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ABSTRACT

Petri net (PN) based prevention and control methods are widely studied in the literature to 
solve deadlock problems in flexible manufacturing systems (FMS). In PN models of FMS suf-
fering from deadlocks, the reachability graph (RG) of the PN model can provide all reachable 
system states from the initial state, including all legal states, bad states, and deadlock states. 
A maximally permissive deadlock controller allows the system to reach all legal states exist 
within the live zone (LZ) that determines the optimal live behavior, while prohibits reaching 
bad and deadlock states exist within the dead zone. It is necessary to know the exact number 
of legal states that must be provided by a deadlock controller to determine the behavioral per-
missiveness of a control policy. Therefore, the number of legal states has been considered as 
a quality measure for deadlock prevention methods available in the literature. Unfortunately, 
to date for a given RG of a PN model of an FMS suffering from deadlocks, no study has been 
reported to provide the number of reachable legal states exist within the LZ of the given RG. 
In this paper, a method is proposed for the computation of the number of legal states that must 
be provided by an optimal deadlock prevention policy. The proposed method makes use of 
the reachability analysis of a given PN model of a deadlock-prone FMS together with the first 
strongly connected component (SCC) by using INA (Integrated Net Analyzer). The number 
of legal states computed from the first SCC that includes the initial marking represents the 
LZ of a RG. The proposed algorithm is implemented as an executable program. The number 
of legal states of a deadlock controller can easily and correctly be computed by using the pro-
posed method and tool. Several well-known examples of FMS are considered to illustrate the 
applicability and the effectiveness of the proposed method.
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INTRODUCTION

A deadlock in modern manufacturing systems such as 
flexible manufacturing systems (FMS) or automated man-
ufacturing systems (AMS), is an undesirable problem that 
should be absolutely resolved. Their existence frequently 
spoils the utilization of resources and may lead to devastat-
ing effects on the operation of such systems [1]. Petri nets 
(PN) are the most common algebraic and graphical tools 
for solving deadlock problems in FMS. Several analysis and 
control methods have been proposed for the solution of 
deadlock problems [2-25]. Analysis techniques related to 
deadlock problems are usually classified into two groups: 
structural analysis and reachability graph analysis [2]. The 
former is used to obtain deadlock prevention policies by 
using special PN objects such as siphons or resource-transi-
tion circuits [5, 14-16, 22-25]. The latter use the reachability 
graph (RG) that fully reflects the behavior of a system [4, 
6-9, 13-15, 17-21]. While reachability graphs based meth-
ods provide optimal solutions, methods using structural 
analysis provide suboptimal solutions in most cases. 

The RG of a Petri net suffering from deadlocks can 
be divided into two parts as a live-zone (LZ) and a dead-
lock zone (DZ) [4]. In view of control, we can classify the 
markings into four groups as deadlock, bad, dangerous 
and good markings. A deadlock marking represents a dead 
system state, from where the system does not change its 
current state. The initial marking cannot be reached from 
some markings that are called bad markings. A dangerous 
marking can reach a good, a bad or a deadlock marking 
depending on the control mechanism. The rest of markings 
except deadlock, bad and dangerous ones are classified as 
good markings. The zone in a reachability graph containing 
dead and bad markings is called DZ. The rest of the reach-
ability graph is called the live-zone (LZ) that represents the 
maximally permissive behavior [9], from the viewpoint of 
deadlock i.e., legal markings are composed of good and 
dangerous markings. The number of legal markings (states) 
reachable under a deadlock prevention control policy 
has been regarded as a performance criterion. In order to 
assess the behavioral permissiveness of a control policy, it 
is important to know the number of legal states that must 
be provided by an optimal deadlock prevention supervisor.

Computation tools for Petri net models are utilized by 
researchers for different purposes such as analysis, code 
generation, simulation, animation and model checking. A 
database for PN tools and some comparisons can be found 
in [26, 27]. Although there are a lot of Petri Net tools cur-
rently available, INA (Integrated Net Analyzer) [3] is widely 
used in PN-based deadlock prevention problems [4-9, 
21-25, 28, 29]. By using INA, structural properties, liveness 
analysis and reachability analysis of a PN can be obtained. 
By using INA, it is possible to compute the LZ as the first 
SCC for a Petri Net model of an FMS suffering from dead-
lock or livelock problem. Then the remaining SCCs consti-
tute the DZ of the model, that may be containing not only 

bad and dead markings, but also livelocks. On the other 
hand further computations are necessary to find out the 
exact number of states in LZ and in DZ.

