution, the governing equations of the laminate simply supported by the composite plates in the case of bending analysis are obtained by eliminating the compression loads in the plane $\left(N_{x x}^{0}, N_{y y}^{0}, N_{y x}^{0}\right)$ resulting from the equations. (13) - (16).

$$
\begin{align*}
& -A_{11} \frac{\partial^{2} u_{0}}{\partial x^{2}}-A_{66} \frac{\partial^{2} u_{0}}{\partial y^{2}}-\left(A_{12}+A_{66}\right) \frac{\partial^{2} v_{0}}{\partial x \partial y} \\
& +B_{11} \frac{\partial^{3} w_{b}}{\partial x^{3}}+\left(B_{12}+2 B_{66}\right) \frac{\partial^{3} w_{b}}{\partial x \partial y^{2}}+ \tag{21}\\
& A s_{11} \frac{\partial^{3} w_{s}}{\partial x^{3}}+\left(A s_{12}+2 A s_{66}\right) \frac{\partial^{3} w_{s}}{\partial x \partial y^{2}}=0
\end{align*}
$$

$$
\begin{align*}
& -\left(A_{12}+A_{66}\right) \frac{\partial^{2} u_{0}}{\partial x \partial y}-A_{22} \frac{\partial^{2} v_{0}}{\partial y^{2}}-A_{66} \frac{\partial^{2} v_{0}}{\partial x^{2}}+B_{22} \frac{\partial^{3} w_{b}}{\partial y^{3}}+\left(B_{12}+2 B_{66}\right) \frac{\partial^{3} w_{b}}{\partial y \partial x^{2}}+ \\
& A s_{22} \frac{\partial^{3} w_{s}}{\partial y^{3}}+\left(A s_{12}+2 A s_{66}\right) \frac{\partial^{3} w_{s}}{\partial y \partial x^{2}}=0 \tag{22}\\
& -B_{11} \frac{\partial^{3} u_{0}}{\partial x^{3}}-\left(B_{12}+2 B_{66}\right) \frac{\partial^{3} u_{0}}{\partial x \partial y^{2}} \\
& -B_{22} \frac{\partial^{3} v_{0}}{\partial y^{3}}-\left(B_{12}+2 B_{66}\right) \frac{\partial^{3} v_{0}}{\partial y \partial x^{2}}+D_{11} \frac{\partial^{4} w_{b}}{\partial x^{4}} \\
& +D_{22} \frac{\partial^{4} w_{b}}{\partial y^{4}}+2\left(D_{12}+2 D_{66}\right) \frac{\partial^{4} w_{b}}{\partial x^{2} \partial y^{2}}+B s_{11} \frac{\partial^{4} w_{s}}{\partial x^{4}} \tag{23}\\
& +2\left(B s_{12}+2 B s_{66}\right) \frac{\partial^{4} w_{s}}{\partial x^{2} \partial y^{2}}+B s_{22} \frac{\partial^{4} w_{s}}{\partial y^{4}}=q \\
& -A s_{11} \frac{\partial^{3} u_{0}}{\partial x^{3}}-\left(A s_{12}+2 A s_{66}\right) \frac{\partial^{3} u_{0}}{\partial x \partial y^{2}}-A s_{22} \frac{\partial^{3} v_{0}}{\partial y^{3}}-\left(A s_{12}+2 A s_{66}\right) \frac{\partial^{3} v_{0}}{\partial y \partial x^{2}} \\
& +B s_{11} \frac{\partial^{4} w_{b}}{\partial x^{4}}+B s_{22} \frac{\partial^{4} w_{b}}{\partial y^{4}}+2\left(B s_{12}+2 B s_{66}\right) \frac{\partial^{4} w_{b}}{\partial x^{2} \partial y^{2}}+A s s_{11} \frac{\partial^{4} w_{s}}{\partial x^{4}} \tag{24}\\
& +2\left(A s s_{12}+2 A s s_{66}\right) \frac{\partial^{4} w_{s}}{\partial x^{2} \partial y^{2}}+A s s_{22} \frac{\partial^{4} w_{s}}{\partial y^{4}}=q
\end{align*}
$$

The plate is subjected to a transverse load $\mathrm{q}(\mathrm{x}, \mathrm{y})$ on the upper surface, i.e. $z=-h / 2$. The transverse load is presented in double trigonometric series as shown in Eq. (25).

$$
\begin{equation*}
q(x, y)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} q_{m n} \sin \alpha x \sin \beta y \tag{25}
\end{equation*}
$$

