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ABSTRACT

In this paper, we introduce the notions of soft quasi-ideal, soft minimal quasi-ideal, soft left 
(resp. right) N- subgroup and soft invariant subnear-ring of a soft near-ring with the help of 
soft set theory established by Molodtsov. We also introduce the concepts of soft zero-sym-
metric near-ring, soft constant near- ring, soft near-field and soft Q- simple near-ring over a 
near-ring. We investigate the properties of these notions with illustrative examples. We obtain 
the characterizations of soft quasi-ideals of a soft (zero-symmetric) near-ring and soft near-
fields over a near-ring.
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INTRODUCTION

In 1965, Zadeh [1] initiated the notion of fuzzy set as an 
extension of the traditional crisp set. The theory of fuzzy 
sets is the most convenient approach to deal with uncer-
tainties. Many notions of mathematics are extended to fuzzy 
sets and various properties of these notions in the context 
of fuzzy sets are established. Recently, Riaz et al. applied the 
fuzzy set theory in different disciplines such as linear dio-
phantine fuzzy set [2], bipolar picture fuzzy operators [3], 
spherical linear diophantine fuzzy set [4] and linear dio-
phantine fuzzy relations [5] in decision making theory, and 
Cubic M -polar fuzzy hybrid aggregation operator [6].

Many problems in different disciplines such as eco-
nomics, social science, environmental science, engineering, 
artificial intelligence, medical science and some other fields 
are usually not precise. There are various types of uncer-
tainties involved in the data. To describe the uncertain-
ties, mathematical theories such as theory of probability, 
theory of fuzzy sets [1], theory of intuitionistic fuzzy sets 
[7], theory of rough sets [8] and many other theories were 
established by researchers. But each of these notions has its 
intrinsic problems. To overcome these kinds of difficulties, 
Molodtsov [9] initiated the innovative concept of soft set as 
a new mathematical theory for dealing with uncertainties. 
Soft set theory has numerous applications in different fields 
such as decision making [10, 11], topological structures 
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[12], fractional calculus [13], coding theory [14], medical 
system [15, 16], prediction [17], investment[18], and so on. 
In theoretical view, many authors defined and studied sev-
eral kinds of operations of soft sets and soft binary opera-
tions on soft sets such as Maji et al. [19], Ali et al. [20] and 
Sezgin and Atagün [21].

Algebraic structures play a prominent role in mathe-
matics with wide ranging applications in many disciplines 
such as theoretical physics, computer sciences, control 
engineering, information sciences, coding theory, topo-
logical spaces and the like. Recent times, soft set theory 
attained much attention of the researchers since its appear-
ance and start studying soft algebraic structures. In [22], 
Aktaş and Çağman defined the notions of soft groups and 
derived some of its basic properties. Since then, the study 
of soft set algebraic structures has been pursued in many 
directions. Sezgin and Atagün [23] introduced the concepts 
of normalistic soft group and normalistic soft group homo-
morphism, and studied their related properties. Feng et al. 
[24] introduced the notions of soft semirings and soft ideals 
on semiring. Acar et al. [25] introduced the initial concepts 
of soft rings. Onar et al. studied the notion of vague soft 
module in [26].

Atagün [27] and Sezgin introduced and studied the 
notions of soft subrings, soft ideals of a ring and soft sub-
fields over a field. They studied the notions of maximal and 
principal soft ideals of soft rings in [28]. Abdullah

[29] applied soft intersection sets in Γ-near-rings. In 
[30-32], Sezgin et al. introduced the concepts of soft near- 
ring, soft subnear-ring, soft (left, right) ideals, (left, right) 
idealistic soft near-ring, soft ideal, soft N-subgroup and 
idealistic soft near-ring with related examples.

Ideal theory plays an important role in advanced stud-
ies of algebraic structures. Many mathematicians proved 
important results and characterizations of different alge-
braic structures by using the concepts of ideals. For exam-
ple, Narayanan introduced the notion of fuzzy quasi-ideals 
of near-rings [33], Manikantan [34] proposed the con-
cepts of fuzzy bi-ideals of near-rings, Abdullah et al. [35] 
defined bi-Γ-hyperideals of Γ-hypersemigroups, Ersoy et 
al. [36] studied the structure of idealistic fuzzy soft Γ-near-
rings, Tang et al. [37] studied the concepts of fuzzy inte-
rior Γ- hyperideals in ordered Γ-hypersemigroups and Hila 
et al. [38] introduced the notions of bi-Γ-hyperideals in 
quasi-Γ- hypersemigroups.

Generalization of ideals in algebraic structures is nec-
essary for further study of algebraic structures. The quasi- 
ideals are generalization of left ideal and right ideal. In [39, 
40, 41], Yakabe introduced the notions of quasi-ideal and 
minimal quasi-ideal in a near-ring and characterize these 
near-rings which are near-fields in terms of quasi-ideals. 
Motivated by the above theories, in this paper, we apply the 
theory of soft sets to quasi-ideals of near-rings.

The first objective of this paper is to introduce and 
study the concepts of soft quasi-ideal, soft left (resp. right) 
N-subgroup and soft invariant subnear-ring of a soft 

near-ring. The second objective is to introduce the notions 
of soft zero-symmetric near-ring and soft constant near-
ring over a near-ring, and investigate the properties of these 
notions with illustrative examples. The third objective is 
to introduce and study the concepts of soft minimal qua-
si-ideal of a soft near-ring, soft near-field and soft Q-simple 
near-ring over a near-ring.

This paper is composed in the following order: Section 
2 contains some basic definitions which are used in the 
subsequent sections. In section 3, we introduce the notions 
of soft quasi-ideal of a soft near-ring and soft quasi- ideal 
over a near- ring. We also introduce the notions of soft left 
(resp. right) N-subgroup and soft invariant subnear- ring of 
a soft near-ring. In section 4, we introduce the notions of 
soft zero-symmetric near-ring and soft constant near- ring 
over a near-ring. We obtain the characterization of soft qua-
si-ideal of a soft (zero-symmetric) near-ring and discuss 
some of its properties. In section 5, we define the notions 
of soft near-field over a near-ring, soft Q-simple near-ring 
over a near-ring and soft minimal quasi-ideal of a soft near-
ring. We discuss the characterization of soft near-rings 
which are soft near-fields. Finally, in section 6, we present 
the conclusion of this research paper.

PRELIMINARIES

A near-ring [42] is an algebraic structure (N, +,·) such 
that (N, +) is a group (not necessarily an abelian) with zero 
element 0, (N, ·) is a semigroup and the right distributive 
holds: (u + v) · n = u · n + v · n for all u, v, n ∈ N. In other 
words, it is a right near-ring. We will use the word “near-
ring” to mean “right near-ring”. Throughout this article, N 
stands for near-ring. We write uv for u · v. Note that 0u = 0 
for all u ∈ N, while it may exists u ∈ N such that u0 ≠ 0. The 
set N0 = {n ∈ N/n0 = 0} is called the zero-symmetric part 
of N; Nc = {n ∈ N/n0 = n} is called the constant part of N. 
N is called zero-symmetric near-ring if N = N0; N is called 
constant near-ring if N = Nc. An element d of N is called 
distributive if d(n + n′) = dn + dn′ ∀ n, n′ ∈ N. Nd stands for 
the set of all distributive elements of N. If A and B are two 
non-empty subsets of N, then A ∗ B = {𝑎(𝑎′ + 𝑏) − 𝑎𝑎′/𝑎, 
𝑎′ ∈ A, 𝑏 ∈ B}.

A subgroup M of (N, +) with MM ⊆ M (resp. NM ⊆ M, 
MN ⊆ M) is called a subnear-ring (resp. left N- subgroup, 
right N-subgroup) of N. A subnear-ring M of N with MN 
⊆ M and NM ⊆ M is called an invariant subnear- ring of 
N [42]. A normal subgroup G of (N, +) is called an ideal of 
N, if it satisfies:(i) GN ⊆ G and (ii) N ∗ G ⊆ G. A normal 
subgroup G of (N, +) with (i) is called a right ideal of N and 
with (ii) is called a left ideal of N [42]. A subgroup M of (N, 
+) is called a quasi-ideal, denoted by M ⊲q N, of N if MN 
∩ NM ∩ N ∗ M ⊆ M. In case of zero-symmetric near-ring 
a subgroup M of (N, +) is called a quasi-ideal of N if MN 
∩ NM ⊆ M [39]. Clearly {0} and N are quasi-ideals of N. 
If N has no quasi-ideals except {0} and N, we say that N is 
Q-simple [39].
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A non-zero quasi-ideal M of a near-ring N is named as 
minimal quasi-ideal (MQI, for short) if M does not prop-
erly contain any non-zero quasi-ideal of N. A near-ring N 
is called a near-field if it has at least two elements and its 
non-zero elements form a group with respect to the multi-
plication defined in N [40].

