
Sigma J Eng Nat Sci, Vol. 41, No. 3, pp. 493−502, June, 2023

Sigma Journal of Engineering and Natural Sciences
Web page info: https://sigma.yildiz.edu.tr

DOI: 10.14744/sigma.2023.00056

ABSTRACT

Petri net (PN) based prevention and control methods are widely studied in the literature to
solve deadlock problems in flexible manufacturing systems (FMS). In PN models of FMS suf-
fering from deadlocks, the reachability graph (RG) of the PN model can provide all reachable
system states from the initial state, including all legal states, bad states, and deadlock states.
A maximally permissive deadlock controller allows the system to reach all legal states exist
within the live zone (LZ) that determines the optimal live behavior, while prohibits reaching
bad and deadlock states exist within the dead zone. It is necessary to know the exact number
of legal states that must be provided by a deadlock controller to determine the behavioral per-
missiveness of a control policy. Therefore, the number of legal states has been considered as
a quality measure for deadlock prevention methods available in the literature. Unfortunately,
to date for a given RG of a PN model of an FMS suffering from deadlocks, no study has been
reported to provide the number of reachable legal states exist within the LZ of the given RG.
In this paper, a method is proposed for the computation of the number of legal states that must
be provided by an optimal deadlock prevention policy. The proposed method makes use of
the reachability analysis of a given PN model of a deadlock-prone FMS together with the first
strongly connected component (SCC) by using INA (Integrated Net Analyzer). The number
of legal states computed from the first SCC that includes the initial marking represents the
LZ of a RG. The proposed algorithm is implemented as an executable program. The number
of legal states of a deadlock controller can easily and correctly be computed by using the pro-
posed method and tool. Several well-known examples of FMS are considered to illustrate the
applicability and the effectiveness of the proposed method.

Cite this article as: Gelen G, Uzam M. Computation of the number of legal states for petri
net-based deadlock prevention problems. Sigma J Eng Nat Sci 2023;41(3):493−502.

Research Article

Computation of the number of legal states for petri net-based deadlock
prevention problems

Gökhan GELEN1,* , Murat UZAM2

1Bursa Technical University, Department of Mechatronics Engineering, Bursa, 16310, Türkiye
2Yozgat Bozok University, Department of Electrical and Electronics Engineering, Yozgat, 66000, Türkiye

ARTICLE INFO

Article history
Received: 09 May 2021
Revised: 31 July 2021
Accepted: 15 September 2021

Keywords:
Discrete Event Systems; Petri
Nets; Deadlock Prevention;
Reachability Graph; Strongly
Connected Components

*Corresponding author.
*E-mail address: gokhan.gelen@btu.edu.tr
This paper was recommended for publication in revised form by
Regional Editor İhsan Kaya

Published by Yıldız Technical University Press, İstanbul, Turkey
Copyright 2021, Yıldız Technical University. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

https://orcid.org/0000-0002-2780-3386
https://orcid.org/0000-0001-9625-5523
http://creativecommons.org/licenses/by-nc/4.0/

Sigma J Eng Nat Sci, Vol. 41, No. 3, pp. 493−502, June, 2023494

INTRODUCTION

A deadlock in modern manufacturing systems such as
flexible manufacturing systems (FMS) or automated man-
ufacturing systems (AMS), is an undesirable problem that
should be absolutely resolved. Their existence frequently
spoils the utilization of resources and may lead to devastat-
ing effects on the operation of such systems [1]. Petri nets
(PN) are the most common algebraic and graphical tools
for solving deadlock problems in FMS. Several analysis and
control methods have been proposed for the solution of
deadlock problems [2-25]. Analysis techniques related to
deadlock problems are usually classified into two groups:
structural analysis and reachability graph analysis [2]. The
former is used to obtain deadlock prevention policies by
using special PN objects such as siphons or resource-transi-
tion circuits [5, 14-16, 22-25]. The latter use the reachability
graph (RG) that fully reflects the behavior of a system [4,
6-9, 13-15, 17-21]. While reachability graphs based meth-
ods provide optimal solutions, methods using structural
analysis provide suboptimal solutions in most cases.

