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ABSTRACT

Being a critical part of classical analysis, some of the convex functions and inequalities have 
drawn much attention recently because both concepts establish a strong relationship. As a 
familiar extension of classical one, the interval-valued analysis is frequently used to the re-
search of control theory, mathematical economy and so on. Motivated by the importance of 
convexity and inequality, our aim is to consider new class of convex interval-valued functions 
is known as LR-(𝑝, 𝒽)-convex interval-valued functions through pseudo order relation(≤𝑝). 
This order relation is defined on interval space. By using this concept, firstly we obtain Her-
mite-Hadamard (𝐻𝐻-) and Hermite- Hadamard-Fejér (𝐻𝐻-Fejér) type inequalities through 
pseudo order relation. Secondly, we present some new versions of discrete Jensen and Schur 
type inequalities via LR-(𝑝, 𝒽)-convex interval-valued functions. Moreover, we have shown 
that our results include a wide class of new and known inequalities for LR-𝒽-convex-IVFs 
and their variant forms as special cases. Under some mild restrictions, we have proved that 
the inclusion relation “⊆” coincident to pseudo order relation “≤𝑝” when the interval-valued 
function is LR-(𝑝, 𝒽)-convex or LR-(𝑝, 𝒽)-concave. Results obtained in this paper can be 
viewed as improvement and refinement of previously known results.
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INTRODUCTION

The convex analysis has played an important and fun-
damental part in development of various fields of applied 
and pure science. In last few decades much attention has 
been given in studying and distinguishing diverse direc-
tions of classical idea of convexity. In classical approach, a 

real valued function ℱ: 𝐾 → ℝ is called convex function on 
𝐾 if

ℱ(𝜚𝑥 + (1 − 𝜚)𝑦 ) ≤ 𝜚ℱ(𝑥 ) + (1 − 𝜚)ℱ(𝑦 ),  (1)

for all 𝑥 , 𝑦 ∈ 𝐾, 𝜚 ∈  [0, 1]. If 𝑓 is convex then,−𝑓 is 
concave. Recently, many extensions and generalizations of 
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convex set and convex functions have been established such 
as harmonic convexity [3], 𝒽-convexity [30], quasi convex-
ity [23], Schur convexity [8, 9], strong convexity [31, 32], 
p-convexity [36], (𝑝, 𝒽)-convexity [16], generalized con-
vexity [33] and the main generalization of convex function 
is discrete Jensen inequality [1] because it plays a critical in 
probability theory, in optimization theory and among oth-
ers field of sciences. For more useful details, see [3, 4, 5, 8, 
19, 22] and the references are therein.

The concept of convexity establishes strong relationship 
with integral problem. Therefore, this field of research has 
attracted many authors to contribute their role. Therefore, 
many inequalities have been introduced as applications 
of convex functions. The representative results include 
Gagliardo-Nirenberg-type inequality [29], Hardy-type 
inequality [10], Ostrowski-type inequality [18], Olsen-type 
inequality [20], and the most well-known inequality of, 
namely, the Hermite-Hadamard inequality (𝐻𝐻-inequality, 
in short) [21]. The 𝐻𝐻-inequality is an interesting outcome 
in convex analysis which is formulated for convex func-
tion. In [17], Fejér considered the major generalizations of 
𝐻𝐻-inequality which is known as 𝐻𝐻-Fejér inequality. This 
inequality basically depends upon the convex and symmet-
ric function. With the assistance of Fejér-inequality, many 
inequalities can be obtained through special symmetric 
functions for convex functions.

It is also familiar fact that interval analysis [25] and 
fuzzy analysis [34] are considered to be two different fields 
of mathematics that provide tools to deal with data uncer-
tainty. In general, interval analysis is typically used to deal 
with the models whose data are composed of inaccuracies 
that may occur from certain kinds of measurements. On 
the other hand, without complete knowledge on the prob-
lem, the fuzzy analysis can be used to deal with the models 
that were obtained. Moreover, it plays an important role in 
the study of a broad-based class problems in pure mathe-
matics and applied sciences including operational analysis, 
computer science, managements sciences, artificial intelli-
gence, control engineering and decision makings. The con-
vex analysis has played an important and fundamental part 
in development of various fields of applied and pure sci-
ence. Similarly, the notions of convexity and non-convexity 
play a vital role in optimization under interval and fuzzy 
domain. Therefore, several classical discrete and integral 
inequalities have been generalized not only to the environ-
ment of the IVF and fuzzy-IVFs by Costa [13], Costa and 
Roman-Flores [14], Roman-Flores et al. [27], and Chalco-
Cano et al. [11, 12], but also to more general set valued 
maps by Nikodem et al. [26], and Matkowski and Nikodem 
[24]. In particular, Zhang et al. [35] derived the new version 
of Jensen’s inequalities for set-valued and fuzzy set-valued 
functions by means of a pseudo order relation and proved 
that these Jensen’s inequalities generalized form of Costa 
Jensen’s inequalities [13]. Motivated by the above litera-
ture, Zhao et al. [37] introduced 𝒽-convex interval-valued 
functions (𝒽-convex IVFs, in short) and demonstrated that 

the 𝐻𝐻-type inequalities and Jensen 𝐻𝐻-type inequalities 
for 𝒽-convex IVFs. Besides, Yanrong An et al. [2] defined 
the class of (𝒽1, 𝒽2)-convex IVFs and established interval 
𝐻𝐻-inequality for (𝒽1, 𝒽2)-convex IVFs. For further review 
of the literature on the applications and properties of gener-
alized convex functions and 𝐻𝐻-inequalities, see [6, 7, 11, 
15, 28, 38-47] and the references therein. Inspired by Costa 
and Roman-Flores [14], and Zhang et al. [35], we present 
discrete interval inequalities and interval 𝐻𝐻- inequali-
ties for LR-(𝑝, 𝒽)-convex IVFs by means of pseudo order 
relation.