In what follows U is a basic universal set and E is a set of 
parameters, P(U) is the power set of U and A ⊆ E.

Definition 2.1. [9] A pair (H̃, A) is called a soft set 
(briefly, SS) over U, where H̃ is a mapping given by H̃ ∶ A 
→ P(U ).

In othe words, a SS over U is a parameterized family of 
subsets of the universe U. For e ∈ A, H̃(e) may be consid-
ered as the set of e-approximate elements of the SS (H̃, A).

Definition 2.2. [19] Let (H̃1, A1) and (H̃2, A2) be SSs 
over U. Then (H̃2, A2) is called a soft subset of (H̃1, A1) if A2 
⊆ A1 and H̃2(ρ) ⊆ H̃1(ρ) for all ρ ∈ A2.

Definition 2.3. [24] For a SS (H̃, A) over U, the set 
Supp(H̃, A) = {ρ ∈ A/H̃(ρ) ≠ ∅} is called a support of

(H̃, A). If Supp(H̃, A) ≠ ∅, then the SS (H̃, A) is called 
non-null.

Definition 2.4. [43] The SS (H̃, A) over U is called a rel-
ative whole SS (with respect to A) if H̃(ρ) = U for all ρ ∈ A. 
The relative whole SS with respect to E is called the absolute 
SS over U and is denoted by Au.

Definition 2.5. [20] Let (H̃1, A1) and (H̃2, A2) be SSs 
over U. Then,
(i) the restricted intersection of these SSs, denoted by (H̃1, 

A1) ∩̃  R (H̃2, A2), is defined as (H̃1, A1) ∩̃ R (H̃2, A2) = (H̃, 
A), where A = A1 ∩ A2 ≠ ∅ and H̃(ρ) = H̃1(ρ) ∩ H̃2(ρ) for 
all 𝜌 ∈ 𝐴.

(ii) the extended intersection of these SSs, denoted by (H̃1, 
A1) ∩̃ E (H̃2, A2), is defined as (H̃1, A1) ∩̃ E (H̃2, A2), where 
A = A1 ∪ A2 and for all ρ ∈ A,

Definition 2.6. [21] Let (H̃i, Ai)i∈Ω ≠ ∅ be a family of 
SSs over U. The restricted intersection of these SSs, denoted 
by (∩̃ R)i∈Ω(H̃i, Ai), is defined to be the SS (H̃, A) such that A 
= ∩i∈Ω Ai ≠ ∅ and H̃(ρ) = ∩i∈Ω H̃i(ρ) for all ρ ∈ A.

Definition 2.7. [44] Let ((H̃1, A1) and (H̃2, A2) be SSs 
over U. The sum of (H̃1, A1) and (H̃2, A2) is denoted by (H̃1, 
A1)+̃(H̃2, A2), and is defined as the SS (H̃, A), where A = A1 
∩ A2 ≠ ∅ and H̃(ρ) = H̃1(ρ) + H̃2(ρ) for all ρ ∈ A and H̃1(ρ) 
+ H̃2(ρ) = {x1 + x2/x1 ∈ H̃1(ρ), x2 ∈ H̃2(ρ)} .

Definition 2.8. [44] Let (H̃1, A1) and (H̃2, A2) be SSs 
over U. The product of (H̃1, A1) and (H̃2, A2) is denoted by 
(H̃1, A1) ∘̃ (H̃2, A2), and is defined as the SS (H̃, A), where 
A = A1 ∩ A2 ≠ ∅ and H̃(ρ) = H̃1(ρ) H̃2(ρ) for all ρ ∈ A and 
H̃1(ρ) H̃2(ρ) = {x1 x2/x1 ∈ H̃1(ρ), x2 ∈ H̃2(ρ)} .

In a same manner, we define the product of an element 
x ∈ N with the SS (H̃1, A1) as the SSs x ∘̃ (H̃1, A1) ={x H̃1(ρ)/ρ 
∈ A1} and (H̃1, A1) ∘̃ x = {H̃1(ρ) x/ρ ∈ A1}.

From now on, let P be a nonempty subset of E and R be 
an arbitrary binary relation between an element of P and an 
element of N, that is R is a subset of P × N . A set-valued 
function H̃ ∶ P → P(N ) can be defined as H̃(𝜌 ) = {𝜎 ∈ 𝑁/(𝜌 , 
𝜎 ) ∈ R } for all ρ ∈ P. Then the pair (H̃, P) is a SS over N, 
which is obtained from the relation R.

Definition 2.9. [22] Let (H̃, P) be a non-null SS over a 
group G. Then (H̃, P) is called a soft group (briefly, SG) over 
G if and only if H̃(ρ) is a subgroup of G for all ρ ∈ P.

Definition 2.10. [22] Let (H̃1, P1) and (H̃2, P2) be SGs 
over a group G. Then the SG (H̃2, P2) is called a soft sub-
group (briefly, SSG) of (H̃1, P1) if P2 ⊆ P1 and H̃2(ρ) is a sub-
group of H̃1(ρ) for all ρ ∈ P.

Definition 2.11. [32] Let (H̃, P) be a non-null SS over N. 
Then (H̃, P) is called a soft near-ring (SN, for short) over N 
if H̃(ρ) is a subnear-ring of N for all ρ ∈ P.

Definition 2.12. [32] Let (H̃1, P1) and (H̃2, P2) be SNs 
over a group N. Then the SN (H̃2, P2) is called a soft sub-
near- ring (briefly, SSN) of (H̃1, P1) if P2 ⊆ P1 and H̃2(ρ) is a 
subnear-ring of H̃1(ρ) for all ρ ∈ P2.

Definition 2.13. [32] Let (H̃, P) be a SN over N. A non-
null SS (K̃, I) over N is called a soft left ideal (briefly, SLI) 
(resp. soft right ideal (SRI, in short)) of (H̃, P) if I ⊆ P and 
K̃(ρ) is a left (resp. right) ideal of H̃(ρ) for all ρ ∈ I.

If (K̃, I) is both SLI and SRI of (H̃, P), then it is said that 
(K̃, I) is a soft ideal (briefly, SI) of (H̃, P).

SOFT QUASI-IDEALS OF SOFT NEAR-RINGS

In this section, we introduce the notion of ∗̃-product of 
two soft sets of a near-ring which is used to study the soft 
ideal structures of soft near-rings. We introduce the notions 
of soft quasi-ideal of a soft near-ring and soft quasi- ideal 
over a near-ring. We also introduce the notions of soft left 
(resp. right) N-subgroup and soft invariant subnear- ring of 
a soft near-ring. We discuss the properties of these notions 
with illustrative examples. We prove that the restricted 
intersection of a soft quasi-ideal and a soft subnear-ring of a 
soft near- ring is a soft quasi-ideal of the soft subnear-ring.

Definition 3.1. Let (H̃1, P1) and (H̃2, P2) be SSs over U. 
The ∗̃− 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 of (H̃1, P1) and (H̃2, P2) is denoted by (H̃1, 
P1) ∗̃ (H̃2, P2), and is defined as the SS (H̃, P), where P = P1 
∩ P2 ≠ ∅ and H̃(ρ) = H̃1(ρ) ∗ H̃2(ρ) for all ρ ∈ P and H̃1(ρ) ∗ 
H̃2(ρ) = {n1(n2 + n3) − n1n2/n1 ,n2 ∈ H̃1(ρ), n3 ∈ H̃2(ρ)} .

Example 3.2. Consider a near-ring N = {0, 1, 2, 3} with 
the operations Table 1 and Table 2 (Scheme 20: (7,8,2,1) see 
[42], p.408).

Table 1. Addition table of near-ring N in Example 3.2

+ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0
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Let A = N and (H̃, A) be a SS over N, where H̃: A → P(N) 
is a set-valued function defined by H̃(ρ) = {σ ∈ N/ρRσ ⇔ ρσ 
∈ {0, 1, 2}} for all ρ ∈ A. Then, H̃(0) = H̃(1) = N, H̃(2) = {0, 
1, 2} and H̃(3) = {0, 1, 3}. Let (G̃, B) be the SS over N defined 
by G̃(ρ) = {0} ∪ {σ ∈ N/ρRσ ⇔ ρ + σ = 0}, where B = {1, 2, 
3}. Then, G̃(1) = {0, 1}, G̃(2) = {0, 2} and G̃(3) = {0, 3}. It is 
easy to verify that (H̃, A) ∗̃ (G̃, B) is a SS over N, where A ∩ 
B = {1, 2, 3} ≠ ∅ and H̃(1) ∗ G̃(1) = {0, 1}, H̃(2) ∗ G̃(2) = {0, 
2} and H̃(3) ∗ G̃(3) = {0, 3}.

