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ABSTRACT

The bin packing problem (BPP) is one of the most elaborated combinatorial optimization 
problems, yet there is still need and room for improvement. An improved flower pollination 
algorithm (FPA) is proposed for the solution of one-dimensional BPP (1DBPP). To increase 
efficiency, global and local pollination procedures are modified and hybridized with the ge-
netic algorithm (GA). An elimination strategy that increases the quality of the solution set in 
each iteration is also included and the proposed algorithm is tested on the Scholl dataset. It is 
compared with the adaptive fitness-dependent optimizer (AFDO), the improved Lévy-based 
whale optimization (ILWOA), and the modified squirrel search BPP (MSBPP) algorithms. 
The comparison is made in terms of metrics including the container number, minimum and 
average fitness values, and minimum and average percentage performances. In terms of the 
container number, the proposed algorithm yielded results equal to or better than competing 
algorithms. In terms of minimum fitness value, the proposed algorithm achieved 88% more 
successful results than its competitors. It achieved 92% more successful results in terms of 
average fitness value. In terms of minimum percentage performance, the proposed algorithm 
is more successful in 93.3% of the samples compared to AFDO. Compared to MSBPP, the 
proposed algorithm is 84.6% more successful. In terms of average percentage performance 
metric, the proposed algorithm has better results in 90% of the samples than AFDO; and 
compared to MSBPP, it is more successful in 96.1% of the samples. These results show the 
effectiveness of the proposed algorithm to solve the 1DBPP problem.

Cite this article as: Gezici H, Livatyalı H. Optimization of one-dimensional bin packing prob-
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INTRODUCTION

The one-dimensional bin packing problem (1BPP) is 
defined as the optimal placement of boxes in certain sizes 
inside of containers in certain sizes. The depth (a) and 

width (b) dimensions of the boxes are considered to be the 
same (a1 = a2 =…. = an and b1 = b2 =…= bn) and their height 
(h) are different (h1 ≠ h2 ≠… ≠ hn) (Figure 1). The depth
(D) and width (W) dimensions of the containers are whole
numbers which are exact times of the box dimensions
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(D = k.a and W = l.b, k and l ∈ Z+). The container height (H) 
dimension does not have to be exact times of the box height 
dimension. The total height of the boxes placed in the con-
tainers should not exceed the height of the container. The 
aim is to maximize the container occupancy rate and use 
a minimum number of containers. The process of placing 
boxes in containers is done by humans or robots. According 
to the availability of the working area, a loading direction 
is determined for loading the boxes into the containers. 
The number and dimensions of the boxes to be loaded are 
already known. Based on these parameters, the optimum 
box order is tried to be determined. Some of the containers 
may remain empty after loading. The constraints and deci-
sion structure of 1BPP are defined as follows [1,2].

  
(1)

  
(2)

  
(3)

  (4)

  (5)

  (6)

  (7)

where n shows the number of boxes, H indicates the 
container capacity, hj shows the height of the jth box, m is 
the number of containers, and B is the set of containers.

BPP is in the Np-hard problem class [3]. It can be 
adapted to real-world problems in areas such as logistics 
and manufacturing [4,5]. 1DBPP is used in memory man-
agement in the computer industry. In the literature, exact, 
heuristic, and meta-heuristic methods are suggested for 
the solution of BPP [6,7]. Although the exact methods give 
favorable results in the solution of small-scale problems, 
they need a long calculation time in large-scale problems 
[8]. Calculation time with meta-heuristic methods is short, 
but it does not always guarantee the correct result. Studies 
on meta-heuristic methods are ongoing due to short calcu-
lation times and successful results [9,10].

Meta-heuristic algorithms such as ant colony algorithm 
[11], particle swarm optimization algorithm [12], GA 
[13,14], tabu search [15], ILWOA [6] have been used in the 
solution of BPP. It is known that there is no single algorithm 
that can solve all optimization problems [16,17]. Applying 
meta-heuristic algorithms in pure form to BPP may not 
yield optimum results. For this reason, in some studies, it is 
preferred to transform the meta-heuristic algorithms into 
a hybrid structure while they are applied to BPP [18–20].

In recent years, Levy-based meta-heuristic optimization 
algorithms have been used for the solution of the BPP, and 
obtained results were successful. Studies on ILWOA and 
Adaptive Cuckoo Search based on levy distribution, which 
provide excellent results in the solution of the BPP, have 
been published previously [6,20]. In these studies, it is seen 
that the Levy distribution improves the solution quality of 
the algorithm. Levy distribution transforms the algorithms 
into the continuous form while bin packing is a problem in 
discrete form. Algorithms in continuous form can be con-
verted into discrete forms with proven methods [20–23].