The RG of a Petri net suffering from deadlocks can
be divided into two parts as a live-zone (LZ) and a dead-
lock zone (DZ) [4]. In view of control, we can classify the
markings into four groups as deadlock, bad, dangerous
and good markings. A deadlock marking represents a dead
system state, from where the system does not change its
current state. The initial marking cannot be reached from
some markings that are called bad markings. A dangerous
marking can reach a good, a bad or a deadlock marking
depending on the control mechanism. The rest of markings
except deadlock, bad and dangerous ones are classified as
good markings. The zone in a reachability graph containing
dead and bad markings is called DZ. The rest of the reach-
ability graph is called the live-zone (LZ) that represents the
maximally permissive behavior [9], from the viewpoint of
deadlock i.e., legal markings are composed of good and
dangerous markings. The number of legal markings (states)
reachable under a deadlock prevention control policy
has been regarded as a performance criterion. In order to
assess the behavioral permissiveness of a control policy, it
is important to know the number of legal states that must
be provided by an optimal deadlock prevention supervisor.

Computation tools for Petri net models are utilized by
researchers for different purposes such as analysis, code
generation, simulation, animation and model checking. A
database for PN tools and some comparisons can be found
in [26, 27]. Although there are a lot of Petri Net tools cur-
rently available, INA (Integrated Net Analyzer) [3] is widely
used in PN-based deadlock prevention problems [4-9,
21-25, 28, 29]. By using INA, structural properties, liveness
analysis and reachability analysis of a PN can be obtained.
By using INA, it is possible to compute the LZ as the first
SCC for a Petri Net model of an FMS suffering from dead-
lock or livelock problem. Then the remaining SCCs consti-
tute the DZ of the model, that may be containing not only

bad and dead markings, but also livelocks. On the other
hand further computations are necessary to find out the
exact number of states in LZ and in DZ.

To date, for a given RG of a PN model of an FMS suffer-
ing from deadlocks, no study has been reported to provide
the number of reachable legal states exist within the LZ of the
given RG. In this paper, a method is proposed for the com-
putation of the number of legal states that must be provided
by an optimal deadlock prevention policy in the form of Petri
net formalism. The proposed method makes use of the reach-
ability graph (RG) analysis results of a given Petri net model
of an FMS prone to deadlocks by using INA. The RG consists
of LZ and DZ. If the LZ can be classified, the other one can
also be classified as the rest of the RG. LZ consists of the first
strongly connected component (SCC) of a RG that includes
the initial marking. Therefore, in this paper, a method is pro-
posed to compute the number of states of a given first SCC.
The proposed method is implemented as an executable pro-
gram. This software accepts RG and the first SCC as inputs
and then computes the number of states in the LZ and com-
putes the number of the states in DZ by subtracting the num-
ber of states in the LZ from the total number of all states in
the related RG. In the literature some studies do not present
the optimal live behavior of PN models correctly. By using
the proposed algorithm and tool, the correct number of legal
states in LZ and in DZ can be computed accurately. Thus, the
method proposed in this paper provides an important contri-
bution in order to determine the behavioral permissiveness
of a Petri net based deadlock control policy. The applicability
and the effectiveness of the proposed method is demonstrated
by cosidering several well-known examples of FMS.

The paper is organized as follows. Section 2 recalls some
notations of PNs and SCCs. Section 3 illustrates the dead-
lock analysis by means of a RG and SCCs. The proposed
method and its algorithm are presented in Section 4. Some
examples from the relevant literature are given in Section 5.
Finally, conclusions are provided in Section 6.

PRELIMINARIES

Petri Nets
Petri nets are a commonly used formal tool for the study

of deadlock problems in FMS. A Petri is a five-tuple PN = (P,
T, F, W, M0), where P is the set of places and T is the set of
transitions. P and T sets are finite, nonempty, and disjoint. F
⊆ (P × T) ∪ (T × P) is the flow relation of the PN. W∶ (P × T)
∪ (T × P) → N = {0,1,2,...}, and W(x,y) = 0 if (x,y) ∉ F. W is the
weight function of arcs. A marking in PN is a mapping M:P
→N. M0 denotes the initial marking of PN [10, 12].