Inspired by the ongoing research work, the main aim 
of this paper is to introduce the class of LR-(𝑝, 𝒽)-convex 
IVFs and to establish inequalities of Jensen, schur, 𝐻𝐻- 
and 𝐻𝐻- Fejér type for LR-(𝑝, 𝒽)-convex IVFs by means 
of pseudo order relation via Riemann integrals. The main 
results of this paper also obtain some applications.

PRELIMINARIES

In this section, we first give some definitions, prelimi-
nary notations and results which will be helpful for further 
study. Then, we define new definitions and properties of 
the LR-(𝑝, 𝒽)-convex IVFs.

For the basic notions and definitions on the interval 
analysis, we use literature [three]. Let ℝ𝐼 be the space of all 
closed and bounded intervals of R and 𝜛 ∈  ℝ𝐼 be defined by

𝜛 = [𝜛 ∗, 𝜛 ∗] = {𝑥 ∈  R| 𝜛 ∗ ≤ 𝑥  ≤ 𝜛 ∗}, (𝜛 ∗, 𝜛 ∗ ∈  ℝ).

If 𝜛 ∗ = 𝜛 ∗ then, 𝜛  is said to be degenerate. In this arti-
cle, all intervals will be non-degenerate intervals. If 𝜛 ∗ ≥ 0, 
then [𝜛 ∗, 𝜛 ∗] is called positive interval. The set of all posi-
tive interval is denoted by ℝ𝐼

+ and defined as ℝ𝐼
+ = {[𝜛 ∗, 𝜛 ∗]: 

[𝜛 ∗, 𝜛 ∗] ∈  ℝ𝐼 and 𝜛 ∗ ≥ 0}. 
Let ρ ∈  ℝ and ρ𝜛 be defined by

Then the Minkowski difference 𝜂 − 𝜛  , addition 𝜛 + 𝜂 
and 𝜛  × 𝜂  for 𝜛 , 𝜂 ∈  ℝ𝐼 are defined by

[𝜂 ∗, 𝜂 ∗] − [𝜛 ∗, 𝜛 ∗] = [𝜂 ∗ − 𝜛 ∗, 𝜂 ∗ − 𝜛 ∗],
[𝜂 ∗, 𝜂 ∗] + [𝜛 ∗,𝜛 ∗] = [𝜂 ∗ + 𝜛 ∗, 𝜂 ∗ + 𝜛 ∗],

and

[𝜂 ∗, 𝜂 ∗] × [𝜛 ∗, 𝜛 ∗] = [𝑚𝑖𝑛{𝜂 ∗𝜛 ∗, 𝜂 ∗𝜛 ∗, 𝜂 ∗𝜛 ∗, 𝜂 ∗𝜛 ∗}, 
𝑚𝑎𝑥 {𝜂 ∗𝜛 ∗, 𝜂 ∗𝜛 ∗, 𝜂 ∗𝜛 ∗, 𝜂 ∗𝜛 ∗}].

The inclusion “ ⊆ “ means that
𝜂 ⊆ 𝜛  If and only if, [𝜂 ∗, 𝜂 ∗] ⊆ [𝜛 ∗, 𝜛 ∗], if and only if 

𝜛 ∗ ≤ 𝜂 ∗, 𝜂 ∗ ≤ 𝜛 ∗.
Remark 2.1. [35] (i) The relation “ ≤𝑝 “ defined on ℝ𝐼 by
[𝜂 ∗, 𝜂 ∗] ≤𝑝 [𝜛 ∗, 𝜛 ∗] if and only if 𝜂 ∗ ≤ 𝜛 ∗, 𝜂 ∗ ≤ 𝜛 ∗,
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for all [𝜂 ∗, 𝜂 ∗], [𝜛 ∗, 𝜛 ∗] ∈  ℝ𝐼, it is an pseudo order rela-
tion. For given [𝜂 ∗, 𝜂 ∗], [𝜛 ∗, 𝜛 ∗] ∈  R𝐼, we say that [𝜂 ∗, 𝜂 ∗] 
≤𝑝 [𝜛 ∗, 𝜛 ∗] if and only if 𝜂 ∗ ≤ 𝜛 ∗, 𝜂 ∗ ≤ 𝜛 ∗ or 𝜂 ∗ ≤ 𝜛 ∗, 𝜂 ∗ < 
𝜛 ∗. The relation [𝜂 ∗, 𝜂 ∗] ≤𝑝 [𝜛 ∗, 𝜛 ∗] coincident to [𝜂 ∗, 𝜂 ∗] ≤ 
[𝜛 ∗, 𝜛 ∗] on ℝ𝐼.

(ii) It can be easily seen that “ ≤𝑝 “ looks like “left and 
right” on the real line ℝ, so we call “ ≤𝑝 “ is “left and right” 
(or “LR” order, in short).

For [𝜂 ∗, 𝜂 ∗], [𝜛 ∗, 𝜛 ∗] ∈  ℝ𝐼, the Hausdorff–Pompeiu dis-
tance between intervals [𝜂 ∗, 𝜂 ∗] and [𝜛 ∗, 𝜛 ∗] is defined by

𝑑([𝜂 ∗, 𝜂 ∗], [𝜛 ∗, 𝜛 ∗]) = 𝑚𝑎𝑥 {[𝜂 ∗, 𝜂 ∗], [𝜛 ∗, 𝜛 ∗]}.

It is familiar fact that (ℝ𝐼, 𝑑) is a complete metric space.
A partition of [𝓊, 𝓋] is any finite ordered subset 𝑃 hav-

ing the form

𝑃 = {𝓊 = 𝑥 1 < 𝑥 2 < 𝑥 3 < 𝑥 4 < 𝑥 5 … … < 𝑥 𝑘 = 𝓋}.

The mesh of a partition 𝑃 is the maximum length of the 
subintervals containing 𝑃 that is,

mesh(𝑃) = 𝑚𝑎𝑥 {𝑥 𝑗 − 𝑥 𝑗−1: 𝑗 = 1, 2, 3, … … 𝑘}.