In this study, the problem of placing different-sized 
boxes into containers of the same size will be emphasized 
[24]. For the solution of the 1D-BPP, a hybrid algorithm 
was created by reinforcing the Meta-heuristic algorithm 
by combining the flower pollination algorithm (FPA) with 
GA. The proposed algorithm is called Improved Hybrid 
Flower Pollination Genetic Algorithm (IHFPGA). Global 
searching ability is increased by making changes in the 
mathematical model of FPA. Mutation operators and the 
elimination process have been added to the IHFPGA to 
increase the efficiency of the algorithm. The existence of 
mutation operators increases the local searching ability of 
the proposed algorithm. With these changes, the proposed 
algorithm is aimed to have the ability to search for a better 
solution space compared to other algorithms in the liter-
ature. The proposed algorithm has been compared with 
other meta-heuristic algorithms with the best results from 
the literature. The obtained results have confirmed the 
validity of the proposed algorithm. In Section 2, the liter-
ature on 1BPP is summarized. In Section 3, İnformation 
about the developed algorithm is given. In Section 4, the 
test parameters are explained and comparative results are 
given. These results are discussed in Section 5.Figure 1. Box dimensions.
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Related Work on the Bin Packing Problem
For the solution of 1DBPP, researchers have proposed 

various heuristic and meta-heuristic methods. The first 
suggested heuristics are Next-Fit (NF), First-Fit (FF), Best-
Fit (BF) methods, and their derivatives [4,22]. In the NF 
method, the incoming box is placed in the last opened con-
tainer, if the container is not available, a new bin is opened. 
In the FF method, the next box is placed in the first avail-
able space for it. In BF, the next box is placed in the smallest 
space it can fit.

Among the meta-heuristic algorithms, GA is the most 
known and has been used many times to solve 1DBPP 
[25,26]. In [3], a new island-parallel grouping GA was 
developed by modifying the GA for the solution of group-
ing problems. In [15], the Greedy Randomized Adaptive 
Search (GRASP) method has been proposed. This method 
consists of 2 steps. The first stage was created by hybridizing 
the FF and BF heuristic methods. In the second stage, the 
taboo search procedure was applied to improve the results 
obtained in the first stage. A modified GRASP method is 
presented in [27]. In [28], an iterative local search algo-
rithm based on gradually reducing the number of divisions 
has been proposed. In [29] First-Fit Decreasing (FFD) algo-
rithm has been modified to shorten the resolution time of 
1DBPP. In [30], a heuristic weight annealing algorithm is 
presented to increase the quality of the results obtained. In 
[31]’, a multi-step tabu search algorithm based on dynamic 
programming of object sets has been proposed for the solu-
tion of 1DBPP. In [32], a new algorithm is presented, which 
is a modified version of the Grouping Genetic Algorithm 
(GGA-CGT). In this study, a new grouping genetic operator 
is proposed to increase the probability of finding the best 
genes on chromosomes. In addition, a new gene deriva-
tion technique that enables the identification of the search 
area and the FF procedure to produce a quality starting 
population are also presented. In [6]’, Whale Optimization 
Algorithm (WOA) is presented for the solution of 1DBPP. 
WOA is a meta-heuristic algorithm that mimics whales’ 
unique hunting strategy. In this study, Lévy flight was 
adapted to the algorithm to improve the original algorithm. 
In addition, the algorithm includes an additional mutation 
stage and a logistic map. In [33], the AFDO method, which 
is a modified version of the Fitness-Dependent Optimizer 
(FDO) procedure, is presented. This algorithm is inspired 
by the characteristics of the breeding process of bee swarms 
and collective decision-making behavior. This algorithm 
also includes the FF procedure for optimization of the 
starting population. In [34], the adaptive African Buffalo 
Optimization algorithm (ABO) is presented for the solu-
tion of 1DBPP. The proposed algorithm is combined with 
the ranked order value method used for discretization. In 
[4]’, a modified version of the Squirrel Search Algorithm, 
inspired by the behavior of squirrels during foraging, is 
proposed. The proposed algorithm has a procedure that 
controls the random generation of the starting population. 
It also has various strategies to improve the quality of the 

solution in each iteration. In [35], firefly algorithm, GA, 
adaptive cuckoo search algorithm, and artificial bee col-
ony algorithm are presented for the solution of 1DBPP. In 
addition, these algorithms include best fit and better fit 
heuristics.