The preset of a node (transition or places) x is defined as
•x = {y ∈ P ∪ T|(y; x) ∈ F} and the postset of node (transition
or places) x is defined as x• = {y ∈ P ∪ T|(x; y) ∈ F}. PNs can be
graphically represented. Circles and squares (or bars) are used
to represent places and transitions, respectively. Tokens are
black dots that are put in places to indicate the marking (state)

Sigma J Eng Nat Sci, Vol. 41, No. 3, pp. 493−502, June, 2023 495

of the system. In a PN, no arc may connect two places or two
transitions. The weight of an arc is labeled by a number. An
arc without a label, means that its weight is equal to one.

 The count of tokens in p at M is presented by M(p). If
M(p) > 0, this shows that p is marked by M. The enabling of
a transition t at marking M is specified by M [t⟩, if ∀p ∈ •t,
M(p) ≥ W(p,t). While each input place p∈ •t is marked with
at least w(p,t) tokens, transition t is said to be enabled. If a
transition is enabled at marking M, it can be fired. The firing
of a transition is denoted as M[t⟩M′. The firing of a transition
t at M can lead to reach M′. R(N,M0) indicates the set of all
possible markings reachable from M0. The reachability of M′
from M is denoted by M [σ⟩ M′, where σ = (t1, t2, …, tn) is
the firing sequence. In case there is no enabled transition at
a marking M∈ R, it is said to be the net system (N, M0) con-
tains a deadlock. This marking is named as a dead marking.
The occurrence of a deadlock in a real FMS can cause severe
damage to the system or even stop the entire system from
operation. Therefore, deadlock resolution is an important
consideration in the design and control phase of FMS.

Reachability Graph and Strongly Connected Components
The reachability graph (RG) of a PN is a directed graph

that covers all of reachable markings and transitions among
these markings. The RG is defined as RG = (N, L, E, n0),
where N is the set of nodes (vertices) and each node nk ∈
N represents a reachable marking. L is a set of labels, where
each li ∈ L corresponds to firable transitions in any reach-
able marking of PN. E is the set of edges (transitions) such
that E = {(nk,li, nk+1) ∈ E\nk, nk+1 ∈ N, li ∈ L } and for each e
∈ E node nk is the initial node, vk+1 is the terminal node and
li is a label of edge related to PN transitions. n0=M0 is the
initial node. A PN model and its RG are shown in Figure 1.

A chain in a graph is a sequence of vertices from one
vertex to another using the edges (or arcs). If every pair of
vertices is covered by a chain, this graph is called as con-
nected. A graph is strongly connected if, every node (ver-
tex) is reachable from every other nodes. For example, a
strongly connected graph and a connected graph is pre-
sented in Figure 2.a and 2.b, respectively. The connected
graph in Figure 2.b is not strongly connected whereas there
is no path from state ‘b’ to state ‘h’. The strongly connected
component (SCC) of a graph is a strongly connected sub-
graph that is maximal. The SCC of a graph cannot contain
any extra transition or node from original graph that cancel
its strongly connection [11-12].

Figure 1. A PN model (a) and its reachability graph (RG) with markings (b).

Figure 2. A strongly connected graph (a), A connected
graph (b) [12].

Sigma J Eng Nat Sci, Vol. 41, No. 3, pp. 493−502, June, 2023496

Deadlock Analysis of PN Models by Means of Reachability
Graphs

In this section, reachability graph-based deadlock anal-
ysis of PN models is briefly explained. The marking of a
PN changes by the firing of enabled transitions. The RG of
a PN model is constituted by its all possible markings and
transitions between these markings. Indeed, a state in the
RG indicates a marking of PN. States in a RG of PN can be
divided into four groups such as deadlock states, bad states,
dangerous states and good states. While dead states and
bad states are included in DZ, the markings of RG other
than DZ is defined as LZ which determines the optimal live
behavior.