Let 𝒫(𝛿, [𝓊, 𝓋]) be the set of all 𝑃 ∈ 𝒫(𝛿,  [𝓊, 𝓋]) such 
that mesh (𝑃) < 𝛿. For each interval [𝑥 𝑗−1, 𝑥 𝑗], where 1 ≤ 𝑗 ≤ 
𝑘, choose an arbitrary point 𝜂 𝑗 and taking the sum

𝑆(𝑓, 𝑃, 𝛿) = ∑𝑘 𝑓(𝜂 𝑗)(𝑥 𝑗 − 𝑥 𝑗−1),

Where 𝑓: [𝓊, 𝓋] → ℝ𝐼. We call 𝑆(𝑓, 𝑃, 𝛿) a Riemann sum 
of 𝑓 corresponding to 𝑃 ∈ 𝒫(𝛿, [𝓊, 𝓋]).

Definition 2.2. [37] A function 𝑓: [𝓊, 𝓋] → ℝ𝐼 is called 
interval Riemann integrable (𝐼𝑅-integrable) on [𝓊, 𝓋] if 
there exists 𝐵 ∈  ℝ𝐼 such that, foe each 𝜖, there exists 𝛿 > 0 
such that

𝑑(𝑆(𝑓, 𝑃, 𝛿),  𝐵) < 𝜖,

for every Riemann sum of 𝑓 corresponding to 𝑃 ∈ 
𝒫(𝛿, [𝓊, 𝓋]) and for arbitrary choice of 𝜂𝑗 ∈  [𝑥𝑗 −1,  𝑥𝑗 ] for 
1 ≤ 𝑗 ≤ 𝑘. Then we say that 𝐵 is the 𝐼𝑅-integral of 𝑓 on [𝓊, 
𝓋] and is denote by 𝐵 = (𝐼𝑅) ∫u

𝓋𝑓(𝑥)𝑑𝑥.
The concept of Riemann integral for IVF first intro-

duced by Moore [25] is defined as follow:
Theorem 2.3. [25] If 𝑓: [𝓊, 𝓋] ⊂ ℝ → ℝ𝐼  is an IVF on 

such that 𝑓(𝑥) =  [𝑓∗,  𝑓∗]. Then 𝑓 is Riemann integrable 
over [𝓊, 𝓋] if and only if, 𝑓∗  and 𝑓∗ both are Riemann inte-
grable over [𝓊, 𝓋] such that

  

The collection of all Riemann integrable real valued 
functions and Riemann integrable IVF is denoted by ℛ[𝓊, 𝓋]
and ℐℛ[𝓊, 𝓋],  respectively.

Definition 2.4. [15] A function 𝑓: [𝓊, 𝓋] → ℝ+ is said to 
be 𝑃 convex function if 

 𝑓(𝜚𝑥 + (1 − 𝜚)𝑦) ≤ 𝑓(𝑥) + 𝑓(𝑦),  (2) 

for all 𝑥, 𝑦 ∈  [𝓊, 𝓋],  𝜚 ∈ [0,  1].  If (2) is reversed then, 𝑓
is called 𝑃 concave.

Definition 2.5. [6] A function 𝑓: 𝐾 → ℝ+ is said to be 
𝑠-convex function in the second sense if 

 𝑓(𝜚𝑥 + (1 − 𝜚)𝑦) ≤ 𝜚𝑠𝑓(𝑥) + (1 − 𝜚)𝑠𝑓(𝑦),  (3)

for all 𝑥, 𝑦 ∈  [𝓊, 𝓋],  𝜚 ∈ [0,  1],  where 𝑠 ∈ (0, 1). If (3) 
is reversed then, 𝑓 is called 𝑠-concave in the second sense.

Definition 2.6. [30] A function 𝑓: [𝓊, 𝓋] → ℝ+ is said 
to be 𝒽-convex function if for all 𝑥, 𝑦 ∈  [𝓊, 𝓋],  𝜚 ∈ [0,  1],  
we have

 𝑓(𝜚𝑥 + (1 − 𝜚)𝑦 ) ≤ 𝒽(𝜚) 𝑓(𝑥) + 𝒽(1 − 𝜚) 𝑓(𝑦), (4)

where 𝒽: ℒ → ℝ+ such that 𝒽 ≢ 0, [0,  1] ⊆ ℒ .  If (4) is 
reversed then, 𝑓 is called 𝒽-concave in the second sense. A 
function 𝒽: ℒ → ℝ+ is called super multiplicative if for all 
𝑥, 𝑦 ∈  ℒ , we have

 𝒽(𝑥𝑦) ≥ 𝒽(𝑥)𝒽(𝑦) (5)

If (16) is reversed then, 𝒽 is known as sub multiplicative. 
If the equality holds in (5) then, 𝒽 is called multiplicative.

Definition 2.7. [36] Let 𝑝 ∈ ℝ with 𝑝 ≠ 0. Then the 
interval 𝐾𝑝 is said to be 𝑝 -convex if 

  (6) 

for all 𝑥, 𝑦 ∈  𝐾𝑝 ,  𝜚 ∈ [0,  1],  where 𝑝 = 2𝑛 + 1 and 𝑛 ∈ 𝑁
Definition 2.8. [36] Let 𝑝 ∈  R with 𝑝  ≠ 0 and 𝐾𝑝  = [𝓊, 

𝓋] ⊆ ℝ. Then, the function 𝑓: [𝓊, 𝓋] → ℝ+ is said to be 𝑝 - 
convex function if 

  (7)

for all 𝑥, 𝑦 ∈  [𝓊, 𝓋], 𝜚 ∈ [0, 1]. If the inequality (7) is 
reversed then 𝑓 is called 𝑝 -concave function.