While solving optimization problems like 1D-BPP, 
some meta-heuristic algorithms might not result success-
fully. The reason for it is, as it is explained in the free-lunch 
theorem, that an optimization algorithm cannot solve all 
optimization problems [16]. Moreover, definite solutions to 
some optimization problems like 1D-BPP are not known. 
Therefore, researchers keep developing more useful opti-
mization algorithms. 

In this paper, a hybrid meta-heuristic algorithm is pro-
posed for the solution of 1D-BPP. The basis of the algo-
rithm is FPA based on the Levy distribution. To increase 
the performance of FPA, its mathematical model has been 
changed. Three different mutation operators of the GA 
have been added to increase the 1D-BPP solution perfor-
mance of the algorithm. There is also an elimination oper-
ator in the algorithm. This operator removes the boxes that 
maximize the occupancy rate of the containers in each 
iteration. This elimination reduces the size of the solution 
space. Thus, the efficiency of the algorithm is increased in 
terms of the iteration number, iteration time, and occu-
pancy rate. This study contributes to the literature in 3 
ways. First, FPA’s mathematical model has been modified. 
Second, FPA is hybridized with GA’s mutation operators. 
Third, the hybrid FPA is applied to 1D-BPP and a competi-
tive algorithm is developed.

Implementation of IHFPGA to Bin Packing Problem
The proposed algorithm has five main stages. These 

stages are FPA, discretization, fitness function, mutation, 
and elimination. A flow chart of the proposed algorithm is 
given in Figure 2.

Flower pollination algorithm
The flower pollination algorithm is an optimiza-

tion algorithm inspired by the pollen transfer in nature. 
Pollination takes place in two different forms, biotic and 
abiotic. Biotic pollination is often caused by insects, birds, 
bees, etc. supplied with pollinators. These pollinators can 
carry pollen over long distances and show Levy flight 
behavior. Water and wind are exemplary pollinators for abi-
otic pollination. Pollination is divided into two as self-pol-
lination and cross-pollination. Self-pollination occurs in 
the same flower or between different flowers of the same 
plant. Therefore, self-pollination can be considered as local 
pollination. Cross-pollination occurs between the flowers 
of two different plants. Biotic, cross-pollination can occur 
over long distances. Therefore, cross-pollination can be 
regarded as global pollination. Due to other factors such as 
physical proximity and wind, local pollination has an essen-
tial share in general pollination activities.
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FPA is designed based on the features characterized 
above. There are two critical steps in this algorithm, and 
these are global pollination and local pollination. Global 
pollination is modeled by the following equation [36,37].

  (8)

  
(9)

In the formula, t is the number of iterations, i is the 
pollen bundle or solution vector index, Xi is the solution 
vector, and g is the best of all solution vectors in the current 
generation. L is the Levy flight, the mathematical model of 
pollinators’ flight routes. Local pollination can be formu-
lated as follows.

  (10)

In the equation,  and  represent pollen bunches of 
different flowers of the same plant or different solutions of 
the solution set. ε represents a random local pollination dis-
tance and has a normal distribution between 0-1 [38]. The 
switching probability of local pollination or global pollina-
tion is controlled by p ∈ [0, 1].

Improved flower pollination algorithm
Global pollination and local pollination procedures 

have been modified to improve the performance of the 
flower pollination algorithm. New mathematical expres-
sions of the IHFPGA are given in equation 11 (global polli-
nation) and equation 12 (local pollination).

  (11)

  (12)

fw in the equations is the fit weight and is an array of n 
elements (where n is the number of elements in the solution 
set). fw is calculated using equation 13 [6].

  (13)

where fwn is the initial fitness weight (Equation 14).

  (14)

where fbest is the fitness value of the best solution. f( )  
is the fitness value of the ith solution in the tth iteration.

Objective Function
Using the container number as an objective function 

causes algorithm stagnation in the solution of BPP because Figure 2. IHFPGA flowchart.
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multiple sequences can give the same container number. 
For this reason, instead of container number using the con-
tainer occupancy rate as the objective function increases 
the efficiency of the algorithm (Equation 15).

  

(15)

Where m is the number of containers that are used, H is 
the container capacity, n is the box number of the ith con-
tainer, h is the height of the box and k is the equation con-
stant and is usually taken as 2.

Discretization
FPA is an optimization algorithm in continuous form. 