To date, for a given RG of a PN model of an FMS suffer-
ing from deadlocks, no study has been reported to provide 
the number of reachable legal states exist within the LZ of the 
given RG. In this paper, a method is proposed for the com-
putation of the number of legal states that must be provided 
by an optimal deadlock prevention policy in the form of Petri 
net formalism. The proposed method makes use of the reach-
ability graph (RG) analysis results of a given Petri net model 
of an FMS prone to deadlocks by using INA. The RG consists 
of LZ and DZ. If the LZ can be classified, the other one can 
also be classified as the rest of the RG. LZ consists of the first 
strongly connected component (SCC) of a RG that includes 
the initial marking. Therefore, in this paper, a method is pro-
posed to compute the number of states of a given first SCC. 
The proposed method is implemented as an executable pro-
gram. This software accepts RG and the first SCC as inputs 
and then computes the number of states in the LZ and com-
putes the number of the states in DZ by subtracting the num-
ber of states in the LZ from the total number of all states in 
the related RG. In the literature some studies do not present 
the optimal live behavior of PN models correctly. By using 
the proposed algorithm and tool, the correct number of legal 
states in LZ and in DZ can be computed accurately. Thus, the 
method proposed in this paper provides an important contri-
bution in order to determine the behavioral permissiveness 
of a Petri net based deadlock control policy. The applicability 
and the effectiveness of the proposed method is demonstrated 
by cosidering several well-known examples of FMS. 

The paper is organized as follows. Section 2 recalls some 
notations of PNs and SCCs. Section 3 illustrates the dead-
lock analysis by means of a RG and SCCs. The proposed 
method and its algorithm are presented in Section 4. Some 
examples from the relevant literature are given in Section 5. 
Finally, conclusions are provided in Section 6. 

PRELIMINARIES

Petri Nets
Petri nets are a commonly used formal tool for the study 

of deadlock problems in FMS. A Petri is a five-tuple PN = (P, 
T, F, W, M0), where P is the set of places and T is the set of 
transitions. P and T sets are finite, nonempty, and disjoint. F 
⊆ (P × T) ∪ (T × P) is the flow relation of the PN. W∶ (P × T) 
∪ (T × P) → N = {0,1,2,...}, and W(x,y) = 0 if (x,y) ∉ F. W is the 
weight function of arcs. A marking in PN is a mapping M:P 
→N. M0 denotes the initial marking of PN [10, 12].

The preset of a node (transition or places) x is defined as 
•x = {y ∈ P ∪ T|(y; x) ∈ F} and the postset of node (transition 
or places) x is defined as x• = {y ∈ P ∪ T|(x; y) ∈ F}. PNs can be 
graphically represented. Circles and squares (or bars) are used 
to represent places and transitions, respectively. Tokens are 
black dots that are put in places to indicate the marking (state) 
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of the system. In a PN, no arc may connect two places or two 
transitions. The weight of an arc is labeled by a number. An 
arc without a label, means that its weight is equal to one. 

 The count of tokens in p at M is presented by M(p). If 
M(p) > 0, this shows that p is marked by M. The enabling of 
a transition t at marking M is specified by M [t⟩, if ∀p ∈ •t, 
M(p) ≥ W(p,t). While each input place p∈ •t is marked with 
at least w(p,t) tokens, transition t is said to be enabled. If a 
transition is enabled at marking M, it can be fired. The firing 
of a transition is denoted as M[t⟩M′. The firing of a transition 
t at M can lead to reach M′. R(N,M0) indicates the set of all 
possible markings reachable from M0. The reachability of M′ 
from M is denoted by M [σ⟩ M′, where σ = (t1, t2, …, tn) is 
the firing sequence. In case there is no enabled transition at 
a marking M∈ R, it is said to be the net system (N, M0) con-
tains a deadlock. This marking is named as a dead marking. 
The occurrence of a deadlock in a real FMS can cause severe 
damage to the system or even stop the entire system from 
operation. Therefore, deadlock resolution is an important 
consideration in the design and control phase of FMS. 