Definition 2.9. [16] Let 𝐾𝑝  be a 𝑝 -convex set and 𝒽: [0, 
1] ⊆ ℒ → ℝ+ be a nonnegative real-valued function such that 
𝒽 ≢  0, where ℒ ⊆ ℝ. Then function 𝑓: 𝐾𝑝  → ℝ is said to be 
(𝑝 , 𝒽)-convex on 𝐾𝑝  such that 

  (8)

for all 𝑥, 𝑦 ∈  𝐾𝑝 =  [𝓊, 𝓋],  𝜚 ∈ [0,  1],  where 𝑓(𝑥) ≥ 0 
and 𝒽: ℒ → ℝ+ such that 𝒽 ≢ 0 and [0,  1] ⊆ ℒ .  If (8) is 
reversed then, 𝑓 is called (𝑝 , 𝒽)-concave on [𝓊, 𝓋]. The set 
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of all (𝑝 , 𝒽)-convex ((𝑝 , 𝒽)-concave, (𝑝 , 𝒽)-affine) func-
tions is denoted by

 

Definition 2.10. The IVF 𝑓: [𝓊, 𝓋] → ℝ𝐼
+ is said to be 

LR-(𝑝 , 𝒽)-convex-IVF if for all 𝑥, 𝑦 ∈  [𝓊, 𝓋] and 𝜚 ∈ [0,  1 
we have

  (9)

where 𝒽: ℒ → ℝ+ such that 𝒽 ≢ 0, [0,  1] ⊆ ℒ .  If inequality 
(9) is reversed, then 𝑓 is said to be LR-(𝑝 , 𝒽)-concave on [𝓊, 
𝓋]. The set of all LR-(𝑝 , 𝒽)-convex (LR-(𝑝 , 𝒽)-concave), is 
denoted by

 

Remark 2.11. If 𝒽(𝜚) =  𝜚𝑠 with 𝑠 ∈ (0, 1) then LR-(𝑝 , 
𝒽)-convex-IVF becomes LR-(𝑝 , 𝑠)-convex-IVF in the 
second sense, that is

  

If 𝒽(𝜚) = 𝜚, then LR-(𝑝 , 𝒽)-convex-IVF becomes LR-𝑝 -
convex-IVF, that is 

  

Theorem 2.12. Let 𝒽: [0, 1] → ℝ+ such that 𝒽 ≢  0 and 
𝑓: [𝓊, 𝓋] → ℝ𝐼

+ be an IVF defined by 𝑓(𝑥) = [𝑓∗(𝑥), 𝑓∗(𝑥)], 
for all 𝑥 ∈  [𝓊, 𝓋]. Then 𝑓 ∈ 𝐿𝑅𝑆𝑋([𝓊, 𝓋], ℝ𝐼

+, (𝑝 , 𝒽)) if and 
only if, 𝑓∗,  𝑓∗ ∈  𝑆𝑋([𝓊, 𝓋], ℝ+, (𝑝 , 𝒽)).

Proof. Assume that 𝑓∗,  𝑓∗ ∈  𝑆𝑋([𝓊, 𝓋],  ℝ+,  (𝑝 , 𝒽)). 
Then, for all 𝑥, 𝑦 ∈  [𝓊, 𝓋],  𝜚 ∈ [0,  1],  we have

 

And

From inequality (2.8) and order relation ≤𝑝, we have

that is

   

Hence, 𝑓 ∈ 𝐿𝑅𝑆𝑋([𝓊, 𝓋],  ℝ𝐼
+,  (𝑝 , 𝒽)). 

Conversely, let 𝑓 ∈ 𝐿𝑅𝑆𝑋([𝓊, 𝓋],  ℝ𝐼
+,  (𝑝 , 𝒽)).  Then for 

all 𝑥, 𝑦 ∈  [𝓊, 𝓋] and 𝜚 ∈ [0,  1],  we have

That is

It follows that

and

 

Hence, the result follows.
Remark 2.13. If 𝑓∗(𝑥) = 𝑓∗(𝑥) then, LR-(𝑝 , 𝒽)-convex-

IVF becomes (𝑝 , 𝒽)-convex function, see [16].
If 𝑓∗(𝑥) = 𝑓∗(𝑥) with 𝒽(𝜚) =  𝜚𝑠 with 𝑠 ∈ (0, 1) then, 

LR-(𝑝 , 𝒽)-convex-IVF becomes (𝑝 , 𝑠)-convex function in 
the second sense, see [16].

If 𝑓∗(𝑥) = 𝑓∗(𝑥) with 𝒽(𝜚) =  𝜚 then LR-(𝑝 , 𝒽)-convex-
IVF becomes classical 𝑝 -convex function, see [36]. If 𝑓∗(𝑥)
=  𝑓∗(𝑥) with 𝑝 = 1 then, LR-(𝑝 , 𝒽)-convex-IVF becomes 
𝒽-convex function, see [22].

If 𝑓∗(𝑥) = 𝑓∗(𝑥) with 𝒽(𝜚) =  𝜚𝑠, 𝑠 ∈ (0, 1) and 𝑝 = 1
then, LR-(𝑝 , 𝒽)-convex-IVF becomes 𝑠-convex function in 
the second sense, see [6].

If 𝑓∗(𝑥) = 𝑓∗(𝑥) with 𝒽(𝜚) ≡ 1 and 𝑝 = 1 then LR-(𝑝 , 
𝒽)-convex-IVF reduces to the 𝑃-convex function, see [15]. 
If 𝑓∗(𝑥) = 𝑓∗(𝑥) with 𝒽(𝜚) =  𝜚 and 𝑝 = 1 then LR-(𝑝 , 
𝒽)-convex-IVF becomes classical convex function.

Example 2.14. We consider 𝒽(𝜚) =  𝜚𝑛 ,  for 𝜚 > 0, 𝑛 
≤ 1 and the IVF 𝑓: (0, ∞) → ℝ𝐼

+ defined by 𝑓(𝑥) =  [3𝑥𝑝 ,  
5𝑥𝑝  ], where 𝑝 is an odd number. Since 𝑓∗,  𝑓∗ ∈  𝑆𝑋([𝓊, 𝓋], 
ℝ+,  (𝑝 , 𝒽)) and hence, 𝑓(𝑥) is (𝑝 , 𝒽)-convex- IVF.