A small manufacturing system shown in Figure 3 is
considered as an example. In this system, there are two
machines namely M1 and M2 and a robot. Each machine
has one part processing capacity at a time and the robot has
only one part handling capacity. Input and output buffers
are used for loading and unloading. It is considered that
there are two different parts namely P1 and P2. Initially, it is
assumed that there are no parts in the machines and robot.
There are two-different production routes in this manufac-
turing system as follows:

PR1: Machine 1 → Robot → Machine 2
PR2: Machine 1 ← Robot ← Machine 2
This system can be modelled by using Petri net frame-

work as shown in Figure 4. The model has 11 places and 8
transitions. The production routes PR1 and PR2 are mod-
elled by using places p2, p5 and p8 (represents operation
of Machine 1, Robot and Machine 2), and p10, p7 and p4
(represents operation of Machine 2, Robot and Machine
1), respectively. The number of tokens in p1 and p11 rep-
resents the count of concurrent activities for P1 and P2,
respectively. The reachability graph of this system is shown
in Figure 5 [13].

It can be seen from Figure 5 that there are 20 states in
the reachability graph. The markings of PN represented as
states of RG by using s1-s20 labels. The deadlock states are
s8 and s13. When the system reaches these states, it is not
possible to switch from these states to another state. If the
system reaches to any one of bad states s10, s11 or s12, it
can only reach other bad states or deadlock states. A sys-
tem that has reached any deadlock or bad state will never
be able to return to its initial state. Changing from danger-
ous states such as s2, s3, s4, s14, s15 and s16 to any one
of a good, bad or deadlock state occurs according to the

Figure 4. PN model of a system.

Figure 3. An example manufacturing system.

 s1

s11

s10 s12

s8 s13

s2

s3

s5

s6

s4s7

s9

s14

s15

s17

s18

s16 s19

s20

t1 t5

t2

t5

t1

t5

t3

t3

t5

t2

t4

t1

t4

t4

t4

t1

t1

t2 t6

t5

t1

t6

t1

t1

t5

t7

t7
t6

t8

t5

t8

t8

t8

t5

Deadlock Zone

Figure 5. The reachability graph of example manufacturing
system.

Sigma J Eng Nat Sci, Vol. 41, No. 3, pp. 493−502, June, 2023 497

supervisory control. The dead zone for this RG is equal to
the combination of bad and deadlock states. The number of
states in the live zone can be easily computed by subtract-
ing deadlock markings from all markings. In this RG, there
are five states (markings) in the dead zone and there are 15
states in the LZ. The optimal behavior of this PN model is
defined by the 15 markings in the LZ. INA is used to ana-
lyze PN model presented in Figure 4. The INA file repre-
sentation of this PN model is depicted in Figure 6. Results
for structural properties and reachability graph analysis are
presented in Figure 7 and Figure 8, respectively. According
to these results, the PN is not live and has two dead states
as explained below. For such a small problem it is possible
to compute the number of states both in LZ and DZ, but
as the number of states becomes large it is necessary to do
this computation by means of a computer program. In the
following section, an algorithm to compute LZ and DZ is
proposed.

COMPUTATION OF THE NUMBER OF LEGAL
STATES

The SCCs of a PN model can be obtained by using INA.
The first SCC contains the initial marking of PN model. The
dead and bad markings are covered by all SCCs except for
the first SCC of a given RG. Then, the LZ can be computed
by counting the states in the first SCC. After obtaining the
number of states in the LZ, the count of states in the DZ can
be easily computed by subtracting the number of states of
the LZ from that of the related RG. The proposed algorithm
to compute the number of states both in LZ and in DZ is
presented in the following. This algorithm is implemented
in C programming language and named as “zone_analyzer.
exe”. After the computation, the results are both displayed

Figure 8. Reachability graph computation of the PN model
depicted in Figure 4.

Figure 7. Some structural properties of the PN model de-
picted in Figure 4.

Figure 6. INA file representation of the PN model.

Sigma J Eng Nat Sci, Vol. 41, No. 3, pp. 493−502, June, 2023498

on the screen and reported in a text file by the software at
the same time.