As $\boldsymbol{\alpha}=m \pi / a, \boldsymbol{\beta}=n \pi / b$ and ${ }^{q_{m n}}$ is the Fourier expansion coefficient.
If $(m=1, n=1) \Rightarrow$ sinusoidal distributed load $q_{m n}=q_{0}$.
While q_{0} is the maximum load at the center of the plate. The following solution form is assumed for the variables of unknown displacement $u_{0}, v_{0}, w_{b}, w_{s}$ satisfying exactly the boundary conditions of simply supported plates.

$$
\left\{\begin{array}{l}
u_{0} \tag{26}\\
v_{0} \\
w_{b} \\
w_{s}
\end{array}\right\}=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left\{\begin{array}{l}
u_{m n} \cos \boldsymbol{\alpha} x \sin \boldsymbol{\beta} y \\
v_{m n} \sin \boldsymbol{\alpha} x \cos \boldsymbol{\beta} y \\
w_{b m n} \sin \boldsymbol{\alpha} x \sin \boldsymbol{\beta} y \\
w_{s m n} \sin \boldsymbol{\alpha} x \sin \boldsymbol{\beta} y
\end{array}\right\}
$$

Also
$u_{m n}, v_{m n}, w_{b m n}, w_{s m n}$ are the unknown constants to be determined In case of sinusoidal distributed load, the positive integers are unity $(m=1, n=1)$.The Substitution of this form of solution and the transverse load $q(x, y)$ in the governing equations (21) - (24) leads to the set of algebraic equations which can be written in matrix form as follows.

$$
\left[\begin{array}{llll}
p_{11} & p_{12} & p_{13} & p_{14} \tag{27}\\
p_{12} & p_{22} & p_{23} & p_{24} \\
p_{13} & p_{23} & p_{33} & p_{34} \\
p_{14} & p_{24} & p_{34} & p_{44}
\end{array}\right]\left\{\begin{array}{l}
u_{m n} \\
v_{m n} \\
w_{b m n} \\
w_{s m n}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0 \\
q_{0} \\
q_{0}
\end{array}\right\}
$$

Where the elements of the stiffness matrix $[P]$ are the following: $\mathrm{P}_{12}=\left(\mathrm{A}_{12}+\mathrm{A}_{66}\right) \alpha \beta$,

$$
\begin{align*}
& p_{11}=A_{11} \alpha^{2}+A_{66} \boldsymbol{\beta}^{2}, p_{12}=\left(A_{12}+A_{66}\right) \boldsymbol{\alpha} \boldsymbol{\beta}, p_{13}=-\left[\alpha^{3} B_{11}+\left(B_{12}+2 B_{66}\right) \boldsymbol{\alpha} \boldsymbol{\beta}^{2}\right] \\
& p_{14}=-\left[\boldsymbol{\alpha}^{3} A s_{11}+\left(A s_{12}+2 A s_{66}\right) \boldsymbol{\alpha} \boldsymbol{\beta}^{2}\right], p_{22}=A_{22} \boldsymbol{\beta}^{2}+A_{66} \boldsymbol{\alpha}^{2}, p_{23}=-\left[\boldsymbol{\beta}^{3} B_{22}+\left(B_{12}+2 B_{66}\right) \boldsymbol{\beta} \boldsymbol{\alpha}^{2}\right] \\
& p_{24}=-\left[\boldsymbol{\beta}^{3} A s_{22}+\left(A s_{12}+2 A s_{66}\right) \boldsymbol{\beta} \boldsymbol{\alpha}^{2}\right], p_{33}=D_{11} \boldsymbol{\alpha}^{4}+2\left(D_{12}+2 D_{66}\right) \boldsymbol{\alpha}^{2} \boldsymbol{\beta}^{2}+D_{22} \boldsymbol{\beta}^{4}, \\
& p_{34}=B s_{11} \boldsymbol{\alpha}^{4}+2\left(B s_{12}+2 B s_{66}\right) \boldsymbol{\alpha}^{2} \boldsymbol{\beta}^{2}+B s_{22} \boldsymbol{\beta}^{4}, \tag{28}\\
& p_{44}=A s s_{11} \boldsymbol{\alpha}^{4}+2\left(A s s_{12}+2 A s s_{66}\right) \boldsymbol{\alpha}^{2} \boldsymbol{\beta}^{2}+A s s_{22} \boldsymbol{\beta}^{4}+A c c_{55} \boldsymbol{\alpha}^{2}+A c c_{44} \boldsymbol{\beta}^{2}, \\
& p_{21}=p_{12}, p_{31}=p_{13}, p_{32}=p_{23}, p_{41}=p_{14}, p_{42}=p_{24}, p_{43}=p_{34} .
\end{align*}
$$