Definition 3.3. Let (H̃, P) be a SN over N. A non-null SS 
(K̃, Q) over N is called a soft quasi-ideal (briefly, SQI) of (H̃, 
P), denoted by (K̃, Q) ⊲̃q (H̃, P), if Q ⊆ P and K̃(ρ) ⊲q H̃(ρ) 
for all ρ ∈ Supp(K̃, Q).

Theorem 3.4. Let (H̃, P) be a SN over N. Then, a SSG (K̃, 
Q) of (H̃, P) is a SQI of (H̃, P) if and only if ((K̃, Q) ∘̃ (H̃, P)) 
∩̃ R ((H̃, P) ∘̃ (K̃, Q)) ∩̃ R ((H̃, P) ∗̃ (K̃, Q)) ⊆ (K̃, Q).

Proof. (K̃, Q) is a SQI of (H̃, P)
⇔ Q ⊆ P and each K̃(ρ) ⊲q H̃(ρ) for all ρ ∈ Supp(K̃, Q), 

as P ∩ Q = Q ≠ ∅
⇔ Q ⊆ P and K̃(ρ) H̃(ρ) ∩ H̃(ρ)K̃(ρ) ∩ H̃(ρ) ∗ K̃(ρ) ⊆ 

K̃(ρ) for all ρ ∈ Supp(K̃, Q)
⇔ ((K̃, Q) ∘̃ (H̃, P)) ∩̃ R ((H̃, P) ∘̃ (K̃, Q)) ∩̃ R ((H̃, P) ∗̃ (K̃, 

Q)) ⊆ (K̃, Q).
Definition 3.5. A non-null SS (K̃, Q) over N is called a 

soft quasi-ideal over N, denoted by (K̃, Q) ⊲q̃ N, if K̃(ρ) ⊲q 
N for all ρ ∈ Supp(K̃, Q).

Theorem 3.6. Let N be a near-ring. Then, a SSG (K̃, Q) 
over N is a SQI over N if and only if ((K̃, Q) ∘̃ Ã N) ∩̃ R (Ã N ∘̃ 
(K̃, Q)) ∩̃ R (Ã N ∗̃ (K̃, Q)) ⊆ (K̃, Q).

Proof. (K̃, Q) is a SQI over N
⇔ each K̃(ρ) ⊲q N for all ρ ∈ Supp(K̃, Q), as N ∩ Q = 

Q ≠ ∅
⇔ K̃(ρ)N ∩ NK̃(ρ) ∩ N ∗ K̃(ρ) ⊆ K̃(ρ) for all ρ ∈ Supp(K̃, 

Q)
⇔ ((K̃, Q) ∘̃ Ã N) ∩̃ R (Ã N ∘̃ (K̃, Q)) ∩̃ R (Ã N ∗̃ (K̃, Q)) ⊆ 

(K̃, Q).
Example 3.7. Consider a near-ring N over the Dihedral 

group D8 = {0, 1, 2, 3, 4, 5, 6, 7} with the operations Table 
3 and Table 4 (Scheme 76:(15,1,35,5,15,1,35,5) see [42], p. 
415).

Let P = N and (H̃, P ) be a SS over N, where H̃: P → P(N) 
is given by H̃(ρ) = {σ ∈ N/ρRσ ⇔ ρσ ∈ {0, 2, 4, 6}} for all ρ 
∈ P. Then, H̃(0) = H̃(2) = H̃(4) = H̃(6) = N and H̃(1) = H̃(3) 
= H̃(5) = H̃(7) = {0, 2, 4, 6} which are all subnear-rings of N. 
Hence, (H̃, P ) is a SN over N.

Let (K̃, Q) be a SS defined by K̃(ρ) = {σ ∈ N/ρRσ ⇔ ρσ 
∈ {0, 4}}, where Q = {1, 2, 3}. Then, K̃(1) = {0, 4}, K̃(2) = 
{0, 2, 4, 6} and K̃(3) = {0, 4} are QIs of H̃(1), H̃(2) and H̃(3), 
respectively. So, K̃(ρ) ⊲q H̃(ρ) for all ρ ∈ Supp(K̃, Q). Hence, 
(K̃, Q) ⊲q̃ (H̃, P ) over N.

Example 3.8. Consider a near-ring N = M2(Z), where 
M2(Z) is the set of 2 × 2 matrices with integer terms, with 
addition and multiplication operations of matrices.

Let P = Z and Q = 3Z. Let (H̃, P) be SS over N, 
where H̃∶ P → P(N ) is a set-valued function defined by 

 for all x ∈ P. Then, (H̃, P) is a SN over 
N. Let (K̃, Q) be SS over N, given by 

. Since n1, n2 ∈ Z, we have n1 − n2 ∈ Z and so 

. 
Therefore, K̃(x) is a subgroup of H̃(x) for all x ∈ Supp(K̃, Q). 
Hence, (K̃, Q) is a SSG of (H̃, P). Now for each x ∈ Supp(K̃, 
Q), let  ∈ H̃(x) and  ∈ K̃(x), 
where n, n', m, m' ∈ Z.

Since  

,   and 

, 

Table 4. Multiplication table of near-ring N in Example 3.7

· 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 4 1 6 3 4 1 6 3
2 0 2 0 2 0 2 0 2
3 4 3 6 1 4 3 6 1
4 4 4 4 4 4 4 4 4
5 0 5 2 7 0 5 2 7
6 4 6 4 6 4 6 4 6
7 0 7 2 5 0 7 2 5

Table 3. Addition table of near-ring N in Example 3.7

+ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 2 3 0 5 6 7 4
2 2 3 0 1 6 7 4 5
3 3 0 1 2 7 4 5 6
4 4 7 6 5 0 3 2 1
5 5 4 7 6 1 0 3 2
6 6 5 4 7 2 1 0 3
7 7 6 5 4 3 2 1 0

Table 2. Multiplication table of near-ring N in Example 3.2

. 0 1 2 3
0 0 0 0 0
1 1 1 1 1
2 0 1 2 3
3 1 0 3 2
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we have, K̃(x)H̃(x) ∩ H̃(x)K̃(x) ∩ H̃(x) ∗ K̃(x) = ∅ ⊆ K̃(x), 
when m ≠ 0, m′ ≠ 0 and K̃(x)H̃(x) ∩ H̃(x)K̃(x) ∩ H̃(x) ∗ K̃(x) 
⊆ K̃(x), when m = 0, m′ = 0 for all x ∈ Supp(K̃, Q). Hence, 
(K̃, Q) ⊲̃q (H̃, P) over N.

Remark 3.9. The SQI of a SN as in Definition 3.3 is dif-
ferent from the SQI over a near-ring N as in Definition 3.5. 
The next example explain this situation.

Example 3.10. Consider a near-ring N over the Dihedral 
group D8 = {0, 1, 2, 3, 4, 5, 6, 7} with the operations Table 5 
and Table 6 (Scheme 132: (15,35,15,35,15,1,15,1) see [42], 
p. 415).

Let (H̃, P) be a SS over N, where P = N and H̃ is defined 
as H̃(0) = H̃(2) = H̃(4) = N, H̃(1) = H̃(3) = H̃(6) = {0, 2, 4, 6} 
and H̃(5) = H̃(7) = {0, 2, 5, 7}. Then (H̃, P ) is a SN over N.

Let (K̃, Q ) be a SS defined by K̃(ρ) = {0} ∪ {σ ∈ N/ρRσ 
⇔ ρ + σ = 0}, where Q = {5, 6, 7}. Then, K̃(5) = {0, 5}, K̃(6) 
= {0, 6} and K̃(7) = {0, 7} are QIs of H̃(5), H̃(6) and H̃(7), 
respectively. Hence, (K̃, Q) ⊲q̃ (H̃, P) over N. Whereas K̃(5) 
= {0, 5} and K̃(7) = {0, 7} are not QI of N, (K̃, Q ) is not a 
SQI of N.

Theorem 3.11. The restricted intersection of family of 
SQIs of a SN (H̃, P) over N is a SQI of (H̃, P) when it is 
non- null.

Proof. Let (K̃i , Qi) i∈Ω be a family of SQIs of a SN (H̃, P) 
over N an let (K̃, Q) = ( ∩̃ R)i∈Ω (K̃i , Qi) , where Q = ∩i∈Ω Qi 
≠ ∅ and K̃(ρ) = ∩i∈Ω K̃i(ρ) for ρ ∈ Supp(K̃, Q). Suppose that 
(K̃, Q) is a non-null SS. Since each (K̃i , Qi) is a SSG of (H̃, P), 
by Theorem 24 of [22], (K̃, Q) is also a SSG of (H̃, P). Since 
K̃(ρ) = ∩i∈Ω K̃i(ρ) ⊆ K̃i(ρ) for all i ∈ Ω and ρ ∈ Supp(K̃, Q), 
we have K̃(ρ)H̃(ρ) ∩ H̃(ρ)K̃(ρ) ∩ H̃(ρ) ∗ K̃(ρ) ⊆ K̃i(ρ)H̃(ρ) ∩ 
H̃(ρ)K̃i(ρ) ∩ H̃(ρ) ∗ K̃i(ρ) ⊆ K̃i(ρ) for all i ∈ Ω. It follows that 
K̃(ρ)H̃(ρ) ∩ H̃(ρ)K̃(ρ) ∩ H̃(ρ) ∗ K̃(ρ) ⊆ ∩i∈Ω K̃i(ρ) = K̃(ρ) for 
all ρ ∈ Supp(K̃, Q). Hence, (K̃, Q) ⊲q̃ (H̃, P) over N.