The solution vector must be converted into a discrete form 
to apply the FPA method to the BPP. In BPP, four differ-
ent ways are used to transform the solution set into a dis-
crete form. These are “the largest ranked value, (LRV)” 
[23], “the smallest position value, (SPV)” [22], “the largest 
order value, (LOV)” [21], and “the rank order value, (ROV) 
” [20]. In Table 2, an example of converting a 6-element 
continuous form array into a discrete form is given. In the 
ROV method, the smallest element of the array is assigned 
1, while the highest one is assigned 6. The ROV method 
converts the continuous form set into the nearest numbers 
when converting it into discrete form, which does not dis-
rupt the numerical sequence of the set. For this reason, the 
ROV method was preferred as the method of converting 
into discrete form.

Mutation phase
The mutation process in IHFPGA is performed when 

FPA cannot improve the result. The mutation process can 
be achieved with three different methods. These are swap, 
displacement, and reversion methods. In the swap process, 
two randomly determined bins are moved [38]. In displace-
ment, a random subarray is selected and transferred ran-
domly to another location [39]. In reversion, a randomly 
selected subarray is reversed [6]. It is decided by a random 
number in which method to use. Examples of mutation 
methods are given in Table 3.

Elimination phase
The elimination phase is added to the proposed algo-

rithm to increase efficiency. Each iteration of the algorithm 
determines the best individual of the population, which is the 
solution set. This solution set is placed in containers using the 
FF placement strategy. If the number of iterations is less than 
half of the total number of iterations, the boxes that fill up the 
containers are removed from the population. If the iteration 
number is more than half of the total number of iterations, 
containers that are as full as the theoretical minimum con-
tainer occupancy rate (TMCOR) or more are removed from 
the population. TMCOR is calculated using the theoretical 
minimum container number (TMCN) (Equation 16 and 17). 
After this elimination process, the best sequence continues to 
be searched among the remaining boxes (Figure 3).

  (16)

  (17)

Table 1. Discretization

Continuous solution 3.52 0.80 4.01 4.89 2 5.68

Discrete solution

LRV 4 6 3 2 5 1
SPV 2 5 1 3 4 6
LOV 6 4 3 1 5 2
ROV 3 1 4 5 2 6

Table 2. Mutation operators

Swap
Old 1 2 3 4 5 6
New 1 5 3 4 2 6

Displacement
Old 1 2 3 4 5 6
New 3 4 5 1 2 6

Reversion
Old 1 2 3 4 5 6
New 1 4 3 2 5 6
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Figure 3. Elimination strategy.

Table 3. Scholl easy class container numbers

Ins_no Ins_id n H m* AFDO ILWOA MSBPP IHFPGA
1 N1C1W1_A 50 100 25 - 25 25 25
2 N1C1W1_B 50 100 31 31 31 31 31
3 N1C1W1_C 50 100 20 - - 20 20
4 N1C1W1_D 50 100 28 - 28 28 28
5 N1C1W1_E 50 100 26 26 26 26 26
6 N1C1W1_F 50 100 27 - 27 27 27
7 N1C1W1_G 50 100 25 - 25 - 25
8 N1C1W1_I 50 100 25 25 25 - 25
9 N1C1W1_M 50 100 30 30 - - 30
10 N1C1W1_Q 50 100 28 28 - - 28
11 N1C1W2_D 50 100 31 31 - - 31
12 N1C2W1_P 50 120 21 21 - - 21
13 N1C2W2_R 50 120 25 25 - - 25
14 N1C3W2_A 50 150 19 19 - - 19
15 N2C1W1_A 100 100 48 - - 48 48
16 N2C1W1_B 100 100 49 49 - 49 49
17 N2C1W1_C 100 100 46 46 - - 46
18 N2C1W2_C 100 100 68 - - 68 68
19 N2C1W2_D 100 100 74 - - 74 74
20 N2C1W2_N 100 100 64 - 64 - 64
21 N2C1W2_O 100 100 64 - 64 - 64
22 N2C1W2_P 100 100 68 - 68 - 68
23 N2C1W2_R 100 100 67 - 67 - 67
24 N2C1W4_F 100 100 77 77 - - 77
25 N2C2W1_H 100 120 46 46 - - 46
26 N3C1W4_N 200 100 148 148 - - 148
27 N3C2W2_S 200 120 107 107 - - 107
28 N3C2W4_A 200 120 113 - - 113 113
29 N3C2W4_T 200 120 119 - - 119 119
30 N4C1W2_T 500 100 323 - 323 - 323
31 N4C1W4_A 500 100 368 - 368 - 368
32 N4C1W4_B 500 100 349 - 349 - 349
33 N4C1W4_C 500 100 365 - 365 - 365
34 N4C1W4_D 500 100 359 - 359 - 359
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EXPERIMENTAL RESULTS

