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New moving frames for the curves lying on a surface 
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Abstract: In this article, three new orthogonal frames are defined for the curves lying on a surface. 

These moving frames, obtained based on the Darboux frame, are called “Osculator Darboux 

Frame”, “Normal Darboux Frame” and “Rectifying Darboux Frame”, respectively. Also, the 

Osculator Darboux Frame components and curvatures are calculated for a presented example. 

Keywords: Moving Frame; Darboux Frame; Osculator Darboux vector; Normal Darboux vector; 

Rectifying Darboux vector 

 

1. Introduction 

The concept of frame is important in the differential geometry of curves. One of the most important 

tools used to analyze a curve is a moving frame. The relationship of the vector fields forming the 

frame at the opposite points of two different curves reveals the special curve pairs [2,9]. Curvature 

functions are defined on the curve using moving frames [1,5]. These curvature functions are called 

differential invariants of the curve. Curves become special thanks to the relationships between the 

differential invariants of the curve [3,4,6,7,16]. Many different frames have been defined in 

different spaces [8,10, 11]. The most commonly used moving frames are the Frenet frame and 

Bishop frame for the space curves, and the Darboux frame for the surface curves. The Darboux 

frame is known as the frame of the curve-surface pair [12, 13, 14, 17]. Hananoi et al. describe three 

new vector fields associated with the Darboux frame along the curve on the surface [13]. In 

addition, Önder defines three new special curves on the surface, taking these three new vectors into 

account. In this definition, he names these curves as iD  -Darboux slant helices, where the indices 

 , ,i o n r  represent the osculator, normal, and rectifying planes of the curve on the surface, 

respectively [18,19].  

In this study, three new moving frames are constructed for the surface curves using these three new 

vector fields defined in [13]. The curvature functions are calculated for each frame. Relevant 

theorems are presented with their proofs. 
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2. Preliminaries 

In this section, some basic concepts related to the subject discussed are presented. 

Let M  be an oriented surface in 3-dimensional Euclidean space 3E , and let ( ) :s I R M  →  be a 

unit speed surface curve on M  and s  be the arc-length parameter of  . If we denote the Frenet 

frame of   by  , ,T N B , then the Frenet equations of   are given by  

'

'

'

T N

N T B

B N



 



=

= − +

= −

 

where ( )s  is curvature (or first curvature function), ( )s  is torsion (or second curvature function) 

and, ,T N  and B  are the unit tangent vector, the principal normal vector and the binormal vector 

of  , respectively.  

 

On the other hand, since the curve   is a surface curve, it has another orthonormal frame called 

the Darboux frame and this frame is denoted by  , ,T V U , where T  is the unit tangent of the curve, 

U  is the unit normal of the surface M  along the curve  , and V  is a unit vector defined by 

.V UxT=  Using the fact that the unit tangent T  is common in both the Frenet frame and the 

Darboux frame, the relation between these frames can be given as follows  

1 0 0

0 cos sin

0 sin cos

T T

V N

U B

 

 

     
     

=
     
     −     

, 

where   is the angle between the vectors V  and N . The Darboux equations of   are given by  

                                                               

' 1

' 0

' 0

g n

g g

n g

T k k T

V k V

U k U





    
    

= −    
    − −    

,                                                       (1) 

where nk , gk  and g  are called normal curvature, geodesic curvature, and geodesic torsion of  , 

respectively [15]. The relations between these curvatures and ,     are given as follows  

cos ,  sin ,  g n g

d
k k

ds


     = = = + . 

Definition 2.1: The osculator Darboux vector field for a unit speed curve on an oriented surface 

M  with the Darboux frame  , ,T V U  is defined as ( ) ( ) ( )o g nD s T s k s V(s)= −  [13]. 
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Definition 2.2: The normal Darboux vector field for a unit speed curve on an oriented surface M  

with the Darboux frame  , ,T V U  is defined as ( ) ( ) ( )n n gD k s V s k s U(s)= − + [13]. 