Algorithm: Computation of the number of states in LZ
and DZ

Input: PN model as a .pnt file.
Definitions: nbr_sts_lz: number of states in the LZ,

nbr_sts_dz: the number of states in the DZ, t_nbr_
sts: total number of states in RG, nbr_scc: the num-
ber of states in the first SCC, x: the number of read
data

Step 1: Compute the RG and then SCC of the given PN
model by using INA.

// after the computation of the RG and SCCs, results
are stored as “rg.sta” and “scc.res” files, respectively

Step 2: Compute the total number of states (t_nbr_sts)
in RG from rg.sta file.

Step 3: Obtain the first SCC from “scc.res” file and store
it in an array named as Scc[].

//Scc [], the first SCC covers the LZ. The data struc-
ture of Scc[] is in the form of [number ,.., number,
number ,.., number, number, number ,..,number,
…]. For example, a first SCC is 1 .. 7, 9, 14 ..20.

Step 4: Read a part of Scc[] to the first comma in the
form of [a, s, b].

//a and b are integer numbers, s is a string.
Step 5: Find the number of read data as x.
Step 6: If x=3 then nbr_scc= nbr_scc + (b-a+1).

Else if x=1 then nbr_scc = nbr_scc + 1.
Step 7: If elements of Scc[] array are not finished then

return Step 4.
Else continue

Step 8: nbr_sts_dz = t_nbr_sts - nbr_scc
nbr_sts_lz = nbr_scc

Output: The number of states in RG, the number of
states in

DZ, the number of states in LZ.

End of Algorithm.
A short user procedure for zone_analyzer is presented

as follows.
• Create a folder including INA (Integrated Net Analyzer)

files.
• Copy the “Command.ina” file into the same directory.
• Define the Petri Net model of the system in the “input.

pnt” INA file.
• Run “INAwin32.exe” and press “Y” to follow the pre-

defined procedures in “Command.ina” file. After the
computation of the Reachability Graph (RG) and
Strongly Connected Components (SCCs), results are
stored as “rg.sta” and “scc.res” files in same folder,
respectively.

• Run “zone_analyzer.exe”.
• Observe the number of states in Live Zone (LZ) and in

Deadlock Zone (DZ) from the file “results.txt”.

Example Computations
This section reports the application of proposed tech-

nique to a few well-known FMS and AMS models from
the literature. The proposed algorithm is implemented
as an executable program called “zone_analyzer.exe”. The
developed program, files of presented examples and a short
user guide can be downloaded from the following website:
https://github.com/gokhangelen/zone-analyzer

Computations for an S3PR Model
As the first example model, the S3PR (Systems of sim-

ple sequential processes with resources) PN model is con-
sidered. As shown from Figure 10, the S3PR model has 15
places and 11 transitions. This model has been frequently
considered in the literature [5, 14-16, 21, 22]. The RG anal-
ysis of this model was performed by using INA. The INA
file representation of S3PR model is depicted in Figure 11.
The results show that the net has 261 states and 933 arcs.

Figure 9. A screenshot of “zone_analyzer.exe” program.

Figure 10. An S3PR model.

https://github.com/gokhangelen/zone-analyzer

Sigma J Eng Nat Sci, Vol. 41, No. 3, pp. 493−502, June, 2023 499

The net is not live and has one deadlock state. The first SCC
is computed as “1 .. 53, 65 .. 76, 92 .. 100, 104 .. 261,” for
this PN model. The count of states in the LZ can be easily
determined by using the implemented “zone_analyzer.exe”
program. According to the results obtained from proposed
algorithm, as shown in Figure 12, the PN model has 261
markings and 29 of which are in the DZ. For this PN model,
the optimal behavior is characterized by the LZ containing
232 good markings.