Corollary 3.12. The restricted intersection of two SQIs 
of a SN (H̃, P) over N is a SQI of (H̃, P) when it is non-null.

Proof. The proof is straightforward from Theorem 3.11.
Theorem 3.13. Let (K̃1, Q) be a SQI and (K̃2, S) be a SSN 

of a SN (H̃, P) over N. Then, (K̃1, Q) ∩̃ R (K̃2 , S) ⊲q̃ (K̃2, S) 
when it is non-null.

Proof. Using Definition 2.5, we can write (K̃1, Q) ∩̃ R 
(K̃2, S) = (J̃, C) where C = Q ∩ S ≠ ∅ and J̃(ρ) = K̃1(ρ) ∩ K̃2(ρ) 
for all ρ ∈ Supp(J̃, C). Since Q ⊆ P and S ⊆ P, Q ∩ S = C ⊆ P. 
Suppose that (J̃, C) is non-null. If ρ ∈ Supp(J̃, C), then J̃(ρ) 
= K̃1(ρ) ∩ K̃2(ρ) ≠ ∅. Since K̃1(ρ) and K̃2(ρ) are subgroups 
of H̃(ρ), K̃2(ρ) is also a subgroup of K̃2(ρ) for all ρ ∈ Supp(J̃, 
C). For each ρ ∈ Supp(J̃, C),

J̃(ρ)K̃(ρ) ∩ K̃2(ρ)J̃(ρ) ∩ K̃2(ρ) ∗ J̃(ρ)
= (K̃1(ρ) ∩ K̃2(ρ)) K̃2(ρ) ∩ K̃2(ρ) (K̃1(ρ) ∩ K̃2(ρ)) ∩ K̃2(ρ) 

∗ (K̃1(ρ) ∩ K̃2(ρ))
⊆ (K̃1(ρ) ∩ K̃2(ρ)) K̃2(ρ) ∩ K̃2(ρ) (K̃1(ρ) ∩ K̃2(ρ))
⊆ K̃2(ρ)K̃2(ρ) ∩ K̃2(ρ)K̃2(ρ), as K̃1(ρ) ∩ K̃2(ρ) ⊆ K̃2(ρ)
⊆ K̃2(ρ)K̃2(ρ) ⊆ K̃2(ρ)
and
J̃(ρ)K̃2(ρ) ∩ K̃2(ρ)J̃(ρ) ∩ K̃2(ρ) ∗ J̃(ρ)
= (K̃1(ρ) ∩ K̃2(ρ)) K̃2(ρ) ∩ K̃2(ρ) (K̃1(ρ) ∩ K̃2(ρ)) ∩ K̃2(ρ) 

∗ (K̃1(ρ) ∩ K̃2(ρ))
⊆ K̃1(ρ)H̃(ρ) ∩ H̃(ρ)K̃1(ρ) ∩ H̃(ρ) ∗ K̃1(ρ)
⊆ K̃1(ρ), as K̃2(ρ) ⊆ H̃(ρ), K̃1(ρ) ∩ K̃2(ρ) ⊆ K̃1(ρ) and 

K̃1(ρ) ⊲q H̃(ρ).
Therefore,
J̃(ρ)K̃2(ρ) ∩ K̃2(ρ)J̃(ρ) ∩ K̃2(ρ) ∗ J̃(ρ) ⊆ K̃1(ρ) ∩ K̃2(ρ) = J̃ 

(ρ). Consequently, J̃(ρ) = K̃1(ρ) ∩ K̃2(ρ) ⊲q K̃2(ρ) for all ρ ∈ 
Supp(J̃, C). Hence, (J̃, C) ⊲q̃ (K̃2 , S).

Remark 3.14. Let (K̃1, Q) be a SQI and (K̃2, S) be a SSN 
of a SN (H̃, P) over N. By Definition 2.5, we can write (K̃1, 
Q) ∩̃ E (K̃2, S) = (K̃, A), where A = Q ∪ S. Suppose that ρ ∈ 
Supp(K̃, A). If ρ ∈ Q\S, then K̃1(ρ) = K̃(ρ) is a quasi-ideal of 
H̃(ρ) but need not be a quasi-ideal of K̃2(ρ). Hence, (K̃1, Q) 
∩̃ E (K̃2 , S) need not be a SQI of (K̃2, S).

Theorem 3.15. Let (H̃, P) be a SN over N. Then, m′ ∘̃ (H̃, 
P) and (H̃, P) ∘̃ m are SQIs of (H̃, P), where m, m′ ∈ H̃(ρ) 
and m′ is a distributive element in H̃(ρ) for all ρ ∈ supp(H̃, 
P).

Proof. First we prove that m′ ∘̃ (H̃, P) ⊲̃q (H̃, P). Since 
m′ is a distributive element in H̃(ρ), m′H̃(ρ) is a subgroup 
of H̃(ρ) for all ρ ∈ Supp(H̃, P). Then, m′H̃(ρ)H̃(ρ) ∩ H̃(ρ)
m′H̃(ρ) ∩ H̃(ρ) ∗ m′H̃(ρ) ⊆ m′H̃(ρ) ∩ H̃(ρ)m′H̃(ρ) ∩ H̃(ρ) 
∗ m′H̃(ρ) ⊆ m′H̃(ρ) for all ρ ∈ Supp(H̃, P ). Hence, m′ ∘̃ (H̃, 

Table 5. Addition table of near-ring N in Example 3.10

+ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 2 3 0 5 6 7 4
2 2 3 0 1 6 7 4 5
3 3 0 1 2 7 4 5 6
4 4 7 6 5 0 3 2 1
5 5 4 7 6 1 0 3 2
6 6 5 4 7 2 1 0 3
7 7 6 5 4 3 2 1 0

Table 6. Multiplication table of near-ring N in Example 3.10

· 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 4 6 4 6 4 1 4 1
2 0 0 0 0 0 2 0 2
3 4 6 4 6 4 3 4 3
4 4 4 4 4 4 4 4 4
5 0 2 0 2 0 5 0 5
6 4 4 4 4 4 6 4 6
7 0 2 0 2 0 7 0 7
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P) ⊲q̃ (H̃, P). In a similar manner, we can prove (H̃, P) ∘̃ m 
⊲q̃ (H̃, P).

Theorem 3.16. The restricted intersection of SLI and 
SRI of a SN (H̃, P) over N is a SQI of (H̃, P) when it is 
non-null.

Proof. Let (K̃1, I1) and (K̃2, I2) be the SLI and SRI of the 
SN (H̃, P) over N, respectively. Then, H̃(ρ) ∗ K̃1(ρ) ⊆ K̃1(ρ) 
for all ρ ∈ Supp(K̃1, I1) and K̃2(ρ)H̃(ρ) ⊆ K̃2(ρ) for all ρ ∈ 
Supp(K̃2, I2). Let (K̃, Q) = (K̃1, I1) ∩̃ R (K̃2, I2), where Q = I1 ∩ 
I2 ≠ ∅ and K̃(ρ) = K̃1(ρ) ∩ K̃2(ρ) for all ρ ∈ Supp(K̃, Q). Since 
I1 ⊆ P and I2 ⊆ P, Q = I1 ∩ I2 ⊆ P, and since K̃1(ρ) and K̃2(ρ) 
are subgroups of H̃(ρ), K̃(ρ) is also a subgroup of H̃(ρ) for all 
ρ ∈ Supp(K̃, Q). Then for all ρ ∈ Supp(K̃, Q),

K̃(ρ)H̃(ρ) ∩ H̃(ρ)K̃(ρ) ∩ H̃(ρ) ∗ K̃(ρ)
= (K̃1(ρ) ∩ K̃2(ρ))H̃(ρ) ∩ H̃(ρ)(K̃1(ρ) ∩ K̃2(ρ)) ∩ H̃(ρ) ∗ 

(K̃1(ρ) ∩ K̃2(ρ))
⊆ K̃1(ρ)H̃(ρ) ∩ H̃(ρ)K̃1(ρ) ∩ H̃(ρ) ∗ K̃1(ρ), as K̃1(ρ) ∩ 

K̃2(ρ) ⊆ K̃1(ρ)
⊆ K̃1(ρ)H̃(ρ) ∩ H̃(ρ)K̃1(ρ) ∩ K̃1(ρ), as H̃(ρ) ∗ K̃1(ρ) ⊆ 

K̃1(ρ)
⊆ K̃1(ρ).
Similarly, we can prove K̃(ρ)H̃(ρ) ∩ H̃(ρ)K̃(ρ) ∩ H̃(ρ) ∗ 

K̃(ρ) ⊆ K̃2(ρ). Thus, K̃(ρ)H̃(ρ) ∩ H̃(ρ)K̃(ρ) ∩ H̃(ρ) ∗ K̃(ρ) ⊆ 
K̃1(ρ) ∩ K̃2(ρ) = K̃(ρ) for all ρ ∈ Supp(K̃, Q). Hence, (K̃, Q) 
⊲̃q (H̃, P) over N.