Definition 2.3: The rectifying Darboux vector field for a unit speed curve on an oriented surface 

M  with the Darboux frame  , ,T V U  is defined as ( ) ( ) ( )r g gD s T s k s U(s)= + [13]. 

Definition 2.4:  A unit speed curve is called a generalized helix if its unit tangent vector makes a 

constant angle with a fixed direction [12]. 

Definition 2.5: Let   be a unit speed curve on an oriented surface M and  , ,T V U  be the Darboux 

frame along  . The curve   is called a relatively normal-slant helix if the vector field V  of   

makes a constant angle with a fixed direction, i.e. there exists a constant unit vector d  and a 

constant angle   such that , cosV d =   [15]. 

Definition 2.6: Let   be a unit speed curve on an oriented surface M and  , ,T V U  be the Darboux 

frame along  . The curve   is called an isophote curve (or U -strip slant helix) if the vector field 

U  of   makes a constant angle with a fixed direction, i.e. there exists a constant unit vector d  

and a constant angle   such that , cosU d =   [18, 20]. 

 

3. The Osculator Darboux Frame 

In this section, a new frame called the “Osculator Darboux Frame” and related theorem are 

presented.  

Let : I IR M  →  be a unit speed curve with the Darboux frame  , ,T V U  on surface M  in 3E . 

Let , ,g n gk k   be the curvatures of the curve   and ( ) ( ) ( )o g nD s T s k s V(s)= −  be the osculator 

Darboux vector. It is clear that; 

2 2 2 2

( )( ) ( )
( ) ( ) ( ).

( ) ( ) ( ) ( ) ( )

go n

o

o g n g n

sD s k s
D s T s V s

D s s k s s k s



 
= = −

+ +
 

Since the vector oD  is in the plane spanned by T  and V , the vectors oD  and U  are perpendicular 

to each other. So, oD U⊥ . Hence, the unit vector o oY D U=   can be defined. It is clear that the 

vectors , ,o oD U Y  are unit velocity and perpendicular to each other. Therefore, using these vectors 

, ,o oD U Y , a new orthonormal frame can be constructed along the curve   on the surface. 
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Definition 3.1. The frame constructed with the vector fields  , ,o oD U Y  defined as 

,  ,  o o o o oD D D U Y D U= ⊥ =   is called the osculator Darboux frame, or OD-frame briefly. 

Theorem 3.1. Let : I IR M  →  be a unit speed curve on surface M  in 3E . The osculator 

Darboux frame of the curve   is defined as  

                                                                

,

o o o

o o

o o o o

D Y

U Y

Y D U





 

 = −

 =

 = −

                                                       (2) 

where 
2

2 2

g n
o g

n n g

k
k

k k






   
= +    +   

 and 2 2

o n gk = + . 

Proof: Firstly; oD   can be expressed as a linear combination of the vectors  , ,o oD U Y  as follows:  

                                                    
1 2 3 .o o oD a D a U a Y = + +                                                          (3) 

By the inner product both sides of the equality (3) with oD , the equality  

1,o oD D a =  

is obtained. Since 1oD = , , 1o oD D =  and thus  

1 , 0o oa D D= = . 

By the inner product of both sides of the equality (3) with U , the equality  

2,oD U a =  

is obtained. On the other hand, the vector oD  can be written as  

                                                          sin cosoD T V = − ,                                                      (4) 

with the help of the equations 
2 2

sin
g

g nk





=

+
 and 

2 2
cosn

g n

k

k



=

+
. If the derivatives of the 

Darboux frame vectors (1) are used in the derivative of the equality (4),  
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                                        ( )cos ( )sino g gD k T k V     = + + + .                                          (5) 

By the inner product of both sides of the equality (5) with U , the equality  

2 , 0oa D U= =  

is obtained. By the inner product of both sides of the equality (3) with oY , the equality  

3,o oD Y a =  

is obtained. On the other hand, it is clear that   

                                              cos sino oY D U T V =  = − − .                                               (6) 

By the inner product of both sides of the equality (5) with this oY , the equality  

3 , ( )o o ga D Y k = = − +  

is obtained. In here, by arranging the derivative of the expression 
( )

tan
( )

g

n

s

k s


 = , the equality 

                                               
2

2 2

( ) ( )
( )

( ) ( ) ( )

g n

n n g

s k s
s

k s k s s






   
 =     +   

                                                 (7) 

is reached. If this expression is written in the equality (7),  

2

3 2 2

g n
g

n n g

k
a k

k k





     = − +     +    

. 