Computations for an S3PGR2 Model
A C/D-RAS (conjunctive/disjunctive resource alloca-

tion Systems) [18] consisting of five robots, three loading
buffers and three unloading buffers is used as the second
example. The layout of this system is shown in Figure 13.
The handling capacity of the first six robots is seven and
handling capacity of the last robot is six. An S3PGR2 (sys-
tem of simple sequential processes with general resource

requirement) model for this manufacturing cell is shown in
Figure 14. S3PGR2 models have been frequently studied in
the literature [18-20]. S3PGR2 model of this manufacturing
cell has 26 places and 22 transitions. The RG and SCC anal-
ysis of this model is performed by using INA. The INA file
representation of S3PGR2 model is depicted in Figure 15.
The LZ is computed by using the proposed “zone_analyzer.
exe” program. The results for this PN model are shown in
Figure 16. According to these results, the PN model has
334698 markings and 120 of which are in DZ. Thus, the
optimal behavior is characterized by the LZ containing
334578 markings for this PN model. Note that in [18] the
optimal live behavior of this PN model is not presented
correctly. This result shows the significance of the method
proposed in this paper.

Figure 11. INA file representation of the S3PR model de-
picted in Figure 10.

Figure 14. An S3PGR2 model.

Figure 13. Layout of the manufacturing cell from [17].

Figure 12. Results for PN model of an S3PR.

Sigma J Eng Nat Sci, Vol. 41, No. 3, pp. 493−502, June, 2023500

Computations for an S4PR Model
In this example, an automated manufacturing system

(AMS) that produces three parts P1, P2, and P3, is consid-
ered. The layout of this AMS is shown in Figure 17. There
are five resources named as R1, R2, R3, R4 and R5. Each of
which has the capacity of eight. The PN model of this sys-
tem is not given correctly in [21]. The corrected PN model

for this AMS is illustrated in Figure 18. The RG and SCC
analysis of this model is performed by using INA. The INA
file representation of S4PR model is depicted in Figure 19.
The LZ is computed by using the proposed “zone_analyzer.
exe” program. The results for this PN model are shown in
Figure 20. According to these results, the PN model has
421496 markings and 132 of which are in DZ. Thus, the
optimal behavior is characterized by the LZ containing
421358 markings for this PN model.

In [21], it is assumed that the optimal live behavior of
the PN model shown in Figure 18 is the same as all the num-
ber of states exist, i.e., 421496 states, in the uncontrolled
RG of the PN model. Therefore, the result provided here
provides another mistake made in the literature when com-
puting the optimal behavior of PN based liveness enforcing
supervisors.

Figure 18. The (corrected) PN model of the AMS.

Figure 17. An AMS example from [20].

Figure 16. Results for PN model of an S3PGR2.

Figure 15. INA file representation of the S3PGR2 model de-
picted in Figure 13.

Sigma J Eng Nat Sci, Vol. 41, No. 3, pp. 493−502, June, 2023 501

CONCLUSION

In this paper, a solution for the computation of the num-
ber of states in the live zone (LZ) that describes the optimal
(maximally permissive) behavior of a Petri net (PN) based
deadlock prevention policy is presented. The proposed
algorithm is implemented as an executable program. It

accepts the reachability graph and the first strongly con-
nected component (SCC) obtained from the most popular
PN tool INA as input and computes the exact number of all
legal states. The feasibility and applicability of the proposed
technique is shown by using well-known Petri net models
from the literature. In addition, this paper also reports that
in some papers from the literature the number of legal states
for S3PGR2 and S4PR nets are computed incorrectly. This
fact further shows the importance of the method reported
in this paper. The proposed tool can be used for both struc-
tural analysis-based and reachability graph analysis-based
liveness enforcing supervisors. Thanks to the developed
program, the number of legal states that is considered as
a quality measure of deadlock controller can be easily and
accurately computed. The proposed method makes use of
the RG analysis that usually requires a complete enumera-
tion of reachable states. Therefore, it suffers from the state
explosion problem.

ACKNOWLEDGEMENTS

This work was supported by the research grant of The
Scientific and Technological Research Council of Turkey
(Türkiye Bilimsel ve Teknolojik Araştırma Kurumu -
TÜBİTAK) under the project number TÜBİTAK 112M229.
The authors would like to thank the Editor and five anon-
ymous referees whose comments and suggestions greatly
helped us to improve the presentation and the quality of
this paper.