Theorem 3.17. Every SLI (resp. SRI, SI) of a SN (H̃, P) 
over N is a SQI of (H̃, P).

Proof. The proof follows from the proof of Theorem 
3.16.

Definition 3.18. Let (H̃, P) be a SN over N. A non-
null SS (K̃, B) over N is called a soft left N-subgroup (resp. 
soft right N-subgroup) of (H̃, P) if B ⊆ P and K̃(ρ) is a left 
N-subgroup (resp. right N-subgroup) of H̃(ρ) for all ρ ∈ 
Supp(K̃, B).

Theorem 3.19. Every soft left N-subgroup (resp. right 
N-subgroup) of a SN (H̃, P) over N is a SQI of (H̃, P).

Proof. Let (K̃, Q) be a soft left N-subgroup of (H̃, P) 
over N. Then, H̃(ρ)K̃(ρ) ⊆ K̃(ρ) for all ρ ∈ Supp(K̃, Q). Since 
K̃(ρ)H̃(ρ) ∩ H̃(ρ)K̃(ρ) ∩ H̃(ρ) ∗ K̃(ρ) ⊆ K̃(ρ)H̃(ρ) ∩ K̃(ρ) ∩ 
H̃(ρ) ∗ K̃(ρ) ⊆ K̃(ρ), K(ρ) ⊲q H̃(ρ) for all ρ ∈ Supp(K̃, Q). 
Hence, (K̃, Q) ⊲q̃ (H̃, P). Similarly, we can prove every soft 
right N-subgroup of (H̃, P) is also a SQI of (H̃, P).

Theorem 3.20. Let (K̃, Q) be a soft left N-subgroup of a 
SN (H̃, P) over N. Then e ∘̃ (K̃, Q) ⊲q̃ (H̃, P), where e is a dis-
tributive idempotent element of H̃(ρ) for all ρ ∈ Supp(K̃, Q).

Proof. Since each K̃(ρ) is a left N-subgroup of H̃(ρ), we 
have H̃(ρ)K̃(ρ) ⊆ K̃(ρ) for all ρ ∈ Supp(K̃, Q). Now, since e 
K̃(ρ) ⊆ H̃(ρ)K̃(ρ) ⊆ K̃(ρ) and eK̃(ρ) ⊆ eH̃(ρ), we have eK̃(ρ) 
⊆ K̃(ρ) ∩ eH̃(ρ) for all ρ ∈ Supp(K̃, Q). Let u be any ele-
ment of K̃(ρ) ∩ eH̃(ρ), then we write u = v = en, where v 
∈ K̃(ρ) and n ∈ H̃(ρ) for all ρ ∈ Supp(K̃, Q). From where u 
= en = een = ev ∈ eK̃(ρ), K̃(ρ) ∩ eH̃(ρ) ⊆ eK̃(ρ) for all ρ ∈ 
Supp(K̃, Q). Therefore, e ∘̃ (K̃, Q) = (K̃, Q) ∩̃ R (e ∘̃ (H̃, P)). 
By Theorem 3.15 and Corollary 3.12, e ∘̃ (K̃, Q) ⊲q̃ (H̃, P).

Definition 3.21. Let (K̃, B) be a SSN of a SN (H̃, P) over 
N. Then (K̃, B) is called a soft invariant subnear-ring of (H̃, 

P) if K̃(ρ) is a invariant subnear-ring of H̃(ρ) for all ρ ∈ 
Supp(K̃, B).

Theorem 3.22. Every soft invariant subnear-ring of a 
SN (H̃, P) over N is a SQI of (H̃, P)over N.

Proof. The proof is similar to that of Theorem 3.20.

CHARACTERIZATIONS OF SOFT QUASI-IDEALS 
OF SOFT NEAR-RINGS

In this section, we study the concepts of soft quasi-ide-
als on zero-symmetric near-ring and constant near- ring. 
We introduce the notions of soft zero-symmetric near-ring 
and soft constant near-ring over a near-ring. We obtain the 
characterization of soft quasi-ideal of a soft (zero-symmet-
ric) near-ring and discuss some of its properties. We pro-
vide the condition for a soft subgroup of a soft near-ring to 
be a soft quasi-ideal.

Definition 4.1. Let (H̃, P) be a SN over N. Then, a non-
null SS (H̃, P)0 over N is called a soft zero-symmetric part of 
(H̃, P) if H̃(ρ)0 is a zero-symmetric part of H̃(ρ) for all ρ ∈ 
Supp(H̃, P) , where H̃(ρ)0 = {n ∈ H̃(ρ)/n0 = 0}. The SN (H̃, 
P) is called a soft zero-symmetric near-ring (SZN, for short) 
over N if H̃(ρ) = H̃(ρ)0, that is, H̃(ρ) is a zero- symmetric 
subnear-ring of N for all ρ ∈ Supp(H̃, P).

Note that a soft zero-symmetric near-ring over a near-
ring is same as a soft near-ring over a zero-symmetric 
near-ring.

Definition 4.2. Let (H̃, P) be a SN over N. Then, a non-
null SS (H̃, P)c over N is called a soft constant part of (H̃, 
P) if H̃(ρ)c is a constant part of H̃(ρ) for all ρ ∈ Supp(H̃, P), 
where H̃(ρ)c = {n ∈ H̃(ρ)/n0 = n}. The SN (H̃, P) is called 
a soft constant near-ring (SZN, for short) over N if H̃(ρ) = 
H̃(ρ)c, that is, H̃(ρ) is a constant subnear-ring of N for all ρ 
∈ Supp(H̃, P).

Example 4.3. Consider the SN (H̃, P) over N as defined 
in Example 3.7.

Let P = N and (H̃, P) be a SS over N defined by H̃(0)0 
= H̃(2)0 = H̃(4)0 = H̃(6)0 = {0, 2, 5, 7} and H̃(1)0 = H̃(3)0 = 
H̃(5)0 = H̃(7)0 = {0, 2}. Then, H̃(ρ)0 is a zero-symmetric part 
of H̃(ρ) for all ρ ∈ P. Hence, (H̃, P)0 is a soft zero-symmetric 
part of (H̃, P).

Let P = N and (H̃, P) be a SS over N defined by H̃(ρ)c = 
{0, 4} for all ρ ∈ P. Then, H̃(ρ)c is a constant part of H̃(ρ) for 
all ρ ∈ P. Therefore, (H̃, P)c is a soft constant part of (H̃, P).

Suppose we define H̃(ρ) = {0, 2, 5, 7} for all ρ ∈ Supp(H̃, 
P), then (H̃, P) is a SZN over N. If we define H̃(ρ) = {0, 4} for 
all ρ ∈ Supp(H̃, P), then (H̃, P) is a SCN over N.

Remark 4.4. In Definition 4.1 and Definition 4.2, since 
the zero-symmetric part and the constant part of a near-
ring N are subnear-rings of N, H̃(ρ)0 and H̃(ρ)c are sub-
near-rings of H̃(ρ) for all ρ ∈ Supp(H̃, P). Therefore, (H̃, P)0 
and (H̃, P)c are SSNs of (H̃, P) over N. Hence, for a given SN 
(H̃, P) over N we can obtain at least two SSNs (H̃, P)0 and  
(H̃, P)c of (H̃, P).

Remark 4.5. Let (H̃, P) be a SZN over N and (K̃, B) be 
a non-null SS of (H̃, P) over N. Since, for any 𝑎 ∈ H̃(ρ) and 
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𝑏 ∈ K̃(ρ), 𝑎𝑏 = 𝑎(0 + 𝑏) − 𝑎0, we have H̃(ρ)K̃(ρ) ⊆ H̃(ρ) ∗ 
K̃(ρ) for all ρ ∈ B. That is, (H̃, P) ∘̃ (K̃, B) ⊆ (H̃, P) ∗̃ (K̃, B).

Theorem 4.6. The soft zero-symmetric part (H̃, P)0 of a 
SN (H̃, P) over N is a SQI of (H̃, P).