Thus, the equation (3) is written as  

                                     
2

2 2

g n
o g o

n n g

k
D k Y

k k





      = − +     +    

.                                               (8) 

Secondly; U   can be expressed as a linear combination of the vectors  , ,o oD U Y  as follows:  

                                            
1 2 3o oU b D b U b Y = + + .                                                          (9) 
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The equality (9) is inner multiplied with 
oD  and so  

1, oU D b = . 

By the inner product of both sides of the equality (4) with the third equality n gU k T V = − −  of 

the equation system (1), the equality  

1 , 0ob U D= =  

is found. The equality (9) is inner multiplied with U  and so  

2,U U b = . 

Since 1U = , , 1U U =  and thus  

2 , 0b U U= = . 

The equality (9) is inner multiplied with oY  and so  

3, oU Y b = . 

By the inner product of both sides of the equality (6) with the third equality n gU k T V = − −  of 

the equation system (1), the equality  

2 2

3 , o g nb U Y k= = +  

is obtained. Thus, the equation (9) is written as  

                                                           2 2

g n oU k Y = + .                                                              (10) 

Thirdly; oY  can be expressed as a linear combination of the vectors  , ,o oD U Y  as follows:  

                                             
1 2 3o o oY c D c U c Y = + + .                                                       (11) 

By the inner product of both sides of the equality (11) with oD , the equality  

1,o oY D c =  
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is obtained. If the derivatives of the Darboux frame vectors (1) are used in the derivative of the 

equality (6),  

                         ( ) ( ) ( )sin cos cos sino g g n gY k T k V k U        = + − + − + .                          

(12) 

The equality (12) is inner multiplied with the equality (4) and so  

1 ,o o gc Y D k = = + . 

In this here, the equality (7) is used and  

2

1 2 2

g n
g

n n g

k
c k

k k





   
= +    +   

. 

By the inner product of both sides of the equality (11) with U , the equality  

2,oY U c =  

is obtained. Using the equation (12),  

2 2

2 ,o g nc Y U k= = − + . 

By the inner product of both sides of the equality (11) with oY , the equality  

3 ,o oc Y Y=  

 is obtained. Since 1oY = , , 1o oY Y =  and thus  

3 , 0o oc Y Y= = . 

Thus, the equation (11) is written as 

                                         
2

2 2

2 2

g n
o g o g n

n n g

k
Y k D k U

k k






      = + − +     +    

.                                  (13) 

Finally, the expressions (8), (10) and (13) give the matrix equality  
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0 0

0 0

0

o o o

o

o o o
o

D D

U U

YY





 

   − 
     =    
      −    

, 

for 
2

2 2

g n
o g

n n g

k
k

k k






   
= +    +   

, 2 2

o n gk = + .               

Theorem 3.2: In 3E , let  , ,o oD U Y  be the OD-frame and   be a unit speed curve. The curve   

is the isophote curve relative to the OD-frame if and only if the expression o

o




 is constant, for 

0o   and 0.o   

Proof: ( )  Let   be the isophote curve relative to the OD-frame. Let d  be the unit, constant 

direction and , cos 0U d c= =  . So, the vector d  can be expressed as 

1 2o od a D cU a Y= + + , 

and the derivative of this equality gives the system.  

1 2

2

2 1

0,

0,

0.

o

o

o o

a a

a

a a c





 

 + =

=

 − + =

 

Since 0o   and 0o  , 2 0a =  and 1 constanta =  become. As a result, constanto

o




= . 