Reachability Graph and Strongly Connected Components
The reachability graph (RG) of a PN is a directed graph 

that covers all of reachable markings and transitions among 
these markings. The RG is defined as RG = (N, L, E, n0), 
where N is the set of nodes (vertices) and each node nk ∈ 
N  represents a reachable marking. L is a set of labels, where 
each li ∈ L corresponds to firable transitions in any reach-
able marking of PN. E is the set of edges (transitions) such 
that E = {(nk,li, nk+1) ∈ E\nk, nk+1 ∈ N, li ∈ L }  and for each e 
∈ E node nk is the initial node, vk+1 is the terminal node and 
li is a label of edge related to PN transitions. n0=M0 is the 
initial node. A PN model and its RG are shown in Figure 1.

A chain in a graph is a sequence of vertices from one 
vertex to another using the edges (or arcs). If every pair of 
vertices is covered by a chain, this graph is called as con-
nected. A graph is strongly connected if, every node (ver-
tex) is reachable from every other nodes. For example, a 
strongly connected graph and a connected graph is pre-
sented in Figure 2.a and 2.b, respectively. The connected 
graph in Figure 2.b is not strongly connected whereas there 
is no path from state ‘b’ to state ‘h’. The strongly connected 
component (SCC) of a graph is a strongly connected sub-
graph that is maximal. The SCC of a graph cannot contain 
any extra transition or node from original graph that cancel 
its strongly connection [11-12]. 

Figure 1. A PN model (a) and its reachability graph (RG) with markings (b).

Figure 2. A strongly connected graph (a), A connected 
graph (b) [12].
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Deadlock Analysis of PN Models by Means of Reachability 
Graphs

In this section, reachability graph-based deadlock anal-
ysis of PN models is briefly explained. The marking of a 
PN changes by the firing of enabled transitions. The RG of 
a PN model is constituted by its all possible markings and 
transitions between these markings. Indeed, a state in the 
RG indicates a marking of PN. States in a RG of PN can be 
divided into four groups such as deadlock states, bad states, 
dangerous states and good states. While dead states and 
bad states are included in DZ, the markings of RG other 
than DZ is defined as LZ which determines the optimal live 
behavior. 

A small manufacturing system shown in Figure 3 is 
considered as an example. In this system, there are two 
machines namely M1 and M2 and a robot. Each machine 
has one part processing capacity at a time and the robot has 
only one part handling capacity. Input and output buffers 
are used for loading and unloading. It is considered that 
there are two different parts namely P1 and P2. Initially, it is 
assumed that there are no parts in the machines and robot. 
There are two-different production routes in this manufac-
turing system as follows: 

PR1: Machine 1 → Robot → Machine 2
PR2: Machine 1 ← Robot ← Machine 2
This system can be modelled by using Petri net frame-

work as shown in Figure 4. The model has 11 places and 8 
transitions. The production routes PR1 and PR2 are mod-
elled by using places p2, p5 and p8 (represents operation 
of Machine 1, Robot and Machine 2), and p10, p7 and p4 
(represents operation of Machine 2, Robot and Machine 
1), respectively. The number of tokens in p1 and p11 rep-
resents the count of concurrent activities for P1 and P2, 
respectively. The reachability graph of this system is shown 
in Figure 5 [13].

It can be seen from Figure 5 that there are 20 states in 
the reachability graph. The markings of PN represented as 
states of RG by using s1-s20 labels. The deadlock states are 
s8 and s13. When the system reaches these states, it is not 
possible to switch from these states to another state. If the 
system reaches to any one of bad states s10, s11 or s12, it 
can only reach other bad states or deadlock states. A sys-
tem that has reached any deadlock or bad state will never 
be able to return to its initial state. Changing from danger-
ous states such as s2, s3, s4, s14, s15 and s16 to any one 
of a good, bad or deadlock state occurs according to the 

Figure 4. PN model of a system.

Figure 3. An example manufacturing system.
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supervisory control. The dead zone for this RG is equal to 
the combination of bad and deadlock states. The number of 
states in the live zone can be easily computed by subtract-
ing deadlock markings from all markings. In this RG, there 
are five states (markings) in the dead zone and there are 15 
states in the LZ. The optimal behavior of this PN model is 
defined by the 15 markings in the LZ. INA is used to ana-
lyze PN model presented in Figure 4. The INA file repre-
sentation of this PN model is depicted in Figure 6. Results 
for structural properties and reachability graph analysis are 
presented in Figure 7 and Figure 8, respectively. According 
to these results, the PN is not live and has two dead states 
as explained below. For such a small problem it is possible 
to compute the number of states both in LZ and DZ, but 
as the number of states becomes large it is necessary to do 
this computation by means of a computer program. In the 
following section, an algorithm to compute LZ and DZ is 
proposed.