HERMITE–HADAMARD TYPE INEQUALITIES 

In this section, we derive some new 𝐻𝐻- and 𝐻𝐻-Fejér 
type inequalities for LR-(𝑝 , 𝒽)-convex-IVF by means 
of pseudo order relation via the interval Riemann type 
integrals.
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 Theorem 3.1. Let 𝒽: [0, 1] → ℝ+ such that 𝒽 ≢  0 and 

, and let 𝑓: [𝓊, 𝓋] → ℝ𝐼
+ be an IVF such that 

𝑓(𝑥) = [𝑓∗(𝑥), 𝑓∗(𝑥)], for all 𝑥 ∈  [𝓊, 𝓋]. If  𝑓 ∈ LR𝑆𝑋([𝓊, 𝓋], 
ℝ𝐼

+, (𝑝 , 𝒽)) and 𝑓 ∈ ℐℛ([𝓊, 𝓋]), then 

   (10)

If  𝑓 ∈ LR𝑆𝑋([𝓊, 𝓋], ℝ𝐼
+, (𝑝 , 𝒽)), then 

  (11)

Proof. Let If 𝑓 ∈ LR𝑆𝑋([𝓊, 𝓋], ℝ𝐼
+, (𝑝 , 𝒽)). Then, by 

hypothesis, we have

Therefore, we have 

 

Then

 

It follows that

That is

 

Thus,

  
(12)

In a similar way as above, we have 

  (13)

Combining (12) and (13), we have

 

Hence, the required result.
Remark 3.2. If 𝒽(𝜚) =  𝜚𝑠, then Theorem 3.1 reduces to 

the result for LR-(𝑝 , s)-convex-IVF which is also new one:

 

If 𝒽(𝜚) =  𝜚, then Theorem 3.1 reduces to the result for 
LR-𝑝 -convex-IVF which is also new one:

 

If 𝑓∗(𝑥) = 𝑓∗(𝑥), then Theorem 3.1 reduces to the result 
for classical  (𝑝 , 𝒽)-convex function, see [16]:

 

If 𝑓∗(𝑥) = 𝑓∗(𝑥) with 𝒽(𝜚) =  𝜚𝑠, then Theorem 3.1 
reduces to the result for classical (𝑝 , s)-convex function, see 
[16]:

 

If 𝑓∗(𝑥) = 𝑓∗(𝑥) with 𝒽(𝜚) =  𝜚, then Theorem 3.1 
reduces to the result for classical 𝑝 -convex function, see 
[26]: 

 

Example 3.3. Let 𝑝  be an odd number and 𝒽(𝜚) =  𝜚, 
for 𝜚 ∈ [0,  1], and the IVF 𝑓: [𝓊, 𝓋] =  [−1,  1] → ℝ𝐼

+ defined 
by,  𝑓(𝑥) =  [𝑥𝑝 ,  𝑒𝑥𝑝  

], where 𝑝  be an odd number. Since end 
point functions 𝑓∗(𝑥) = xp  and 𝑓∗(𝑥) =  𝑒𝑥𝑝  

 both are (𝑝 , 
𝒽)-convex functions. Hence 𝑓(𝑥) is LR-(𝑝 , 𝒽)-convex-IVF. 
We now computing the following 

that means

 

Similarly, it can be easily show that 
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such that

 

From which, it follows that

 

that is  

 

Hence,

 

Theorem 3.4. Let 𝒽: [0, 1] → ℝ+ such that 𝒽 ≢  0 and 

, and let 𝑓: [𝓊, 𝓋] → ℝ𝐼
+ be an IVF such that 

𝑓(𝑥) = [𝑓∗(𝑥), 𝑓∗(𝑥)], for all 𝑥 ∈  [𝓊, 𝓋]. If  𝑓 ∈ LR𝑆𝑋([𝓊, 𝓋], 
ℝ𝐼

+, (𝑝 , 𝒽)) and 𝑓 ∈ ℐℛ([𝓊, 𝓋]), then 

  

where 

 

and ⪧1= [⪧1 , ⪧1∗], ⪧2= [⪧2 , ⪧2∗].

Proof. Take , we have

  

Therefore, we have

  

In consequence, we obtain

 

That is

 

It follows that

  
(14)

In a similar way as above, we have

  
(15)

Combining (14) and (15), we have

 

By using Theorem 3.1, we have

 

Therefore, we have
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that is

 

hence, the result follows. 
Example 3.5. Let 𝑝  be an odd number and 𝒽(𝜚) =  𝜚, 

for 𝜚 ∈ [0,  1], and the IVF 𝑓: [𝓊, 𝓋] =  [−1,  1] → ℝ𝐼
+ defined 

by,  𝑓(𝑥) =  [𝑥𝑝 ,  𝑒𝑥𝑝  
],  as in Example 3.3, then 𝑓(𝑥) is (𝑝 , 

𝒽)-convex IVF and satisfying (4.1). We have 𝑓∗(𝑥) = xp and 
𝑓∗(𝑥) =  𝑒𝑥𝑝 . We now computing the following 

 

 

Then we obtain that

 

Hence, Theorem 3.4 is verified.
In Theorem 3.6 and theorem 3.7, we obtain some 

interval integral inequalities for the product of two LR-(𝑝 , 
𝒽)-convex-IVFs.

Theorem 3.6. Let 𝒽1, 𝒽2: [0, 1] → ℝ+ such that 𝒽1, 𝒽2 
≢ 0, and let 𝑓, 𝑔: [𝓊, 𝓋] → ℝ𝐼

+ be two IVFs, respectively, 
defined by 𝑓(𝑥 ) = [𝑓∗(𝑥 ), 𝑓∗(𝑥 )] and 𝑔(𝑥 ) = [𝑔∗(𝑥 ), 𝑔∗(𝑥 )] 
for all 𝑥 ∈  [𝓊, 𝓋], respectively. If 𝑓 ∈  𝐿𝑅𝑆𝑋([𝓊, 𝓋], ℝ𝐼

+, (𝑝, 
𝒽1)), 𝑔 ∈ 𝐿𝑅𝑆𝑋([𝓊, 𝓋], ℝ𝐼

+, (𝑝, 𝒽2)) and 𝑓𝑔 ∈  ℐℛ([𝓊,𝓋]) , 
then

 

where ℳ(𝓊, 𝓋) = 𝑓(𝓊)𝑔(𝓊) + 𝑓(𝓋)𝑔(𝓋), 𝒩(𝓊, 𝓋) 
= 𝑓(𝓊)𝑔(𝓋) + 𝑓(𝓋)𝑔(𝓊), and ℳ(𝓊, 𝓋) = [ℳ∗((𝓊, 𝓋)), 
ℳ∗((𝓊, 𝓋))] and 𝒩(𝓊, 𝓋) = [𝒩∗((𝓊, 𝓋)), 𝒩∗((𝓊, 𝓋))]. 