By Opening the solution of Eq. (27), unknown constants $u_{m n}, v_{m n}, w_{b m n}, w_{s m n}$ can be obtained.
By means of the constitutive relations (3) - (5). The transverse shear stresses $\tau_{x y}, \tau_{y z}$ are obtained.
The following material properties are used for bending analysis of simply supported laminated composite plates subjected to a sinusoidal distributed load

$$
\begin{equation*}
E_{1}=25 E_{2}, \quad G_{12}=G_{13}=0.5 E_{2}, \quad G_{23}=0.25 E_{2}, \quad v_{12}=0.25, \quad \boldsymbol{v}_{21}=\frac{E_{2}}{E_{1}} \boldsymbol{v}_{12} \tag{29}
\end{equation*}
$$

The Displacements and stresses are presented in the following non-dimensional form:

$$
\begin{align*}
& \bar{u}\left(0, \frac{b}{2},-\frac{h}{2}\right)=\frac{u E_{2} h^{2}}{q_{0} a^{3}},-\left(\frac{a}{2}, \frac{b}{2}, 0\right)=\frac{100 w h^{3}}{q_{0} a^{4}}, \overline{\boldsymbol{\sigma}}_{x}\left(\frac{a}{2}, \frac{b}{2},-\frac{h}{2}\right)=\frac{\boldsymbol{\sigma}_{x} h^{2}}{q_{0} a^{2}}, \overline{\boldsymbol{\sigma}}_{y}\left(\frac{a}{2}, \frac{b}{2},-\frac{h}{2}\right)=\frac{\boldsymbol{\sigma}_{y} h^{2}}{q_{0} a^{2}} \\
& \overline{\boldsymbol{\tau}}_{x y}\left(0,0,-\frac{h}{2}\right)=\frac{\boldsymbol{\tau}_{x y} h^{2}}{q_{0} a^{2}}, \overline{\boldsymbol{\tau}}_{x z}\left(0, \frac{b}{2}, 0\right)=\frac{\boldsymbol{\tau}_{x z} h}{q_{0} a}, \overline{\boldsymbol{\tau}}_{y z}\left(\frac{a}{2}, 0,0\right)=\frac{\boldsymbol{\tau}_{y z} h}{q_{0} a} \tag{30}
\end{align*}
$$

Comparative analysis

In this step, based on the mathematical formulations, a computer program with the MATLAB language
is developed. In this work we have chosen the Shell 99 element and a 40×40 mesh for symmetry reasons, we modeled only $1 / 4$ of the plate or the Ansys library [40] (version 14.0) offers more than 150 elements of different types defining an application category. These standard elements are differentiated by the number of degrees of freedom applied to each node of the test structure the field of use (structural, mechanical, magnetic, thermal, electrical, etc.) or even if the elements are defined in a 2 D or 3D space.

To study the bending behavior of simply supported laminated composite plates using two different function theories, we are interested in comparing the results obtained from two-ply laminated plates of the same thickness and chosen orientation with results available in the literature, illustrated in Table 1 and Figures (2 to 8)

Table 1. Comparison of non-dimensional displacements and stresses for the two layers $\left[0^{\circ} / 90^{\circ}\right]$ square composite laminated plate $(b=a)$ subjected to a sinusoidal distributed load.

Figure2. Comparison of non-dimensional displacement \bar{u} for the two layers $\left[0^{\circ} / 90^{\circ}\right]$ square composite laminated plate $(b=a)$ subjected to a sinusoidal distributed load.

Figure3. Comparison of non-dimensional displacement \bar{w} for the two layers $\left[0^{\circ} / 90^{\circ}\right]$ square composite laminated plate $(b=a)$ subjected to a sinusoidal distributed load.

Figure4. Comparison of non-dimensional stress for the two layers $\left[0^{\circ} / 90^{\circ}\right]$ square composite laminated plate ($b=a$) subjected to a sinusoidal distributed load.

Figure5. Comparison of non-dimensional stress for the two layers $\left[0^{\circ} / 90^{\circ}\right]$ square composite laminated plate ($b=a$) subjected to a sinusoidal distributed load.