COMPUTATION OF THE NUMBER OF LEGAL 
STATES

The SCCs of a PN model can be obtained by using INA. 
The first SCC contains the initial marking of PN model. The 
dead and bad markings are covered by all SCCs except for 
the first SCC of a given RG. Then, the LZ can be computed 
by counting the states in the first SCC. After obtaining the 
number of states in the LZ, the count of states in the DZ can 
be easily computed by subtracting the number of states of 
the LZ from that of the related RG. The proposed algorithm 
to compute the number of states both in LZ and in DZ is 
presented in the following. This algorithm is implemented 
in C programming language and named as “zone_analyzer.
exe”. After the computation, the results are both displayed 

Figure 8. Reachability graph computation of the PN model 
depicted in Figure 4.

Figure 7. Some structural properties of the PN model de-
picted in Figure 4.

Figure 6. INA file representation of the PN model.
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on the screen and reported in a text file by the software at 
the same time.

Algorithm: Computation of the number of states in LZ 
and DZ

Input: PN model as a .pnt file.
Definitions: nbr_sts_lz: number of states in the LZ, 

nbr_sts_dz: the number of states in the DZ, t_nbr_
sts: total number of states in RG, nbr_scc: the num-
ber of states in the first SCC, x: the number of read 
data

Step 1: Compute the RG and then SCC of the given PN 
model by using INA. 

// after the computation of the RG and SCCs, results 
are stored as “rg.sta” and “scc.res” files, respectively 

Step 2: Compute the total number of states (t_nbr_sts) 
in RG from rg.sta file.

Step 3: Obtain the first SCC from “scc.res” file and store 
it in an array named as Scc[ ]. 

//Scc [ ], the first SCC covers the LZ. The data struc-
ture of Scc[ ] is in the form of [number ,.., number, 
number ,.., number, number, number ,..,number, 
…]. For example, a first SCC is 1 .. 7, 9, 14 ..20. 

Step 4: Read a part of Scc[ ] to the first comma in the 
form of [a, s, b]. 

//a and b are integer numbers, s is a string.
Step 5: Find the number of read data as x.
Step 6: If x=3 then nbr_scc= nbr_scc + (b-a+1).

Else if x=1 then nbr_scc = nbr_scc + 1.
Step 7: If elements of Scc[ ] array are not finished then 

return Step 4.
Else continue

Step 8: nbr_sts_dz = t_nbr_sts - nbr_scc
nbr_sts_lz = nbr_scc

Output: The number of states in RG, the number of 
states in 

DZ, the number of states in LZ. 

End of Algorithm.
A short user procedure for zone_analyzer is presented 

as follows. 
•  Create a folder including INA (Integrated Net Analyzer) 

files.
• Copy the “Command.ina” file into the same directory.
• Define the Petri Net model of the system in the “input.

pnt” INA file. 
• Run “INAwin32.exe” and press “Y” to follow the pre-

defined procedures in “Command.ina” file. After the 
computation of the Reachability Graph (RG) and 
Strongly Connected Components (SCCs), results are 
stored as “rg.sta” and “scc.res” files in same folder, 
respectively. 

• Run “zone_analyzer.exe”.
• Observe the number of states in Live Zone (LZ) and in 

Deadlock Zone (DZ) from the file “results.txt”.

Example Computations
This section reports the application of proposed tech-

nique to a few well-known FMS and AMS models from 
the literature. The proposed algorithm is implemented 
as an executable program called “zone_analyzer.exe”. The 
developed program, files of presented examples and a short 
user guide can be downloaded from the following website: 
https://github.com/gokhangelen/zone-analyzer

Computations for an S3PR Model
As the first example model, the S3PR (Systems of sim-

ple sequential processes with resources) PN model is con-
sidered. As shown from Figure 10, the S3PR model has 15 
places and 11 transitions. This model has been frequently 
considered in the literature [5, 14-16, 21, 22]. The RG anal-
ysis of this model was performed by using INA. The INA 
file representation of S3PR model is depicted in Figure 11. 
The results show that the net has 261 states and 933 arcs. 

Figure 9. A screenshot of “zone_analyzer.exe” program.