Proof. Since 𝑓 ∈  𝐿𝑅𝑆𝑋([𝓊, 𝓋], ℝ𝐼
+, (𝑝, 𝒽1)) and 𝑔 ∈  

𝐿𝑅𝑆𝑋([𝓊, 𝓋], ℝ𝐼
+, (𝑝, 𝒽2))then, we have 

  

And

 

From the definition of LR-(𝑝 , 𝒽)-convex-IVFs it follows 
that 𝑓(𝑥) ≥𝑝0 and 𝑔(𝑥) ≥𝑝0, so

 

Integrating both sides of above inequality over [0, 1] we 
get



Sigma J Eng Nat Sci, Vol. 41, No. 3, pp. 524−537, June, 2023 531

  

It follows that,

 

that is

Thus,

 

Hence, this concludes the proof.

Theorem 3.7. Let 𝒽1, 𝒽2: [0, 1] → ℝ+ such that 𝒽1, 𝒽2 

≢ 0 and , and let 𝑓, 𝑔: [𝓊, 𝓋] → ℝ𝐼
+ be two 

IVFs, respectively, defined by 𝑓(𝑥 ) = [𝑓∗(𝑥 ), 𝑓∗(𝑥 )] and 𝑔(𝑥 ) 

= [𝑔∗(𝑥 ), 𝑔∗(𝑥 )] for all 𝑥 ∈  [𝓊, 𝓋]. If 𝑓 ∈  𝐿𝑅𝑆𝑋([𝓊, 𝓋], ℝ𝐼
+, 

(𝑝, 𝒽1)), 𝑔 ∈ 𝐿𝑅𝑆𝑋([𝓊, 𝓋], ℝ𝐼
+, (𝑝, 𝒽2)) and 𝑓𝑔 ∈  ℐℛ([𝓊,𝓋]), 

then

 

where ℳ(𝓊, 𝓋) = 𝑓(𝓊)𝑔(𝓊) + 𝑓(𝓋)𝑔(𝓋), 𝒩(𝓊, 𝓋) 

= 𝑓(𝓊)𝑔(𝓋) + 𝑓(𝓋)𝑔(𝓊), and ℳ(𝓊, 𝓋) = [ℳ∗((𝓊, 𝓋)), 

ℳ∗((𝓊, 𝓋))] and 𝒩(𝓊, 𝓋) = [𝒩∗((𝓊, 𝓋)), 𝒩∗((𝓊, 𝓋))]

Proof. By hypothesis, we have

 

  

  

Integrating over [0, 1], we have 

 

that is 

 

Hence, the required result.
Example 3.8. Let 𝑝 be an odd number and 𝒽1(𝜚) =  

𝜚, 𝒽2(𝜚) =  1,  for 𝜚 ∈ [0,  1], and the LR-(𝑝 , 𝒽1)-convex 
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𝑓: [𝘶, 𝜗] =  [2,  3] → ℝ𝐼
+ and LR-(𝑝 , 𝒽2)-convex IVFs 𝑔: 

[𝘶, 𝜗] =  [2,  3] → ℝ𝐼
+ are, respectively defined by, 𝑓(𝑥) =  

,  and 𝑔(𝑥) =  [𝑥𝑝 ,  2𝑥𝑝  ]. Since 𝑓∗(𝑥) =  2 
− , 𝑓∗(𝑥) =  2 (2 −  ), and 𝑔∗(𝑥) =  𝑥𝑝 , 𝑔∗(𝑥) =  2𝑥𝑝 , 

then we computing the following 

  

that means 

 

Hence, Theorem 3.6 has been demonstrated.
For Theorem 3.7, we have

  

that means  

 

hence, Theorem 3.7 is verified.
Next we derive 𝐻𝐻-Fejér type inequality for LR-(𝑝, 

𝒽)-convex-IVF by means of pseudo order relation. 

Theorem 3.9. (Second 𝐻𝐻-Fejér type inequality for 
LR-(𝑝, 𝒽)-convex-IVF) Let 𝒽: [0, 1] → ℝ+ be a nonnegative 
real valued function and 𝑓: [𝓊, 𝓋] → ℝ𝐼

+ be an IVF with 𝓊 
< 𝓋, such that 𝑓(𝑥 ) = [𝑓∗(𝑥 ), 𝑓∗(𝑥 )] for all 𝑥 ∈  [𝓊, 𝓋] and 𝑓
∈  ℐℛ([𝓊,𝓋]). If 𝑓 ∈  𝐿𝑅𝑆𝑋([𝓊, 𝓋], ℝ𝐼

+, (𝑝, 𝒽)), then 𝒲: [𝓊, 

𝓋] → ℝ,  𝒲(𝑥) ≥ 0, 𝑝-symmetric with respect to 
, then

   (16)

If 𝑓 ∈  𝐿𝑅𝑆𝑋([𝓊, 𝓋], ℝ𝐼
+, (𝑝, 𝒽)) then, inequality (16) is 

reversed.
Proof. Let 𝑓 ∈  𝐿𝑅𝑆𝑋([𝓊, 𝓋], ℝ𝐼

+, (𝑝, 𝒽)). Then we have

   

(17)

And 

  

(18)

After adding (17) and (18), and integrating over [0, 1]. 
we get

 

Since 𝒲 is symmetric, then

  
(19)

 

Since 

  
(20)

 

From (20), we have
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that is

,

hence 

By the same technique used in the proof of Theorem 3.9 
we get result following first 𝐻𝐻-Fejér inequality for LR-(𝑝 , 
𝒽2)-convex-IVF.