( )  Let 
o

o




 be constant. This constant value can be selected as 

cos

sin

o

o

 

 
= . Also the vector d  

can be taken as cos sinod D U = + . Since sin coso o   = ,  

0d  =  

is written with the help of the derivatives of the OD-frame vectors. So, the vector d is constant. In 

addition, the equality cos sinod D U = +  is inner multiplied with U  and so , sin .d U =

Consequently, the constant vector d  and U  make a constant angle, and the curve   is the isophote 

curve.            
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4. The Normal Darboux Frame 

In this section, a new frame called the “Normal Darboux Frame” and related theorems are 

presented.  

Let : I IR M  →  be a unit speed curve with the Darboux frame  , ,T V U  on surface M  in 3E . 

Let , ,g n gk k   be the curvatures of the curve   and ( ) V( ) ( ) U(s)n n gD k s s k s= − + be the normal 

Darboux vector. It is clear that; 

2 2 2 2

( )( ) ( )
( )

( ) ( ) ( ) ( ) ( )

gn n

n

n n g n g

k sD s k s
D s V(s) U(s)

D s k s k s k s k s
= = − +

+ +
. 

Since the vector nD  is in the plane spanned by U  and V , the vectors nD  and T  are perpendicular 

to each other. So, nD T⊥ . Hence, the unit vector n nY D T=   can be defined. It is clear that the 

vectors , ,n nD T Y  are unit velocity and perpendicular to each other. Therefore, using these vectors 

, ,n nD T Y  a new orthonormal frame can be constructed along the curve   on the surface. 

Definition 4.1. The frame constructed with the vector fields  , ,n nD T Y  defined as 

( )
,  ,  

( )

n

n n n n

n

D s
D D T Y D T

D s
= ⊥ =   is called the normal Darboux frame or ND-frame briefly. 

Theorem 4.1. Let : I IR M  →  be a unit speed curve on surface M  in 3E . The normal Darboux 

frame of the curve   is defined as  

,

n n n

n n

n n n n

D Y

T Y

Y D T





 

 = −

 =

 = −

 

where 

2

2 2

gn
n g

g n g

kk

k k k
 

   
= +      +   

 and 2 2

n n gk k = + . 

Proof: It can be proved in a similar way to Theorem 3.1. 

Theorem 4.2: In 
3E , let  , ,n nD T Y  be the ND-frame and   be a unit speed curve. The curve   

is the helix relative to the ND-frame if and only if the expression n

n




 is constant, for 0n   and 

0n  .  
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Proof: ( )  Let   be the helix relative to the ND-frame. Let d  be the unit, constant direction and 

, cos 0T d c= =  . So, the vector d  can be expressed as 

1 2n nd a D cT a Y= + + , 

and the derivative of this equality gives the system.  

1 2

2

2 1

0,

0,

0.

n

n

n n

a a

a

a a c





 

 + =

− =

 − + =

 

Since 0n   and 0n  , 2 0a =  and 1 constanta =  become. As a result, constantn

n




= . 

( )  Let 
n

n




 be constant. This constant value can be selected as 

cos

sin

n

n

 

 
= . Also the vector d  

can be taken as cos sinnd D T = + . Since sin cosn n   = , 0d  =  is written with the help of 

the derivatives of the ND-frame vectors. So, the vector d is constant. In addition, the equality 

cos sinnd D T = +  is inner multiplied with T  and so , sin .d T = Consequently, the constant 

vector d  and T  make a constant angle, and the curve   is the helix.  

 

5. The Rectifying Darboux Frame 

In this section, a new frame called the “Rectifying Darboux Frame” and related theorems are 

presented. Since these theorems given in this section are proven similar to these theorems in section 

3, they will be given without proof. 

Let : I IR M  →  be a unit speed curve with the Darboux frame  , , UT V  on surface M  in 3E . 

Let , ,g n gk k   be the curvatures of the curve   and ( ) ( ) ( )r g gD s T s k s U(s)= +  be the rectifying 

Darboux vector. It is clear that; 

2 2 2 2

( ) ( )( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

g gr

r

r g g g g

s k sD s
D s T s U s

D s k s s k s s



 
= = +

+ +
. 