The proposed algorithm is coded in Python. Simulations 
(experiments) are performed on a 64-bit operating sys-
tem with a 2.4 GHz CPU and 6 GB RAM. The proposed 
algorithm has been tested using the publicly available 
Scholl dataset [1] (http://or.dei.unibo.it/library/bpplib). 
The Scholl data set consists of 3 classes that include easy, 
medium, and difficult examples. The optimum container 
numbers of the Scholl dataset are known and these values 
are shown in the tables with m *. The proposed algorithm 
is compared with AFDO [33], ILWOA [6], and MSBPP 
[4] algorithms. The studies selected for comparison use 
different samples from each other and the results of some 

samples of the Scholl dataset are not available in these stud-
ies. Unavailable samples are shown with ‘-’ in the tables. 
The container number, minimum fitness value, average fit-
ness value, minimum percentage performance, and average 
percentage performance metrics are used for comparison. 
The proposed algorithm is run 10 times to be compared 
with competing algorithms and the results are recorded. 
The proposed algorithm has a population of 50 and an iter-
ation number of 50. Besides, TMCN is determined as the 
stop limit of the algorithm (Equation 16). 

In Table 3, Table 4, and Table 5, the number of contain-
ers obtained in previous studies using the Scholl dataset and 
in this study are given. In the tables, the first column shows 

Table 4. Scholl medium class container numbers

Ins_no Ins_id n H m* AFDO ILWOA MSBPP IHFPGA
1 N1W1B1R1 50 1000 18 - - 18 18
2 N1W1B1R2 50 1000 19 19 19 - 19
3 N1W1B1R5 50 1000 17 17 - 17 17
4 N1W1B1R9 50 1000 17 - 17 17 17
5 N1W1B2R0 50 1000 17 - 17 - 17
6 N1W1B2R1 50 1000 17 - 17 - 17
7 N1W1B2R3 50 1000 16 - 17 - 16
8 N1W1B2R6 50 1000 17 - - 17 17
9 N1W1B2R7 50 1000 18 18 - 18 18
10 N1W1B2R9 50 1000 18 - - 18 18
11 N1W2B2R2 50 1000 10 - - 10 10
12 N1W2B2R7 50 1000 10 - - 10 10
13 N1W2B2R9 50 1000 11 11 - - 11
14 N1W4B3R8 50 1000 6 6 - - 6
15 N2W1B1R0 100 1000 34 - 34 - 34
16 N2W1B1R1 100 1000 34 - 35 - 34
17 N2W1B1R3 100 1000 34 - 35 - 34
18 N2W1B1R4 100 1000 34 - 34 - 34
19 N2W2B1R2 100 1000 21 21 - - 21
20 N2W2B1R6 100 1000 21 - - 21 21
21 N2W2B3R9 100 1000 20 20 - - 20
22 N2W3B3R7 100 1000 13 - 13 - 13
23 N2W4B1R0 100 1000 12 - 12 - 12
24 N3W2B1R4 200 1000 40 - - 41 40
25 N3W1B3R5 200 1000 65 65 - - 65
26 N3W4B2R9 200 1000 22 22 - - 22
27 N4W2B1R0 500 1000 101 - 105 - 102
28 N4W2B1R3 500 1000 100 - 104 - 101
29 N4W3B3R2 500 1000 72 - - 72 72
30 N4W3B3R7 500 1000 74 - 74 - 74
31 N4W4B1R0 500 1000 56 - 57 - 56
32 N4W4B1R1 500 1000 56 - 57 - 56
33 N4W4B2R7 500 1000 57 57 - - 57

http://or.dei.unibo.it/library/bpplib
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the sample number, the second column shows the name of 
the sample, the third column shows the number of boxes in 
the sample, the third column shows the container capacity, 
the fifth column shows the best-known container numbers, 
the sixth, seventh and eighth columns show the container 
numbers of the rival algorithms and the last column shows 
the container numbers obtained by the proposed algorithm. 

Table 3 shows the easy class of the Scholl dataset. In this 
table, it is seen that the proposed algorithm in all exam-
ples achieves the best container numbers similar to other 
algorithms.