Figure 10. An S3PR model.

https://github.com/gokhangelen/zone-analyzer
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The net is not live and has one deadlock state. The first SCC 
is computed as “1 .. 53, 65 .. 76, 92 .. 100, 104 .. 261,” for 
this PN model. The count of states in the LZ can be easily 
determined by using the implemented “zone_analyzer.exe” 
program. According to the results obtained from proposed 
algorithm, as shown in Figure 12, the PN model has 261 
markings and 29 of which are in the DZ. For this PN model, 
the optimal behavior is characterized by the LZ containing 
232 good markings.

Computations for an S3PGR2 Model
A C/D-RAS (conjunctive/disjunctive resource alloca-

tion Systems) [18] consisting of five robots, three loading 
buffers and three unloading buffers is used as the second 
example. The layout of this system is shown in Figure 13. 
The handling capacity of the first six robots is seven and 
handling capacity of the last robot is six. An S3PGR2 (sys-
tem of simple sequential processes with general resource 

requirement) model for this manufacturing cell is shown in 
Figure 14. S3PGR2 models have been frequently studied in 
the literature [18-20]. S3PGR2 model of this manufacturing 
cell has 26 places and 22 transitions. The RG and SCC anal-
ysis of this model is performed by using INA. The INA file 
representation of S3PGR2 model is depicted in Figure 15. 
The LZ is computed by using the proposed “zone_analyzer.
exe” program. The results for this PN model are shown in 
Figure 16. According to these results, the PN model has 
334698 markings and 120 of which are in DZ. Thus, the 
optimal behavior is characterized by the LZ containing 
334578 markings for this PN model. Note that in [18] the 
optimal live behavior of this PN model is not presented 
correctly. This result shows the significance of the method 
proposed in this paper.

Figure 11. INA file representation of the S3PR model de-
picted in Figure 10.

Figure 14. An S3PGR2 model.

Figure 13. Layout of the manufacturing cell from [17].

Figure 12. Results for PN model of an S3PR.
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Computations for an S4PR Model
In this example, an automated manufacturing system 

(AMS) that produces three parts P1, P2, and P3, is consid-
ered. The layout of this AMS is shown in Figure 17. There 
are five resources named as R1, R2, R3, R4 and R5. Each of 
which has the capacity of eight. The PN model of this sys-
tem is not given correctly in [21]. The corrected PN model 

for this AMS is illustrated in Figure 18. The RG and SCC 
analysis of this model is performed by using INA. The INA 
file representation of S4PR model is depicted in Figure 19. 
The LZ is computed by using the proposed “zone_analyzer.
exe” program. The results for this PN model are shown in 
Figure 20. According to these results, the PN model has 
421496 markings and 132 of which are in DZ. Thus, the 
optimal behavior is characterized by the LZ containing 
421358 markings for this PN model.

In [21], it is assumed that the optimal live behavior of 
the PN model shown in Figure 18 is the same as all the num-
ber of states exist, i.e., 421496 states, in the uncontrolled 
RG of the PN model. Therefore, the result provided here 
provides another mistake made in the literature when com-
puting the optimal behavior of PN based liveness enforcing 
supervisors.

Figure 18. The (corrected) PN model of the AMS.

Figure 17. An AMS example from [20].

Figure 16. Results for PN model of an S3PGR2.

Figure 15. INA file representation of the S3PGR2 model de-
picted in Figure 13.
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CONCLUSION

In this paper, a solution for the computation of the num-
ber of states in the live zone (LZ) that describes the optimal 
(maximally permissive) behavior of a Petri net (PN) based 
deadlock prevention policy is presented. The proposed 
algorithm is implemented as an executable program. It 

accepts the reachability graph and the first strongly con-
nected component (SCC) obtained from the most popular 
PN tool INA as input and computes the exact number of all 
legal states. The feasibility and applicability of the proposed 
technique is shown by using well-known Petri net models 
from the literature. In addition, this paper also reports that 
in some papers from the literature the number of legal states 
for S3PGR2 and S4PR nets are computed incorrectly. This 
fact further shows the importance of the method reported 
in this paper. The proposed tool can be used for both struc-
tural analysis-based and reachability graph analysis-based 
liveness enforcing supervisors. Thanks to the developed 
program, the number of legal states that is considered as 
a quality measure of deadlock controller can be easily and 
accurately computed. The proposed method makes use of 
the RG analysis that usually requires a complete enumera-
tion of reachable states. Therefore, it suffers from the state 
explosion problem. 
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