Theorem 3.10. (First 𝐻𝐻-Fejér inequality for LR-(𝑝, 
𝒽)-convex-IVF) Let 𝒽: [0, 1] → ℝ+ such that  and 
𝑓: [𝓊, 𝓋] → ℝ𝐼

+ be an IVF with 𝓊 < 𝓋, such that 𝑓(𝑥 ) = [𝑓∗(𝑥 ), 
𝑓∗(𝑥 )] for all 𝑥 ∈  [𝓊, 𝓋] and 𝑓 ∈  ℐℛ([𝓊,𝓋]). If 𝑓 ∈  𝐿𝑅𝑆𝑋([𝓊, 

𝓋], ℝ𝐼
+, (𝑝, 𝒽)) and 𝒲: [𝓊, 𝓋] → ℝ,   𝒲(𝑥) ≥ 0, 𝑝-symmetric 

with respect to , and , then 

     

 (21)

If 𝑓 ∈  𝐿𝑅𝑆𝑋([𝓊, 𝓋], ℝ𝐼
+, (𝑝, 𝒽)) then, inequality (21) is 

reversed. 
Proof. Since 𝑓 ∈  𝐿𝑅𝑆𝑋([𝓊, 𝓋], ℝ𝐼

+, (𝑝, 𝒽)) then, we have 

  
(22)

By multiplying (22) by 

 and 
integrate it by 𝜚 over [0, 1], we obtain 

  

(23)

Since 

  

(24)

From (24), we have

 

From which, we have

 

that is 

 

this completes the proof.
Remark 3.11. If in the Theorems 3.9 and 3.10 𝒽(𝜚) 

=  𝜚𝑠 then, we obtain the appropriate theorems for LR-s-
convex-IVFs on the second sense which are also new one.

If in the Theorems 3.9 and 3.10 𝒽(𝜚) =  𝜚, then we 
obtain the appropriate theorems for LR-convex-IVFs which 
are also new one.

If 𝑓∗(𝑥 ) = 𝑓∗(𝑥 )  then Theorems 3.9 and 3.10 reduce to 
classical first and second 𝐻𝐻-Fejér inequality for 𝒽-convex 
function, see [16].

If 𝒲(𝑥) =  1  then by combining Theorems 3.9 and 3.10, 
we get Theorem 3.1.

Example 3.12. We consider 𝒽(𝜚) =  𝜚 for 𝜚 ∈   [0, 1], and 
the IVF 𝑓: [1 , 4] → ℝ𝐼

+ defined by,

  (25)

Since end point functions 𝑓∗(𝑥 ), 𝑓∗(𝑥 ) both are (𝑝, 
𝒽)-convex functions, then 𝒯(𝑥 )  is LR-(𝑝, 𝒽)-convex-IVF. 
If 

  
(26)

where 𝑝 = 1 . Then, we have 
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(27)

and

  

(28)

From (27) and (28), we have

 

Hence, Theorem 3.9 is verified.
For Theorem 3.10, we have 

  

(29)

 

  
(30)

From (29) and (30), we have

 

Hence, Theorem 3.10 is demonstrated.

DISCRETE JENSEN AND SCHUR-TYPE IN-
EQUALITIES 

This section proposes the discrete Jensen and Schur 
type inequalities for LR-(𝑝, 𝒽)-convex-IVF and proves 
some refinements of both inequalities. First of all, discrete 

Jensen type inequality for LR-(𝑝, 𝒽)-convex-IVF is proved 
in the following result.

Theorem 4.1. (Discrete Jensen type inequality for 
LR-(𝑝, 𝒽)-convex-IVF) Let 𝓌𝑗 ∈  ℝ+, 𝓊𝑗  ∈  [𝓊, 𝓋],   (𝑗 = 
1,  2,  3,  . . .  . . .  . . .  . . .  𝑘, 𝑘 ≥ 2) and let 𝑓: [𝓊, 𝓋] → ℝ𝐼

+ be an IVF 
such that 𝑓(𝑥 ) = [𝑓∗(𝑥 ), 𝑓∗(𝑥 )] for all 𝑥 ∈  [𝓊, 𝓋]. If If 𝑓 ∈  
𝐿𝑅𝑆𝑋([𝓊, 𝓋], ℝ𝐼

+ and 𝒽 is a nonnegative supermultiplica-
tive function on ℒ  then

  
(31)

where . If the a nonnegative function 𝒽 is 
sub-multiplicative function and 𝑓 ∈  𝐿𝑅𝑆𝑋([𝓊, 𝓋], ℝ𝐼

+, (𝑝, 
𝒽) then, eq. (31) is reversed.

Proof. When 𝑘 = 2  then, eq. (30) is true. Consider eq. 
(2.8) is true for 𝑘 = 𝑛 − 1, then

 

Now, let us prove that eq. (31) holds for 𝑘 = n. 

  

Therefore, we have

 

From which, we have

 

that is, 
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and the result follows.
If 𝓌1 =  𝓌2 =  𝓌3 =  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  =  𝓌𝑘 =  1,  then 

Theorem 4.1 reduces to the following result: 
Corollary 4.2. Let 𝓊𝑗  ∈  [𝓊, 𝓋],   (𝑗 = 1, 2, 3, . . . . . . . . . . . .  𝑘, 

𝑘 ≥ 2) and let 𝑓: [𝓊, 𝓋] → ℝ𝐼
+ be an IVF such that  𝑓(𝑥 ) = 

[𝑓∗(𝑥 ), 𝑓∗(𝑥 )] for all 𝑥 ∈  [𝓊, 𝓋]. If 𝑓 ∈  𝐿𝑅𝑆𝑋([𝓊, 𝓋], ℝ𝐼
+, (𝑝, 

𝒽)) and 𝒽 is a nonnegative super-multiplicative function 
on ℒ , then

   
(32)

If function 𝒽 is sub-multiplicative and 𝑓 ∈  𝐿𝑅𝑆V([𝓊, 
𝓋], ℝ𝐼

+, (𝑝, 𝒽)) then, inequality (32) is reversed. 
To obtain a refinement of Jensen inequality for LR-(𝑝, 