Table 4 examines the medium class of the Scholl data-
set. The proposed algorithm has achieved equal or bet-
ter results than competing algorithms in all samples. The 
proposed algorithm has achieved better results than the 
ILWOA algorithm in examples 7, 16, 17, 27, 28, 31, and 32. 
Also, the proposed algorithm gave a better result than the 
MSBPP algorithm in example 24. The proposed algorithm 
achieved the best-known results in 31 of 33 samples. In 2 

samples (27, 28) it approached the best-known results with 
a difference of 1 box.

Table 5 shows the hard class of the Scholl dataset. The 
proposed algorithm gave equal or better results than com-
peting algorithms in all examples. The best-known results 
are obtained in samples 1, 2, 5, 6, 7, 9, and 10. In examples 
3 and 4, the best-known results are approached with a dif-
ference of 1 box, and in example number 8, it is approached 
with 2 boxes.

Table 6 shows the minimum fitness values (Equation 
15) and average fitness values (Equation 18) obtained from 
previous studies and this study for three classes of the Scholl 
dataset. Since minimum fitness values and average fitness 
values are not given in the study using the ILWOA algo-
rithm, they are not included in table 6. The sample number 
is given in the first column of Table 6 and the sample name 
is given in the second column. In the third, fifth, and sev-
enth columns, the minimum fitness values obtained from 
the studies are given, average fitness values are given in the 
fourth, sixth, and eighth columns.

Table 5. Scholl hard class container numbers

Ins_no Ins_id n H m* AFDO ILWOA MSBPP IHFPGA
1 HARD0 200 100000 56 59 58 - 56
2 HARD1 200 100000 57 - 59 60 57
3 HARD2 200 100000 56 - 59 - 57
4 HARD3 200 100000 55 59 58 59 56
5 HARD4 200 100000 57 60 59 - 57
6 HARD5 200 100000 56 60 58 - 56
7 HARD6 200 100000 57 - 59 - 57
8 HARD7 200 100000 55 58 57 - 57
9 HARD8 200 100000 57 - 59 - 57
10 HARD9 200 100000 56 - 59 59 56

Table 6. Scholl dataset fitness value

Scholl Easy Class

ins_no ins_id AFDO MSBPP IHFPGA

Min. Avg. Min. Avg. Min. Avg.
1 N1C1W1_A - - 0.12 0.128 0.0498 0.0502
2 N1C1W1_B 0.1980 0.2050 0.2 0.204 0.1724 0.1743
3 N1C1W1_C - - 0.12 0.131 0.0157 0.0319
4 N1C1W1_D - - 0.19 0.195 0.1586 0.1608
5 N1C1W1_E 0.1750 0.1759 0.1 0.157 0.1110 0.1115
6 N1C1W1_F - - 0.12 0.163 0.1004 0.1037
7 N1C1W1_I 0.1420 0.1662 - - 0.1013 0.1046
8 N1C1W1_M 0.1890 0.1920 - - 0.1622 0.1636
9 N1C1W1_Q 0.1740 0.1992 - - 0.1408 0.1430
10 N1C1W2_D 0.2030 0.2095 - - 0.1507 0.1519
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11 N1C2W1_P 0.1480 0.1829 - - 0.0666 0.0676
12 N1C2W2_R 0.1600 0.1767 - - 0.0563 0.0593
13 N1C3W2_A 0.1040 0.1413 - - 0.0538 0.0548
14 N2C1W1_A - - 0.1 0.108 0.0455 0.0485
15 N2C1W1_B 0.1020 0.1187 0.1 0.107 0.0606 0.0635
16 N2C1W1_C 0.1580 0.1811 - - 0.0354 0.0359
17 N2C1W2_C - - 0.24 0.253 0.2247 0.2267
18 N2C1W2_D - - 0.17 0.226 0.2116 0.2126
19 N2C1W4_F 0.2730 0.2811 - - 0.2537 0.2542
20 N2C2W1_H 0.1450 0.1524 - - 0.0990 0.1013
21 N3C1W4_N 0.2520 0.2576 - - 0.2411 0.2414
22 N3C2W2_S 0.1410 0.1491 - - 0.0898 0.0907
23 N3C2W4_A - - 0.17 0.177 0.1149 0.1157
24 N3C2W4_T - - 0.19 0.204 0.1448 0.1458