Figure 6: Comparison of non-dimensional stress for the two layers $\left[0^{\circ} / 90^{\circ}\right]$ square composite laminated plate ($b=a$) subjected to a sinusoidal distributed load.

Figure7. Comparison of non-dimensional stress for the two layers $\left[0^{\circ} / 90^{\circ}\right]$ square composite laminated plate ($b=a$) subjected to a sinusoidal distributed load.

Figure8. Comparison of non-dimensional stress for the two layers $\left[0^{\circ} / 90^{\circ}\right]$ square composite laminated plate ($b=a$) subjected to a sinusoidal distributed load.

Discussion

The applicability of the proposed method for analyzing plates laminated with one is demonstrated, using a $\left[0^{\circ} / 90^{\circ}\right]$ laminated plate under several sets of boundary conditions. The plate has a length / thickness ratio a / h and an equality of width / length ratio $(b=a)$, and is subjected to a sinusoidal transverse load distribution as defined in the equation. Note that simple types of supports are used in these examples. The results mentioned above indicate excellent agreement between the current results and those obtained by other solutions from authors indicated on the figures. Many analyzes are performed in this study by using a finite element model of the plate . The model was developed using linear layered structural shell elements in ANSYS 14.0. From the results of a simply supported two-ply symmetrical laminated composite plate it was observed that the bending is greater for this chosen modulus ratio .A comparison of the same with that of the literature values of Reddy, Pagno and Mindlin in respect of normal displacement are in good agreement. The present solution gives about 0.5% higher values in comparison with the results of Reddy, Pagno and Mindlin.

Conclusion

The study conducted in this article sheds light on the mechanical behavior of laminated plates subjected to bending. The approach developed and the results obtained significantly contribute to the study of the bending of laminated plates made of composite materials having an anisotropic mechanical behavior. Results for deflections and stresses of the laminated composite plate as a function of thickness ratios are obtained.

The calculations of the approximate solutions (displacement and stresses) are carried out by a program developed in MATLAB. For the second case by the numerical approach, the checking and the validation of the results are made by the computer code (ANSYS).

The absence of taking into account the transverse shearing also constitutes an important effect on the behavior in bending the plates. The results obtained were compared with the literature and it can be said that they are in good agreement.