𝒽)-convex-IVFs firstly, we prove the following the result:
Theorem 4.3. Let 𝒽: ℒ  → ℝ+ be a nonnegative super-mul-

tiplicative function and 𝑓: [𝓊, 𝓋] → ℝ𝐼
+ be an IVF such that 

𝑓(𝑥 ) = [𝑓∗(𝑥 ), 𝑓∗(𝑥 )] for all 𝑥 ∈  [𝓊, 𝓋]. If 𝑓 ∈  𝐿𝑅𝑆𝑋([𝓊, 
𝓋], ℝ𝐼

+, (𝑝, 𝒽)), then for 𝓊1,  𝓊2,  𝓊3 ∈  [𝓊, 𝓋], such that 𝓊1 
< 𝓊2 < 𝓊3 and 
, we have 

  (33)

If the function 𝒽 is a nonnegative sub-multiplicative 
function and 𝑓 ∈  𝐿𝑅𝑆V([𝓊, 𝓋], ℝ𝐼

+, (𝑝, 𝒽)) then, inequalit 
(33) is reversed.

Proof. Let 𝓊1,  𝓊2,  𝓊3 ∈  [𝓊, 𝓋] and . 
Then by hypothesis, we have 

Consider , then . 
Since 𝑓 ∈  𝐿𝑅𝑆𝑋([𝓊, 𝓋], ℝ𝐼

+, (𝑝, 𝒽)) then, by hypothesis, 
we have

  
(34)

  
(35)

From (35), we have

That is

 

Hence

 

Following result find a refinement of Schur type 
inequality for LR-(𝑝, 𝒽)-convex-IVF such that:.

Theorem 4.4. Let 𝓌𝑗 ∈  ℝ+, 𝓊𝑗  ∈  [𝓊, 𝓋],   (𝑗 = 1, 2, 3, 
. . .  . . .  . . .  . . .  𝑘, 𝑘 ≥ 2),  𝒽 be a nonnegative super-multiplicative 
function on ℒ  and let 𝑓: [𝓊, 𝓋] → ℝ𝐼

+  be an IVF such that 
𝑓(𝑥 ) = [𝑓∗(𝑥 ), 𝑓∗(𝑥 )] for all 𝑥 ∈  [𝓊, 𝓋].. If 𝑓 ∈  𝐿𝑅𝑆𝑋([𝓊, 𝓋], 
ℝ𝐼

+, (𝑝, 𝒽)) and 𝓊1,  𝓊2,  … … ,  𝓊𝑗 ∈  (𝐿, 𝑈) ⊆ [𝓊, 𝓋] then,

  (36) 

where . If 𝒽 is sub-multiplicative func-
tion and 𝑓 ∈  𝐿𝑅𝑆V([𝓊, 𝓋], ℝ𝐼

+, (𝑝, 𝒽)) then, eq. (36) is 
reversed.

Proof. Consider =  𝓊1,  𝓊𝑗 =  𝓊2,  (𝑗 = 1, 2, 3, … … … … 
𝑘), 𝑈 = 𝓊3. Then, by hypothesis and eq. (36), we have

 

Above inequality can be written as,

  
(37)

Taking sum of all inequalities (37) for 𝑗 = 1, 2, 3, . . . . . . . . . 
. . .  𝑘,  we have

 

that is

 

Thus,

 

this completes the proof.
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We now consider some special cases of Theorem 4.1 
and 4.4.

If 𝑓∗(𝑥 ) = 𝑓∗(𝑥 ), then Theorem 4.1 and 4.4 reduce to the 
following results :

Corollary 4.5. [16] (Jensen inequality for LR-(𝑝, 
𝒽)-convex function) Let 𝓌𝑗 ∈  ℝ+, 𝓊𝑗  ∈  [𝓊, 𝓋],   (𝑗 = 1, 2, 
3,  . . .  . . .  . . .  . . .  𝑘, 𝑘 ≥ 2) and let 𝑓: [𝓊, 𝓋] → ℝ+ be a non-negative 
real-valued function. If 𝑓 ∈  𝑆𝑋([𝓊, 𝓋], ℝ𝐼

+, (𝑝, 𝒽)) and 𝒽 is 
a nonnegative supermultiplicative function on ℒ  then

  
(38)

where .  If 𝒽 is sub-multiplicative func-
tion and 𝑓 ∈  𝑆V([𝓊, 𝓋], ℝ+, (𝑝, 𝒽)) then, eq. (38) is reversed.

Corollary 4.6. 16] Let 𝓌𝑗 ∈  ℝ+, 𝓊𝑗  ∈  [𝓊, 𝓋],   (𝑗 = 1, 
2,  3,  . . .  . . .  . . .  . . .  𝑘, 𝑘 ≥ 2) 𝒽 be a nonnegative super-multiplica-
tive function on ℒ  and let 𝑓: [𝓊, 𝓋] → ℝ+ be an non-nega-
tive real-valued function. If 𝑓 ∈  𝑆𝑋([𝓊, 𝓋], ℝ𝐼

+, (𝑝, 𝒽)) and 
𝓊1,  𝓊2,  … … ,  𝓊𝑗 ∈  (𝐿, 𝑈) ⊆ [𝓊, 𝓋] then,

  (39)

where .  If 𝒽 is sub-multiplicative func-
tion and 𝑓 ∈  𝑆V([𝓊, 𝓋], ℝ+, (𝑝, 𝒽))  then, eq. (39) is 
reversed.

CONCLUSION

We introduced the class of LR-(𝑝, 𝒽)-convex inter-
val-valued functions by means of pseudo order relation and 
investigated some properties. Some novel Inequalities for 
LR-(𝑝, 𝒽)-convex interval-valued functions were proved. 
The results of this study can be applied in optimization, 
uncertainty analysis and also different areas of applied and 
pure sciences. We intend to use various types of LR-convex 
interval-valued functions to construct interval inequalities of 
interval-valued functions by means of pseudo order relation.
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