Scholl Medium Class

ins_no ins_id AFDO MSBPP IHFPGA

Min. Avg. Min. Avg. Min. Avg.
25 N1W1B1R1 - - 0.17 0,218 0.1038 0.1222
26 N1W1B1R2 0.211 0.2297 - - 0.1683 0.2061
27 N1W1B1R5 0.111 0.1484 0.03 0.088 0.0548 0.0569
28 N1W1B1R9 - - 0.09 0.125 0.0605 0.0610
29 N1W1B2R6 - - 0.13 0.149 0.0832 0.0840
30 N1W1B2R7 0.108 0.1229 0.13 0.14 0.0809 0.0819
31 N1W1B2R9 - - 0.12 0.159 0.0711 0.0982
32 N1W2B2R2 - - 0.12 0.124 0.1182 0.1272
33 N1W2B2R7 - - 0.13 0.134 0.0464 0.0469
34 N1W2B2R9 0.113 0.118 - - 0.1128 0.1261
35 N1W4B3R8 0.06 0.0602 - - 0.0605 0.0615
36 N2W2B1R2 0.11 0.1222 - - 0.0682 0.0684
37 N2W2B1R6 - - 0.11 0.12 0.0706 0.0714
38 N2W2B3R9 0.076 0.075 - - 0.0295 0.0298
39 N3WIB3R5 0.073 0.059 - - 0.0244 0.0279
40 N3W2B1R4 0.11 0.109 0.0204 0.0205
41 N3W4B2R9 0.059 0.0624 - - 0.0592 0.0634
42 N4W3B3R2 - - 0.03 0.029 0.0156 0.0161
43 N4W4B2R7 0.048 0.0482 - - 0.0296 0.0306

Scholl Hard Class

ins_no ins_id AFDO MSBPP IHFPGA

Min. Avg. Min. Avg. Min. Avg.
44 HARD0 0.171 0.1761 - - 0.0522 0.0533
45 HARD1 - - 0.17 0.179 0.0518 0.0529
46 HARD3 0.171 0.1732 0.17 0.175 0.0517 0.0527
47 HARD4 0.181 0.1814 - - 0.0501 0.0748
48 HARD5 0.174 0.1816 - - 0.0405 0.0628
49 HARD7 0.158 0.1655 - - 0.0960 0.0990
50 HARD9 - - 0.17 0.175 0.0341 0.0555
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(18)

where fi is the minimum fitness value obtained in the ith 
run of the proposed algorithm.

When Table 6 is examined, the proposed algorithm 
achieved better results than its competitors in 44 of 50 sam-
ples in terms of minimum fitness value metric. In 6 samples 
(5, 18, 27, 32, 35, 41), competing algorithms achieved bet-
ter results. In the average fitness value metric, the proposed 
algorithm achieved better results in 46 of 50 samples than 

its competitors. Competitive studies obtained better results 
in 4 samples (32, 34, 35, 41).

The fact that the studies selected for comparison use 
different samples of the dataset makes it difficult to com-
pare the information given in Table 6. Therefore, the pro-
posed algorithm has been compared separately with each 
competing algorithm in Figure 4, Figure 5, Figure 6, Figure 
7, Figure 8, Figure 9. Minimum and average fitness values 
are given in Figure 4 and Figure 5 for the easy class of the 
Scholl dataset, in Figure 6 and Figure 7 for the middle class, 
and in Figure 8 and Figure 9 for the hard class.

a)

b)

Figure 4. Scholl easy class minimum fitness value a) AFDO - IHFPGA b) MSBPP - IHFPGA.
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Other metrics used to compare the proposed algorithm 

with previous studies are minimum percentage perfor-

mance (Equation 19) and average percentage performance 

(Equation 20). The minimum fitness value and the average 

fitness value are used in the calculation of these metrics.

  
(19)

  
(20)

where, Min.fAFDO,MSBPP,IHFPGA is the minimum fitness 
value and Avg.fAFDO,MSBPP,IHFPGA is the average fitness value 
of algorithms. This comparison shows the performance of 
the proposed algorithm against its competitors as a per-
centage. Percentage performance values are given in Figure 

a)

b)
Figure 5. Scholl easy class average fitness value a) AFDO - IHFPGA b) MSBPP - IHFPGA.
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10 for the easy class of the Scholl dataset, in Figure 11 for 
the medium class, and in Figure 12 for the hard class.

In Figure 10a, the proposed algorithm is compared with 
the AFDO algorithm. The proposed algorithm performed 
better than the AFDO algorithm in all examples in the 
minimum percentage performance and average percentage 
performance metric. In Figure 10b, the proposed algorithm 
is compared with the MSBPP algorithm. The proposed 
algorithm performed better in 10 out of 12 samples in the 

minimum percentage performance metric, while MSBPP 
achieved better results in 2 samples (instance 5, 18). In the 
average percentage performance metric, the proposed algo-
rithm performed better than the MSBPP algorithm in all 
samples.