AUTHORSHIP CONTRIBUTIONS

Authors equally contributed to this work.

DATA AVAILABILITY STATEMENT

The authors confirm that the data that supports the
findings of this study are available within the article. Raw
data that support the finding of this study are available from
the corresponding author, upon reasonable request.

CONFLICT OF INTEREST

The author declared no potential conflicts of interest
with respect to the research, authorship, and/or publication
of this article.

ETHICS

There are no ethical issues with the publication of this
manuscript.

REFERENCES

 [1] Li ZW, Wu NQ, Zhou MC. Deadlock control of auto-
mated manufacturing systems based on petri nets-a
literature review. IEEE Trans Syst Man Cybern C
Appl Rev 2012;42:437−462. [CrossRef]

Figure 19. INA file representation of the PN model depict-
ed in Figure 18.

Figure 20. Results for PN model shown in Figure 18.

https://doi.org/10.1109/TSMCC.2011.2160626

Sigma J Eng Nat Sci, Vol. 41, No. 3, pp. 493−502, June, 2023502

 [2] Chen YF, Li ZW. Optimal supervisory control of
automated manufacturing systems. 1st ed. UK:
Taylor & Fracis Group; 2013. [CrossRef]

 [3] Informatik. INA Integrated net analyzer a software
tool for analysis of petri nets, Available at: http://
www.informatik.hu-berlin.de/~starke/ina.html.
Accessed on May 26, 2023.

 [4] Uzam M. An optimal deadlock prevention policy for
flexible manufacturing systems using Petri net mod-
els with resources and the theory of regions. Int J
Adv Manuf Tech 2002;19:192−208. [CrossRef]

 [5] Lin R, Yu Z, Shi X, Dong L, Nasr EA. On multi-
step look-ahead deadlock prediction for automated
manufacturing systems based on petri nets. IEEE
Access 2020;8:170421−170432. [CrossRef]

 [6] Shaoyong L, Chunrun Z. A deadlock control algo-
rithm using control transitions for flexible manufac-
turing systems modelling with Petri nets. Int J Syst
Sci 1994;51:771−785. [CrossRef]

 [7] Uzam M, Zhou MC. An iterative synthesis approach
to Petri net-based deadlock prevention policy for
flexible manufacturing systems. IEEE Trans Syst
Man Cybern Syst Hum 2007:37;362−371. [CrossRef]

 [8] Uzam M, Li ZW, Zhou MC. Identification and elimi-
nation of redundant control places in petri net based
liveness enforcing supervisors of FMS. Int J Adv
Manuf Tech 2007;35:150−168. [CrossRef]

 [9] Hu M, Yang S, Chen Y. Partial reachability graph
analysis of petri nets for flexible manufacturing sys-
tems. IEEE Access 2020;8:227925−227935. [CrossRef]

[10] Li ZW, Zhou MC. Deadlock resolution in automated
manufacturing systems: Novel petri net approach.
1st ed. Berlin: Springer; 2009.

[11] Cormen T, Leiseson C, Rivest R, Stein C. Introduction
to Algorith. 2nd ed. Cambridge: MIT Press; 2001.

[12] David R, Alla H. Discrete Continious and Hybrid
Petri Nets. 1st ed. Berlin: Springer; 2005.

[13] Gelen G, Uzam M, Li ZW. A new method for the
redundancy analysis of Petri net-based liveness
enforcing supervisors. Trans Inst Meas Control
2017;39:763−780. [CrossRef]

[14] Huang Y, Jeng M, Xie X, Chung S. Deadlock pre-
vention policy based on Petri nets and siphons. Int J
Prod Res 2001;39:283−305. [CrossRef]

[15] Li ZW, Zhou MC. Elementary siphons of petri nets
and their application to deadlock prevention in flex-
ible manufacturing systems. IEEE Trans Syst Man
Cybern Syst Hum 2004;34:38−51. [CrossRef]

[16] Piroddi L, Cordone R, Fumagalli I. Selective
siphon control for deadlock prevention in Petri
nets. IEEE Trans Syst Man Cybern Syst Hum
2008;38:1337−1348. [CrossRef]