Proof. By Remark 4.4, (H̃, P)0 is a SSN of (H̃, P) and 
so H̃(ρ) is a subgroup of H̃(ρ) for all ρ ∈ Supp(H̃, P) . For 
all m, m′ ∈ H̃(ρ) and m0 ∈ H̃(ρ)0, we have (m(m′ + m0) − 
mm′)0 = m(m′ + m0)0 − mm′0 = m(m′0 + m00) − mm′0 = 
0.Therefore, (m(m′ + m0) − mm′) ∈ H̃(ρ)0. Consequently, 
H̃(ρ) ∗ H̃(ρ)0 ⊆ H̃(ρ)0 for all ρ ∈ Supp(H̃, P) . Now H̃(ρ)0H̃(ρ) 
∩ H̃(ρ)H̃(ρ)0 ∩ H̃(ρ) ∗ H̃(ρ)0 ⊆ H̃(ρ)0. Thus, H̃(ρ)0 ⊲q H(ρ) 
for all ρ ∈ Supp(H̃, P)0. Hence, (H̃, P)0 ⊲̃ (H̃, P).

Theorem 4.7. The soft constant part (H̃, P)c of a SN (H̃, 
P) over N is a SQI of (H̃, P).

Proof. By Remark 4.4, (H̃, P)c is a SSN of (H, P). So 
H̃(ρ)c is a SSG of H̃(ρ) ∀ ρ ∈ Supp(H̃, P)c. For all m ∈ H̃(ρ) 
and mc ∈ H̃(ρ)c, we have (mmc)0 = m(mc0) = mmc. Thus 
mmc ∈ H̃(ρ)c and so H̃(ρ)H̃(ρ)c ⊆ H̃(ρ)c for all ρ ∈ (H̃, P)c. 
Now, H̃(ρ)cH̃(ρ) ∩ H̃(ρ)H̃(ρ)c ∩ H̃(ρ) ∗ H̃(ρ)c ⊆ H̃(ρ)c for all 
ρ ∈ Supp(H̃, P)c. This implies that H̃(ρ)c ⊲q H̃(ρ) for all ρ ∈ 
Supp(H̃, P)c. Hence, (H̃, P)c ⊲q̃ (H̃, P).

Theorem 4.8. A SSG (K̃, Q) of a SZN (H̃, P) over N is a 
SQI of (H̃, P) if and only if ((K̃, 𝑃) ∘̃ (H̃, 𝑄)) ∩̃ R ((H̃, P) ∘̃ (K̃, 
Q)) ⊆ (K̃, Q).

Proof. Assume that (K̃, Q) ⊲q̃ (H̃, P). Since (H̃, P) is a 
SZN over N, by Remark 4.5, H̃(ρ)K̃(ρ) ⊆ H̃(ρ) ∗ K̃(ρ) for all 
ρ ∈ Supp(K̃, Q). Then, by Theorem 3.4, we have K̃(ρ)H̃(ρ) ∩ 
H̃(ρ)K̃(ρ) = K̃(ρ)H̃(ρ) ∩ H̃(ρ)K̃(ρ) ∩ H̃(ρ)K̃(ρ) ⊆ K̃(ρ)H̃(ρ) 
∩ H̃(ρ)K̃(ρ) ∩ H̃(ρ) ∗ K̃(ρ) ⊆ K̃(ρ). Thus, K̃(ρ)H̃(ρ) ∩ H̃(ρ)
K̃(ρ) ⊆ K̃(ρ) for all ρ ∈ Supp(K̃, Q). Hence, ((K̃, 𝑃) ∘̃ (H̃, 𝑄)) 
∩̃ R ((H̃, P) ∘̃ (K̃, Q)) ⊆ (K̃, Q).

Conversely, assume that ((K̃, 𝑃) ∘̃ (H̃, 𝑄)) ∩̃ R ((H̃, P) ∘̃ 
(K̃, Q)) ⊆ (K̃, Q). That is, K̃(ρ)H̃(ρ) ∩ H̃(ρ)K̃(ρ) ⊆ K̃(ρ) for 
all ρ ∈ Supp(K̃, Q). Then, K̃(ρ)H̃(ρ) ∩ H̃(ρ)K̃(ρ) ∩ H̃(ρ) ∗ 
K̃(ρ) ⊆ K̃(ρ) ∩ H̃(ρ) ∗ K̃(ρ) ⊆ K̃(ρ) for all ρ ∈ Supp(K̃, Q). 
consequently, (K̃, Q) ⊲̃q (H̃, P).

Theorem 4.9. Let N be a zero-symmetric near-ring. 
Then, a SSG (K̃, Q) over N is a SQI over N if and only if (K̃, 
Q) ∘̃ Ã N ∩̃ R Ã N ∘̃ (K̃, Q) ⊆ (K̃, Q).

Proof. The proof is similar to that of Theorem 4.8.
Theorem 4.10. Let (K̃, Q) be a SQI of a SN (H̃, P) over 

N. Then,
(i) (K̃, Q) = (K̃, Q) ∩̃ 𝑅 (H̃, P) ⊲q̃ (H̃, P) over N when it 

is non-null.
(ii) (K̃, Q)𝑐 = (K̃, Q) ∩̃ 𝑅 (H̃, P) ⊲q̃ (H̃, P) over N when it 

is non-null.
Proof. The proof is straightforward from Corollary 

3.12.
Remark 4.11. In general, every SQI of a SN over N is 

not a SSN of the SN as given in the following example.
Example 4.12. Consider the SN (H̃, P) over N as defined 

in Example 3.7.
Suppose that (K̃, 𝑄) is a SS over N defined by K̃(1) = {0, 

6} where Q={1}. Then K̃(1) ⊲𝑞 H̃(1). Hence, (K̃, Q) ⊲q̃ (H̃, 
P). Since K̃(1)K̃(1) = {0, 6}{0, 6} = {0, 4} ⊈ {0, 6} = K̃(1), (K̃, 
𝑄) is not a SSN of (H̃, P). To prove that a SQI of a SN is a 

SSN we need some additional conditions and so we have 
the following theorem.

Theorem 4.13. Let (K̃, Q) be a SQI of a SN (H̃, P) over 
N and 0 is the zero element of N. Then, the following con-
ditions are equivalent:

(i) (K̃, Q) is a SSN of (H̃, P),
(ii) (K̃, Q) ∘̃ 0 ⊆ (K̃, Q),
(iii)(K̃, Q) = (K̃, Q)0 + (K̃, Q)𝑐 .
Proof. (𝑖) ⇒ (𝑖𝑖) Since K̃(𝜌 )K̃(𝜌 ) ⊆ K̃(𝜌 ) and 0 ∈ 𝑁, the 

zero element of K̃(𝜌 ), we have K̃(𝜌 )0 ⊆ K̃(𝜌 )K̃(𝜌 ) ⊆ K̃(𝜌 ) 
and so K̃(𝜌 )0 ⊆ K̃(𝜌 ) for all 𝜌  ∈ 𝑆𝑢𝑝𝑝(K̃, 𝑄). Hence, (K̃, Q) 
∘̃0 ⊆ (K̃, Q).

(𝑖𝑖) ⇒ (𝑖𝑖𝑖) Since K̃(ρ) ⊆ H̃(ρ), by Theorem 1.13 of [42] 
for any element y ∈ K̃(ρ), we have y = (y − y0) + y0, where 
y − y0 ∈ H̃(ρ)0 and y0 ∈ H̃(ρ)c for all ρ ∈ Supp(K̃, Q). By 
assumption y0 ∈ K̃(ρ)0 ⊆ K̃(ρ) and so y − y0 ∈ K̃(ρ) for all 
ρ ∈ Supp(K̃, Q). Since y − y0 ∈ K̃(ρ) and (y − y0)0 = 0, we 
have y − y0 ∈ K̃(ρ)0. Similarly, since y0 ∈ K̃(ρ) and (y0)0 = 
y0, we have y0 ∈ K̃(ρ)c for all ρ ∈ Supp(K̃, Q). This implies 
that y = (y − y0) + y0 ∈ K̃(ρ)0 + K̃(ρ)c. So K̃(ρ) ⊆ K̃(ρ)0 + 
K̃(ρ)c ⊆ K̃(ρ) for all ρ ∈ Supp(K̃, Q). This shows that K̃(ρ) 
= K̃(ρ)0 + K̃(ρ)c for all ρ ∈ Supp(K̃, Q). Hence, (K̃, Q) = (K̃, 
Q)0 + (K̃, Q)c.