Since the vector rD  is in the plane spanned by T  and U , the vectors rD  and V  are perpendicular 

to each other. So, rD V⊥ . Hence, the unit vector r rY D V=   can be defined. It is clear that the 
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vectors , ,r rD V Y  are unit velocity and perpendicular to each other. Therefore, using these vectors 

 , ,r rD V Y  a new orthonormal frame can be constructed along the curve   on the surface. 

Definition 5.1. The frame constructed with the vector fields  , ,r rD V Y  defined as 

( )
,  ,  

( )

r

r r r r

r

D s
D D V Y D V

D s
= ⊥ =   is called the Rectifying Darboux frame or RD-frame briefly. 

Theorem 5.1. Let : I IR M  →  be a unit speed curve on surface M  in 3E . The Rectifying 

Darboux frame of the curve   is defined as  

,

r r r

r r

r r r r

D Y

T Y

Y D V





 

 = −

 =

 = −

 

where 

2

2 2

g g

r n

g g g

k
k

k k






   
= −      +   

 and 2 2

r g gk = + . 

Theorem 5.2: In 
3E , let  , ,r rD V Y  be the RD-frame and   be a unit speed curve. The curve   

is the relatively slant helix with respect to the RD-frame if and only if the expression r

r




 is 

constant, for 0r   and 0r  .  

 

Example: Let's consider the cylinder surface M  given by parameterization 

( , ) (sin ,cos , )u v u u v = . The curve : I M →  given by the parametric form 

( ) sin ,cos ,
2 2 2

s s s
s

 
=  
 

 is a helix on the surface M .  
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                 Figure 1. The surface M , The curve ( )s , The curve ( )s  on the surface M  

The vector fields and curvatures of the Darboux frame for this curve ( )s  are calculated as:   

1
( ) cos , sin ,1

2 2 2

s s
T s

 
= − 

 
, 

1
( ) cos ,sin ,1

2 2 2

s s
V s

 
= − 

 
, 

( ) sin , cos ,0
2 2

s s
U s

 
= − − 
 

, 

0, 1/ 2, 1/ 2g n gk k = = = − . 

The osculator Darboux vector is calculated as 

2 2 2 2

( ) ( )
( ) ( ) (0,0, 1)

( ) ( ) ( ) ( )

g n

o

g n g n

s k s
D T s V s

s k s s k s



 
= − = −

+ +
. 

Also, it’s clear that  

cos ,sin ,0
2 2

o o

s s
Y D U

 
=  = − 

 
. 

Finally, the curvatures of the OD-frame for this curve ( )s  are found as  0o =  and 
1

,
2

o =  

where  

, 1, , 1, , 1,

, 0, , 0, , 0.

o o o o

o o o o

D D U U Y Y

D U D Y Y U

= = =

= = =
 

 

6. Conclusion 

In this article, three new orthogonal frames were defined along the curve   lying on the surface, 

with the help of the Darboux frame.  
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First, the vector 
o oY D U=   was defined because the osculator Darboux vector 

oD  is 

perpendicular to the vector U . Therefore, using these vectors  , ,o oD U Y  the osculator Darboux 

frame was constructed. 

After, the vector 
n nY D T=   was defined because the normal Darboux vector 

nD  is perpendicular 

to the vector T . Therefore, using these vectors  , ,n nD T Y  the normal Darboux frame was 

constructed. 

Finally, the vector r rY D V=   was defined because the rectifying Darboux vector rD  is 

perpendicular to the vector V . Therefore, using these vectors  , ,r rD V Y  the normal Darboux 

frame was constructed. 

Also, the Osculator Darboux Frame components and curvatures are calculated for a presented 

example. 

The frame concept is very important in differential geometry. This study has a unique value in 

terms of putting forward three new frames and it may be a basis for many new studies. 

Annotation: This article is prepared from Akın Alkan's doctoral thesis. 
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