[17] Ezpeleta J, Colom JM, Martinez J. A petri net
based deadlock prevention policy for flexible
manufacturing systems. IEEE Trans Rob Autom
1995;11:173−184. [CrossRef]

[18] Hu H, Li ZW. Local and global deadlock prevention
policies for resource allocation systems using par-
tially generated reachability graphs. Comput Ind
Eng 2009;57:1168−1181. [CrossRef]

[19] Chao DY, Chen JT, Yu F. A novel liveness con-
dition for S3PGR2. Trans Inst Meas Control
2013;35:131−137. [CrossRef]

[20] Shih YY, Chao DY, Chiu CY. A New MIP Test for
S3PGR2. In: Chou SY, Trappey A, Pokojski J, Smith
S, editors. Global Perspective for Competitive
Enterprise, Economy and Ecology: Proceedings
of the 16th ISPE International Conference on
Concurrent Engineering; 2009 July 20-24; Taipei,
Taiwan: Springer; 2009. pp. 41−52.

[21] Hu HS. An iterative deadlock prevention approach
for automated manufacturing systems. Trans Inst
Meas Control 2011;33:59−76. [CrossRef]

[22] Guo X, Wang S, You D, Li ZW, Jiang X. A siphon-
based deadlock prevention strategy for S3PR. IEEE
Access 2019;7:86863−86873. [CrossRef]

[23] Zhuang Q, Dai W, Wang S, Ning F. Deadlock pre-
vention policy for S4PR nets based on siphon. IEEE
Access 2018;6:50648-50658. [CrossRef]

[24] Li ZW, Zhou MC, Wu NQ. A survey and compari-
son of petri net-based deadlock prevention policies
for flexible manufacturing systems. IEEE Trans Syst
Man Cybern C Appl Rev 2008;38:173−188. [CrossRef]

[25] Liu GY, Barkaoui K. A survey of siphons in Petri
nets. Inf Sci 2016;363:198−220. [CrossRef]

[26] Thong WJ, Ameedeen MA. A survey of petri net
tools. Lect Notes Electr Eng 2015;315:537−551.
[CrossRef]

[27] Informatik. Petri nets tool database. Available at:
https://www2.informatik.uni-hamburg.de/TGI/
PetriNets/tools/db.html Accessed on May 26, 2023.

[28] Huang B, Zhou MC, Wang C, Abusorrah A,
Al-Turki Y. Deadlock-free supervisor design for
robotic manufacturing cells with uncontrollable
and unobservable events. IEEE/CAA J Autom Sin
2021;8:597−605. [CrossRef]

[29] Lin R, Yu Z, Shi X, Dong L, Nasr EA. On multi-
step look-ahead deadlock prediction for automated
manufacturing systems based on petri nets. IEEE
Access 2020;8:170421−170432. [CrossRef]

https://doi.org/10.1201/b14588
https://doi.org/10.1007/s001700200014
https://doi.org/10.1109/ACCESS.2020.3022643
https://doi.org/10.1080/00207721.2020.1737268
https://doi.org/10.1109/TSMCA.2007.893484
https://doi.org/10.1007/s00170-006-0701-5
https://doi.org/10.1109/ACCESS.2020.3045980
https://doi.org/10.1177/0142331215620005
https://doi.org/10.1080/00207540010002405
https://doi.org/10.1109/TSMCA.2003.820576
https://doi.org/10.1109/TSMCA.2008.2003535
https://doi.org/10.1109/70.370500
https://doi.org/10.1016/j.cie.2009.05.006
https://doi.org/10.1177/0142331211432951
https://doi.org/10.1177/0142331208095620
https://doi.org/10.1109/ACCESS.2019.2920677
https://doi.org/10.1109/ACCESS.2018.2868981
https://doi.org/10.1109/TSMCC.2007.913920
https://doi.org/10.1016/j.ins.2015.08.037
https://doi.org/10.1007/978-3-319-07674-4_51
https://doi.org/10.1109/JAS.2020.1003207
https://doi.org/10.1109/ACCESS.2020.3022643