(iii) ⇒ (i) For any element y ∈ K̃(ρ), we can write y = y0 
+ yc with y0 ∈ K̃(ρ)0 and yc ∈ K̃(ρ)c. Then for any elements y, 
y′ ∈ K̃(ρ), we have yy′ = ( y0 + yc )y′ = y0y′ + ycy′ = y0y′ + yc. 
Moreover, we have y0y′ = y0(0 + y′) − y00 ∈ H̃(ρ) ∗ K̃(ρ) for 
all ρ ∈ Supp(K̃, Q). From where y0y′ ∈ K̃(ρ)H̃(ρ) ∩ H̃(ρ)K̃(ρ) 
∩ H̃(ρ) ∗ K̃(ρ) ⊆ K̃(ρ) implies that yy′ = y0y′ + yc ∈ K̃(ρ). So 
K̃(ρ)K̃(ρ) ⊆ K̃(ρ) for all ρ ∈ Supp(K̃, Q). Therefore, (K̃, Q) ∘̃ 
(K̃, Q) ⊆ (K̃, Q). Hence, (K̃, Q) is a SSN of (H̃, P) over N.

Theorem 4.14. Let (H̃, P) be either a SZN or a SCN over 
N. Then, each SQI of (H̃, P) is a SSN of (H̃, P).

Proof. Let (K̃, Q) be a SQI of (H̃, P). Suppose (H̃, P) is a 
SZN. Then, K̃(𝜌 )0 = {0} ⊆ K̃(𝜌 ) for all 𝜌  ∈ 𝑆𝑢𝑝𝑝(K̃, Q) and 
so (K̃, Q) ∘̃ 0 ⊆ (K̃, Q) Suppose (H̃, P) is a SCN. Then, K̃(𝜌 )0 
= K̃(𝜌 ) for all 𝜌  ∈ 𝑆𝑢𝑝𝑝(K̃, 𝑄) and so (K̃, Q) ∘̃ 0 = (K̃, Q). 
Hence, by Theorem 4.13, (K̃, Q) is a SSN of (H̃, P) over N.

Theorem 4.15. Let N be either a zero-symmetric or a 
constant near-ring. Then, each SQI over N is a SSN over N.

Proof. The proof is similar to that of Theorem 4.14.
Remark 4.16. The converse of Theorem 4.15 is not true 

in general as given in the following example.
Example 4.17. Consider a zero-symmetric near-ring 𝑁 

= {0, 1, 2, 3} with the addition operation Table 7 and the 
multiplication operation Table 8 (Scheme 4: (0,14,2,1) see 
[42], p.408).

Table 7. Addition table of near-ring N in Example 4.17

+ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0
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Let 𝑄 = {1, 3} and (K̃, Q) be the SS over N defined by 
K̃(𝜌 ) = {𝜎  ∈ 𝑁/𝜌 R𝜎  ⇔ 𝜌 𝜎  = {0, 3}}.

Then, K̃(1) = {0, 1} and K̃(3) = {0, 3} are subnear-rings of 
N. Therefore, (K̃, Q) is a SSN of N. Since K̃(3)𝑁 ∩

𝑁 K̃(3) = 𝑁 ⊈ {0, 3} = K̃(3), (K̃, Q) is not a SQI over N. 
Hence, a SSN over N need not be a SQI over N.

CHARACTERIZATIONS OF SOFT NEAR-FIELDS

In this section, we define the notions of soft near-field 
over a near-ring, soft Q-simple near-ring over a near- ring 
and soft minimal quasi-ideal of a soft near-ring. We discuss 
the characterization of soft near-rings which are soft near-
fields. Throughout this section, we consider the near-fields 
which are zero-symmetric near-rings.

Definition 5.1. A non-null SS (H̃, P) over N is called a 
soft near-field (briefly, SNF) over N if H̃(ρ) is a subnear-field 
of N for all ρ ∈ Supp(H̃, P).

Definition 5.2. Let (H̃1, P1) and (H̃2, P2) be two SNFs 
over N. Then (H̃2, P2) is called a soft subnear-field of (H̃1, P1)

if it satisfies:
(i) P2 ⊆ P1 and
(ii) H̃2(ρ) is a subnear-field of H̃1(ρ) for all ρ ∈ Supp(H̃2, 

P2).
Definition 5.3. A SN (H̃, P) is called a soft Q-simple over 

N if H̃(ρ) is Q-simple for all ρ ∈ Supp(H̃, P).
Theorem 5.4. If a SN (H̃, P) over N is soft Q-simple, 

then (H̃, P) is either a SZN or a SCN over N.
Proof. Let (H̃, P)0 be a soft zero-symmetric part of 

(H̃, P). By Theorem 4.6, (H̃, P)0 ⊲q̃ (H̃, P) and so H̃(ρ)0 ⊲q 
H̃(ρ) and since (H̃, P) is soft Q-simple, we have either H̃(ρ) 
= H̃(ρ)0 or H̃(ρ) = {0} for all ρ ∈ Supp(H̃, P). This implies 
that H̃(ρ) is either a zero-symmetric near-ring or a constant 
near-ring for all ρ ∈ Supp(H̃, P). Hence, (H̃, P) is either a 
SZN or a SCN over N .

Theorem 5.5. Let (H̃, P) be a SN over N such that each 
H̃(𝜌 ) has more than one element for all 𝜌  ∈ 𝑆𝑢𝑝𝑝(H̃, 𝑃 ). 
Then the following conditions are equivalent:

(i) (H̃, P) is a SNF over N,
(ii) (H̃, P) is soft Q-simple and each H̃(𝜌 ) has a left 

identity for all 𝜌  ∈ 𝑆𝑢𝑝𝑝(H̃, P),
(iii) (H̃, P) is soft Q-simple, H̃(ρ)d ≠ {0} and for each 

non-zero element y of H̃(ρ) there exists an element y′ of 
H̃(ρ) such that y′y ≠ 0, where H̃(ρ)d is the set of all distribu-
tive element of H̃(ρ) for all 𝜌  ∈ 𝑆𝑢𝑝𝑝(H̃, P).

(iv) (H̃, P) is soft Q-simple and each H̃(ρ) has a left 
cancellable element for all ρ ∈ Supp(H̃, P).

Proof. (𝑖) ⇒ (𝑖𝑖) Since H̃(ρ) is a near-field, H̃(ρ) is 
zero-symmetric and H̃(ρ) has a left identity for all ρ ∈ 
Supp(H̃, P). Let (K̃, P ) be a SQI of (H̃, P). Then, K̃(ρ)H̃(ρ) ∩ 
H̃(ρ)K̃(ρ) ⊆ K̃(ρ) for all ρ ∈ Supp(H̃, P). Let m, m′ be non-
zero elements of K̃(ρ), where m′ is a distributive element. 
Then H̃(ρ) = mH̃(ρ) = H̃(ρ)m implies that H̃(ρ) = mH̃(ρ) 
∩ H̃(ρ)m ⊆ K̃(ρ)H̃(ρ) ∩ H̃(ρ)K̃(ρ) ⊆ K̃(ρ) and since K̃(ρ) 
⊆ H̃(ρ), we have K̃(ρ) = H̃(ρ) for all ρ ∈ Supp(H̃, P). Thus, 
H̃(ρ) is a Q-simple for all ρ ∈ Supp(H̃, P). Hence, (H̃, P) is 
soft Q-simple.

(𝑖𝑖) ⇒ (𝑖𝑖𝑖) Suppose H̃(ρ) has a left identity e. Then e 
is a non-zero distributive element. Hence, H̃(ρ)d ≠ {0} and 
ey = y ≠ 0 for every non-zero element y of H̃(ρ) for all ρ ∈ 
Supp(H̃, P).

(iii) ⇒ (iv) It is enough to show that each H̃(ρ) has 
a left cancellable element for all ρ ∈ Supp(H̃, P). Let m ∈ 
H̃(ρ)d ≠ {0} such that my1 = my2, where y1 and y2 are any 
two elements of H̃(ρ). Then my1 − my2 = m(y1 − y2) = 0. 
By assumption y1 − y2 = 0 which implies y1 = y2. Therefore, 
H̃(ρ) has a left cancellable element m for all ρ ∈ Supp(H̃, P).

(iv) ⇒ (i) Let m ∈ H̃(ρ)d ≠ {0} be a left cancellable ele-
ment of H̃(ρ). Then for any two elements y1, y2 ∈ H̃(ρ) such 
that y1 = y2 ⇒ my1 = my2 ⇒ m(y1 − y2) = 0. This shows that 
H̃(ρ) is zero-symmetric for all ρ ∈ Supp(H̃, P). By Theorem 
3.15, mH̃(ρ) is QI of H̃(ρ). Since H̃(ρ) is Q-simple, we have 
mH̃(ρ) = H̃(ρ) for all ρ ∈

Supp(H̃, P). It follows from the Theorem 8.3 of [42], 
H̃(ρ) is a near-field for all ρ ∈ Supp(H̃, P). Therefore, (H̃, 
P) is a SNF.

Definition 5.6. Let (K̃, Q) be a SQI of a SN (H̃, P) over 
N. Then (K̃, Q)is called a soft minimal quasi-ideal (SMQI, 
for short) of (H̃, P) if K̃(ρ) is a MQI of H̃(ρ) for all ρ ∈ 
Supp(K̃, Q).