REFERENCES

[1] Kirchhoff, G.R., (1850). Uber das gleichgewicht und die bewegungeinerelastischenScheibe, J. für die Reine und AngewandteMathematik (Crelle's Journal), 40, pp. 51-88. DOI: 10.1515/crll.1850.40.51
[2] Mindlin, R.D., (1951). Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates, ASME J.of Applied Mechanics, 18, pp. 31-38. DOI: 1 10.1115/1.4010217
[3] Reissner, E. (1945). The effects of transverse shear deformation on the bending of elastic plates, Journal of Composite materials, 12, pp. 69-72.
[4] Reddy, J.N. (1984). A simple higher-order theory for laminated composite plates, Journal of Applied Mechanics, 51, pp. 745-752. DOI: 10.1115/1.3167719
[5] Ferreira, A.J.M., Roque, C.M.C., and. Jorge, R.M.N. (2005). Analysis of composite plates by trigonometric shear deformation theory and multiquadrics, Journal of Composite Structure, 83, pp. 2225-2237. DOI:10.1016/j.compstruc.2005.04.002
[6] Soldatos, K.P. (1992). A transverse shear deformation theory for homogeneous monoclinic plates, Journal of ActaMechanica, 94, pp. 195-220. DOI: 10.1006/jsvi.2000.3367
[7] Karam, M,.Afaq, K.S. andMistou, S. (2003). Mechanical behavior of laminated composite beam by the new multilayered laminated composite structures model with transverse shear stress continuity, Journal of Solids and Structures, 40, pp. 1525-1546. DOI:10.1016/S0020-7683(02)00647-9
[8] Thai, H.T., and Choi, D.H. (2013) . A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates, Journal of Composite Structure, 101, pp. 332-340. DOI:10.1016/j.compstruct.2013.02.019
[09] Thai, H.T., and Choi, D.H. (2013). Finite element formulation of various four unknown shear deformation theories for functionally graded plates, Journal of Finite Elements in Analysis and Design, 75, pp. 5061.
[10] Thai, H.T., and Choi, D.H.(2013). A simple first-order shear deformation theory for laminated composite plates, Journal of Composite Structure, 106, pp. 754-763. DOI:10.1016/j.compstruct.2013.06.013
[11] Choudhary S.S. and Tungikar V. B. (2011). A simple finite element for nonlinear analysis of composite plates. International Journal of Engineering Science and Technology, 3(6), pp. 4897-4907.
[12] Dash P., and Singh B.N.(2010) .Geometrically nonlinear bending analysis of laminated composite plate. Communications in Nonlinear Science and Numerical Simulation, 15(10), pp. 3170-3181. DOI:10.1016/j.cnsns.2009.11.017
[13] Dharmaraju T and Suresh Kumar J. (2011) .Bending analysis of composite laminated plates using higherorder shear deformation theory with zig-zag function. ARPN Journal of Engineering and Applied Sciences. 6(12), pp.106-110.
[14] Ganapathi M, Polit O, Touratier M.(1996). C0 eight-node membrane shear-bending element for geometrically non-linear (static and dynamic) analysis of laminates. Int J Numer Meth Eng, 39(20), pp. 3453-3474. DOI:10.1002/(SICI)1097-0207(19961030)39:20
[15] Han Wanmin, Petyt Maurice, Hsiao Kuo-Mo., (1994). Investigation into a geometrically nonlinear analysis of rectangular laminated plates using the hierarchical finite element method. Finite Elem Anal Des, 18 (3), pp. 273-288. DOI:10.1016/0168-874X(94)90107-4
[16] Kam T.Y, Lin S.C, Hsiao K.M.,(1993). Reliability analysis of nonlinear laminated composite plate structures. Compos Struct, 25(4), pp. 503-510. DOI:10.1016/0263-8223(93)90198-Y
[17] Naghipour M, Daniali H.M. and HashemiKachapi S.H.A.(2008). Numerical simulation of composite plates to be used for optimization of mobile bridge deck, World Applied Sciences Journal, 4(5), pp. 681690.
[18] Ngo NhuKhoa. and Tran IchThinh. (2007). Finite Element Analysis of Laminated Composite Plates Using High Order Shear Deformation Theory."Vietnam Journal of Mechanics", VAST,29(1),pp.47-57.
[19] Pandya B.N. and Kant T.., (1988). Finite Element Analysis of Laminated Composite Plates using a Higher-Order Displacement Model, Journal. Composites Science and Technology. 3, pp. 137-155. DOI: 10.1016/0266-3538(88)90003-6.
[20] Polit O, Touratier M. (2002). Multilayered/sandwich triangular finite element applied to linear and
nonlinear analyses. Compos Struct, 58(1), pp. 121-128. DOI : S0263-8223(02)00033-8
[21] Reddy J.N., 1997. Mechanics of Laminated Composite plates. CRC Press, Florida.
[22] Reddy A.R., Reddy B.S. and K.V.K. Reddy. (2011). Application of design of experiments and artificial neural networks for stacking sequence optimizations of laminated composite plates, International Journal of Engineering, Science and Technology, 3(6), pp. 295-310. DOI: 10.4314/ijest.v3i6.24
[23] Reddy R., Reddy B.S., Reddy N., Surisetty S., (2012). Prediction of natural frequency of laminated composite plates using artificial neural networks. Engineering, 4(6), pp. 329-337, DOI: 10.4236/Eng. 2012.46043.