In Figure 11a, the proposed algorithm is compared 
with the AFDO algorithm for medium-class samples. 
While the proposed algorithm performed better in 8 out 
of 10 samples in the minimum percentage performance 

a)

b)
Figure 6. Scholl medium-class minimum fitness value a) AFDO - IHFPGA b) MSBPP - IHFPGA.
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metric, the AFDO algorithm achieved better results in 2 
samples (instance 35,41). In the average percentage per-
formance metric, the proposed algorithm performed 
better in 7 out of 10 samples, while the AFDO algorithm 
achieved better results in 3 samples (instance 34, 35, 41). 
In Figure 11b, the proposed algorithm is compared with 
the MSBPP algorithm. While the proposed algorithm 
performed better in 9 out of 11 samples in the minimum 
percentage performance metric, the MSBPP algorithm 
achieved better results in 2 samples (instance 27, 32). In 

the average performance metric, the proposed algorithm 
performed better in 10 of 11 samples, while the MSBPP 
algorithm achieved better results in 1 sample (instance 
32).

In Figure 12a, the proposed algorithm is compared 
with the AFDO algorithm for hard class examples. The 
proposed algorithm gave better results than the AFDO 
algorithm in all samples in the minimum percentage per-
formance and average percentage performance metric. In 
Figure 12b, the proposed algorithm is compared with the 

a)

b)
Figure 7. Scholl medium-class average fitness value a) AFDO - IHFPGA b) MSBPP - IHFPGA
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MSBPP algorithm. The proposed algorithm gave better 
results than the MSBPP algorithm in all samples in the 
minimum percent performance and average percent per-
formance metric.

CONCLUSION

In this paper, the proposed IHFPGA algorithm is com-
pared with the AFDO, MSBPP, and ILWOA algorithms for 

the 1DBPP problem. For comparison, metrics including 
container number, minimum fitness value, average fit-
ness value, minimum percentage performance, and aver-
age percentage performance values are used. In terms of 
the container number metric, the proposed algorithm 
has achieved equal or better results than competing algo-
rithms in all tests. The proposed algorithm obtained the 
best-known results in 72 of 77 samples (93.5%) used for 
comparison. In the minimum fitness metric, the proposed 

a)

b)
Figure 8. Scholl hard-class minimum fitness value a) AFDO - IHFPGA b) MSBPP - IHFPGA.
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algorithm achieved more successful results than its com-
petitors in 44 of the 50 samples (88%). In the average fit-
ness metric, it achieved better results than its competitors 
in 46 of the 50 samples (92%). In the minimum percentage 
performance metric, it is compared with the AFDO algo-
rithm in 30 samples, and it is more successful in 93.3% of 
the samples. In general, the proposed algorithm showed 
an average of 37.6% better performance than the AFDO 
algorithm. In the comparison made with the MSBPP 

algorithm, 26 samples are used and the proposed algo-
rithm is more successful in 84.6% of them. In general, 
the proposed algorithm outperformed the MSBPP algo-
rithm by an average of 32.7%. In the average percentage 
performance metric, the proposed algorithm is compared 
with the AFDO algorithm in 30 samples and is more suc-
cessful in 90% of the samples. In general, the proposed 
algorithm outperformed the AFDO algorithm by an aver-
age of 38.6%. In the comparison made with the MSBPP 

a)

b)
Figure 9. Scholl hard-class average fitness value a) AFDO - IHFPGA b) MSBPP - IHFPGA.
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algorithm, 26 samples are used and the proposed algo-
rithm is more successful in 96.1% of the samples. In gen-
eral, the proposed algorithm outperformed the MSBPP 
algorithm on average 42.3%.

These data reveal the superiority of the proposed algo-
rithm over the competing ones. Thanks to the elimina-
tion phase, the proposed algorithm achieves better results 

on average fitness and average percentage performance 
parameters. This strategy ensures that candidate solutions 
are close to each other. Besides, the results of the algo-
rithm are reproducible. The proposed algorithm will be 
compared with more algorithms in the future. It will also 
be applied to two-dimensional and three-dimensional 
BBP.

a)

b)
Figure 10. Performance percentage of IHFPGA in terms of the fitness value (Scholl easy class) a) AFDO/IHFPGA b) 
MSBPP/IHFPGA.
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