Example 5.7. Consider the SN (H̃, P) over N as defined 
in Example 3.7.

Let Q = {1, 3} and K̃: Q → P(N) be defined by K̃(1) = {0, 
4} and K̃(3) = {0, 2}. Then, K̃(1) and K̃(3) are QIs of H̃(1) 
and H̃(3), respectively. Since K̃(1) and K̃(3) do not properly 
contain any non-zero quasi-ideal of H̃(1) and H̃(3), we have 
K̃(1) and K̃(3) are MQIs of H̃(1) and H̃(3), respectively. So 
K̃(ρ) is a MQI of H̃(ρ) for all ρ ∈ Supp(K̃, Q). Hence, (K̃, Q) 
is a SMQI of (H̃, P) over N.

Now consider the SS (K̃, B) defined by K̃1(ρ) = {σ ∈ N/
ρRσ ⇔ ρσ ∈ {0, 4}}, where B = {1, 2, 3}.

Then K̃1(1) = {0, 4}, K̃1(2) = {0, 2, 4, 6} and K̃1(3) = {0, 4} 
are QIs of H̃(1), H̃(2) and H̃(3) respectively.

SinceK̃1(2) contains the proper quasi-ideal {0,4} of H̃(2), 
we have K̃1(2) is not a MQI of H̃(2). Thus, K̃1(ρ) is not a 
MQI of H̃(ρ) for all ρ ∈ Supp(K̃1, B). Hence, (K̃1, B) is not a 
SMQI of (H̃, P) over N.

Theorem 5.8. Let (K̃, Q) be a SQI of a SN (H̃, P) over 
N such that K̃(ρ) ≠ {0} for all ρ ∈ Supp(K̃, Q) . If (K̃, Q) is a 
SNF of (H̃, P), then (K̃, Q) is a SMQI of a soft zero-symmet-
ric part (H̃, P)0 of (H̃, P).

Table 8. Multiplication table of near-ring N in Example 4.17

. 0 1 2 3
0 0 0 0 0
1 0 0 1 1
2 0 1 3 2
3 0 1 2 3
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Proof. Let (K̃, Q) be a soft subnear-field of (H̃, P). Since 
each K̃(ρ) is a subnear-field of H̃(ρ) and K̃(ρ) ≠ {0}, K̃(ρ) is 
a zero-symmetric subnear-ring of H̃(ρ) and since H̃(ρ)0 is a 
zero-symmtric part of H̃(ρ), we have K̃(ρ) ⊆ H̃(ρ)0 for all ρ 
∈ Supp(K̃, Q). By Remark 4.4 and Theorem 3.13, we have 
(K̃, Q) = (K̃, Q) ∩̃  (H̃, P)0  ⊲̃ (H̃, P)0 . Suppose (J̃, Q) ⊲̃ (H̃, 
P)0  such that J̃(ρ) ≠ {0} and J̃(ρ) ⊆ K̃(ρ) for all ρ ∈ Supp(K̃, 
Q). Then, J̃(ρ)K̃(ρ) ∩ K̃(ρ)J̃(ρ) ∩ K̃(ρ) ∗ J̃ (ρ) ⊆ J̃(ρ)H̃(ρ)0 
∩ H̃(ρ)0 J̃(ρ) ∩ H̃(ρ)0 ∗ J̃(ρ) ⊆ J̃(ρ). This implies that J̃ (ρ) 
⊲q K̃(ρ) for all ρ ∈ Supp(K̃, Q). Since (K̃, Q) is a SNF, we 
have (K̃, Q) is soft Q-simple and so K̃(ρ) is Q-simple for 
all ρ ∈ Supp(K̃, Q). Consequently, K̃(ρ) = J̃(ρ) for all ρ ∈ 
Supp(K̃, Q) . This shows that K̃(ρ) is a MQI of H̃(ρ)0 for all ρ 
∈ Supp(K̃, Q). Hence, (K̃, Q) is a SMQI of (H̃, P)0 .

Theorem 5.9. Let (K̃, Q) be a SQI of a SN (H̃, P) over 
N such that K̃(ρ) ≠ {0} for all ρ ∈ Supp(K̃, Q). If (K̃, Q) is a 
SMQI of (H̃, P)0 , then (K̃, Q) is a SMQI of (H̃, P).

Proof. Let (K̃, Q) be a SMQI of (H̃, P)0  such that K̃(ρ) 
≠ {0} for all ρ ∈ Supp(K̃, Q). Suppose (J̃, Q) ⊲̃ (H̃, P) such 
that̃ J(ρ) ≠ {0} and J̃(ρ) ⊆ K̃(ρ) for all ρ ∈ Supp(K̃, Q). Now, 
J̃(ρ)H̃(ρ)0 ∩ H̃(ρ)0 J̃(ρ) ∩ H̃(ρ)0 ∗ J̃(ρ) ⊆̃ J(ρ)H̃(ρ) ∩ H̃(ρ)J̃(ρ) 
∩ H̃(ρ) ∗ J̃(ρ) ⊆ J̃(ρ). This implies that J̃(ρ) ⊲q H̃(ρ)0 for all 
ρ ∈ Supp(K̃, Q). Since K̃(ρ) is a MQI of H̃(ρ)0, we have K̃(ρ) 
= J̃(ρ) for all ρ ∈ Supp(K̃, Q). Since K̃(ρ) ⊲q H̃(ρ) and K̃(ρ) 
= J̃(ρ), K̃(ρ) is a MQI of H̃(ρ) for all ρ ∈ Supp(K̃, Q). Hence, 
(K̃, Q) is a SMQI of (H̃, P).

Theorem 5.10. Let (K̃, Q) be a SQI of a SN (H̃, P) over 
N such that K̃(ρ) ≠ {0} for all ρ ∈ Supp(K̃, Q). Then, the 
following conditions are equivalent:

(i) (K̃, Q) is a soft subnear-field of (H̃, P),
(ii) (K̃, Q) is a SMQI of (H̃, P)0 and each K̃(ρ) contains 

a left cancellable element of H̃(ρ)0 for all ρ ∈ Supp(K̃, Q),
(iii) (K̃, Q) is a SMQI of (H̃, P)0 and each K̃(ρ) contains 

an idempotent element which is a left identity element of 
H̃(ρ)0 for all ρ ∈ Supp(K̃, Q),

(iv) (K̃, Q) is a SMQI of (H̃, P)0 and each K̃(ρ) contains a 
non-zero distributive element of H̃(ρ)0 for all ρ ∈ Supp(K̃, Q).

Proof. (𝑖) ⇒ (𝑖𝑖) It is clear from Theorems 5.5 and 5.8.
(𝑖𝑖) ⇒ (𝑖𝑖𝑖) Let e ∈ K̃(ρ) be an idempotent and left can-

cellable element of H̃(ρ)0. Since ee = e and eey = ey gives ey 
= y for all y ∈ H̃(ρ)0, we have e is the left identity of H̃(ρ)0 for 
all ρ ∈ Supp(K̃, Q).

(iii) ⇒ (iv) Suppose H̃(ρ)0 has a left identity e. Then, by 
Theorem 5.5, e is a non-zero distributive element of H̃(ρ)0 
for all ρ ∈ Supp(K̃, Q).

(𝑖𝑣) ⇒ (𝑖) Let e ∈ K̃(ρ) be a non-zero distributive and 
idempotent element of H̃(ρ)0. Then e ∈ H̃(ρ)d and e ∈ H̃(ρ)
E, where H̃(ρ)E is the set of all idempotent element of H̃(ρ). 
Thus, e ∈ K̃(ρ) ∩ H̃(ρ)d ∩ H̃(ρ)E ≠ {0}. By Theorem 2 of 
[40], K̃(ρ) is a subnear-field of H̃(ρ) for all ρ ∈ Supp(K̃, Q). 
Therefore, (K̃, Q) is a SNF of (H̃, P).

CONCLUSION

In this paper, we have introduced the notions of soft 
quasi-ideal, soft minimal quasi-ideal, soft left (resp. right) 

N-subgroup and soft invariant subnear-ring of a soft near-
ring. We have also introduced the concepts of soft zerosym-
metric near-ring, soft constant near-ring, soft near-field and 
soft Q-simple near-ring over a near-ring. We have obtained 
the properties of these notions with illustrated examples. 
We have provided the characterizations of soft quasi- ide-
als and soft near-fields over a near-ring. In future, one can 
extend the concepts of soft quasi-ideals to other algebraic 
substructures of AG-groupoid, BCK/BCI-algebra, semir-
ing, hemiring, ring, Γ-near-ring, LA-semihypergroup, Γ- 
hypersemigroup, etc. Further, we aim to apply the concepts 
of this paper to soft linear algebraic codes in coding theory 
through the application of soft sets which is an approxi-
mated collection of codes and get some interesting results.
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