[24] Salehi M and Falahatgar S.R. (2010). Geometrically non-linear analysis of unsymmetrical fiberreinforced laminated annular sector composite plates. Transaction B: Mechanical Engineering, 17(3), pp. 205-216.
[25] Zouggar.K, Guerraiche.K, Lousdad.A, (2022).Numerical and predictive analysis of the low-velocity impact response of UD composite plate under a Controlled environment Elsevier Journal of Composite Structures DOI: 10.1016/j.compstruct.2022.116053 Vol 299, 116053 November 2022
[26] Rachid.A, Djamel Ouinas, Abdelkader Lousdad, Fatima Zohra Zaoui, Bekacem Achour, Hatem Gasmi, Tayyab Ashfaq Butt, Abdelouahed Tounsi Mechanical behavior and free vibration analysis of FG doubly curved shells on elastic foundation via a new modified displacements field model of 2D and quasi-3D HSDTs Elsevier Journal: Thin-Walled Structures Vol. 172, 108783 March 2022.
[27] Sur, G. and Erkan, Ö. (2018), "Cutting tool geometry in the drilling of cfrp composite plates and taguchi optimisation of the cutting parameters affecting delamination ", Sigma Journal of Engineering and Natural Sciences, Vol. 36 No. 3, pp. 619-628.
[28] Sur, G. and Erkan, Ö. (2021), "Surface quality optimization of CFRP plates drilled with standard and step drill bits using TAGUCHI, TOPSIS and AHP method", Engineering Computations, Vol. 38 No. 5, pp. 2163-2187. https://doi.org/10.1108/EC-04-2020-0202.
[29] Yaylacı M, Birinci A, Adiyaman G, Öner E, (2016)., Analysıs of a long strip containing an internal or edge crack using FEM. Sigma Journal of Engineering And Natural Sciences-, vol.34, pp.269-278.
[30] Yaylacı M., (2017). Comparison between numerical and analytical solutions for the receding contact problem. Sigma Journal Of Engineering And Natural Sciences, 35(2), 333-346.
[31] Yaylaci, Murat;Abanoz, Merve;Yaylaci, Ecren Uzun;Olmez, Hasan;Sekban, Dursun Murat;Birinci, Ahmet, (2022), "The contact problem of the functionally graded layer resting on rigid foundation pressed via rigid punch" Journal Of Steel and Composite Structures -,Vol 43 (5) Pages.661-672.
[32] Yaylaci, Ecren Uzun;Oner, Erdal;Yaylaci, Murat;Ozdemir, Mehmet Emin;Abushattal, Ahmad;Birinci, Ahmet, (2022), "Application of artificial neural networks in the analysis of the continuous contact problem" Journal Of Steel and Composite Structures -,Vol 84 (1) Pages.35-48.
[33] Murat Yaylaci, Bahar Şengül Şabano, Mehmet Emin Özdemir and Ahmet Birinci , (2022), "Solving the contact problem of functionally graded layers resting on a HP and pressed with a uniformly distributed load by analytical and numerical methods"" Journal Of Structural Engineering and Mechanics Vol 82,(3), pages 401-416.
[34] Murat Yaylaci, (2016), " The investigation crack problem through numerical analysis" Journal Of Structural Engineering and Mechanics Vol 57,(6), pages 1143-1156.
[35] Murat Yaylaci, (2022), " Simulate of edge and an internal crack problem and estimation of stress intensity factor through finite element method" Journal Of Advances in Nano ResearchVol 12,(4), pages 405-414.
[36] Murat Yaylacı, Merve Abanoz, Ecren Uzun Yaylacı, Hasan Ölmez, Dursun Murat Sekban \& Ahmet Birinci, (2022), " Evaluation of the contact problem of functionally graded layer resting on rigid foundation pressed via rigid punch by analytical and numerical (FEM and MLP) methods"Springer Arch Appl Mech 92, 1953-1971.
[37] Berkay Ergene, Çağın Bolat Yaylaci, (2019), " A review on the recent investigation trends in abrasive
waterjet cutting and turning of hybrid composites " Sigma Journal of Engineering and Natural Sciences, Volume 37, Issue 3, 989-1016.
[38] Hashim, M.K.R.; Abdul Majid, M.S.; Jamir, M.R.M.; Kasim, F.H.; Sultan, M.T.H. , (2021), " The Effect of Stacking Sequence and Ply Orientation on the Mechanical Properties of Pineapple Leaf Fibre (PALF)/Carbon Hybrid Laminate Composites. Journal MDPI (Polymers) 13 (3), 455.
[39] Alshahrani, H.; Ahmed, A. , (2021), " Enhancing Impact Energy Absorption, Flexural and Crash Performance Properties of Automotive Composite Laminates by Adjusting the Stacking Sequences Layup". Polymers 2021, 13, 3404.
[40] ANSYS "Theory manual" 2014.

[^0]: This paper was recommended for publication in revised form by Regional Editor Ahmet Selim Dalkilic
 ${ }^{1}$ Laboratory mechanics of structure and solids (LMSS),Mechanical engineering department, Faculty of Technology,Universit yof SidiBel Abbes,
 ${ }^{2}$ AlgeriaLaboratoryof Mechanical, Modeling and Experimentation,(L2ME),Facultyof Technology,University Tahri Mohammed of Bechar,Algeria
 *E-mail address: bouzianemath@gmail.com
 Orcid:https://orcid.org/0009-0007-5922-8148 Bouziane Bessaih, 0000-0001-5430-1798 Abdelkader Lousdad,
 0000-0001-6639-9884 Abdelaziz Lairedj, 0009-0009-6255-5988 Abdelmalek Abdelmalek
 Manuscript Received 13 October 2022, Revised 17 December 2022, Accepted 05 January 2023

