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ABSTRACT 

In this paper, Grover’s quantum search algorithm is analyzed using a classical computer by calculating the 
amplitudes and the probabilities of finding a single marked state for n=5, 10, 15, 20, 25, and 27 qubit states. The 

calculations show that the marked state can be found in 𝒪(√𝑁) iterations, where 𝑁 = 2( is the number of items. The 
possibility of improving Grover’s search algorithm to find a single item in N search elements is discussed by 
calculating the amplitudes and hence the probabilities of finding a single marked state for n=5, 10, 15, 20, 25, 30, 35, 
40, 45, and 50 qubit states. The calculations showed that the marked state could be found with sufficiently high 
probability in 𝒪(ln	(𝑁)) iterations. This is quite a remarkable speed-up that can be achieved to find a single marked 
element in an unsorted N search element.   

 
Keywords: Grover’s search algorithm, qubit, state vector, quantum information, quantum information 
processing.  
 
INTRODUCTION 

Grover’s search algorithm [1] provides a relatively fast way of finding a marked element in an unsorted 

database of size N in the computational complexity 𝒪(√𝑁) offered by quantum computers with respect to its classical 
counterpart, which can only solve the problem in complexity 𝒪(𝑁). This means less memory requirement to represent 
the input data. The speed-up is a good example of realizing the computational power of quantum computers [2]. This 
power comes from the laws of quantum mechanics, which are fundamentally different from classical ones. Grover’s 
search algorithm can perform multiple computations simultaneously due to the quantum parallelism. Amplitude of the 
marked state is amplified at each iteration therefore when measured, the probability of finding the marked element is 
sufficiently high to be identified. Grover's algorithm is a black-box algorithm, which means that it does not rely on any 
specific properties of the input data or the function being evaluated. It only requires access to the function that evaluates 
the input data.  

There are numerous useful classical algorithms solving different problems such as generic algorithm to solve 
second-order boundary value problems [3], for prediction of linear dynamical systems [4], for optimization solution of 
Troesch’s and Bratu’s problems [5], and solving singular two-point boundary value problems [6], control of axially 
moving viscoelastic strip [7], adaptive stabilization of a Kirchoff moving strip [8], and existence and stabilization of a 
Kirchoff moving strip [9]. Apart from classical ones, there are other quantum algorithms, which solve a given problem 
more efficiently than corresponding classical algorithms: Shor’s algorithm [10,11] solves the problem of factorizing 
large numbers, which is infeasible on a classical computer. The other one, which should be mentioned here, is the 
Deusch-Jozsa algorithm [12-14] which finds the character of the boolean function exponentially faster than a classical 
computer.  

After being theoretically proposed, Grover’s search algorithm has been implemented in many physical 
systems. These physical systems include nuclear magnetic resonance (NMR) [15, 16], trapped ions [17-20], 
superconducting qubits in the quantum electrodynamics QED [21-23], and cavity QED [24-26]. 
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Since it is proposed, the mathematical structure of Grover’s search algorithm has been investigated [27, 28] 
and the complexity analysis was studied [29] and applied in many areas such as [30] in which a new protocol for 
quantum private query is proposed, which achieves efficiency by utilizing two oracle operations to encode both 
encryption keys and encrypted data items into corresponding quantum superposition states. The protocol also 
introduces the use of Grover iteration to extract the target from the superposition state. As well known, quantum 
computers operate upon a register of qubits, which are the quantum mechanical version of classical bits. A qubit can 
be described as the superposition of 0 and 1, while a classical bit is confined to a definite value of either one of these 
numbers. That is, describing the state of an n-bit classical information scale as the number of bits. Thus, the calculation 
time and the memory resources, which are necessary for classical computation, are generally a polynomial function. 
However, describing the state of n-qubit information requires 2n complex numbers. Therefore, simulating a quantum 
computer using a classical computer is exponentially complex with respect to the number of qubits. Although classical 
simulation of quantum computation is exponentially costly, it is vital for the study of new quantum algorithms and 
architectures. Classical simulation is also important to investigate the efficiencies and robustness of quantum 
algorithms as compared to their classical counterparts.  

To our best knowledge, there is no quantitative analysis of Grover’s search algorithm to show how the 
amplitudes of marked and unmarked states change at every iteration. This is important to see the evolution of the state 
vector at every iteration and to be able to discuss the possible improvement of the algorithm to obtain a better speed-
up. Therefore, the main objective of the current study is to analyze Grover’s search algorithm on a classical computer 
for various numbers of qubits and try to find possible ways to improve it for a better speed-up in finding marked 
elements in a certain search space. 

 
MATERIAL AND METHODS 
 

Grover’s search algorithm proposes to find a particular element through a search space of N elements. Rather 
than searching for the element directly, one can concentrate on the index to those elements which is a number ranging 
from 0 to N-1. Defining N=2n, one can store the index in n bits. A particular instance of the search problem can be 
represented by a function f taking an integer x as an input in the range 0 to N-1. By definition, f(x)=1 if x is a solution 
to the search problem which is denoted by x*, and if x is not the solution to the search problem, then f(x)=0.  

Grover’s search algorithm consists of two steps. The first step is preparing the initial qubits in an equal 

superposition state by applying the Hadamard gates [31]. The second step is applying the Grover iteration  𝒪(√𝑁) 
times. The Grover iteration itself consists of two steps; running the quantum oracle followed by the diffusion operator. 
After any iteration, while the amplitude of the marked state grows, all other amplitudes shrink [32]. 

The recognition of the searched element is achieved by making use of an oracle, which is a unitary operator. 
The action of the oracle is defined in Equation (1).  
 

 |𝑥⟩|𝑞⟩
012345
6⎯⎯⎯8 |𝑥⟩|𝑞⨁𝑓(𝑥)⟩ (1) 

 
where |𝑥⟩ is index register, ⨁ denotes addition module 2, and |𝑞⟩ is called oracle qubit, which is a single qubit and is 

flipped if f(x)=1, and is unchanged if f(x)=0. It is useful to put the oracle qubit initially in the state (|0⟩ − |1⟩)/√2. If 

x is not a solution to the search problem, applying the oracle to |𝑥⟩(|0⟩ − |1⟩)/√2 does not do anything. But if x is a 

solution, then |0⟩ and |1⟩ are interchanged after the action of the oracle, giving a final state −|𝑥⟩(|0⟩ − |1⟩)/√2. Thus, 
the action of the oracle can be summarized in Equation (2). 
 

 |𝑥⟩ ?
|0⟩ − |1⟩

√2
@
012345
6⎯⎯⎯8 (−1)A(B)|𝑥⟩ ?

|0⟩ − |1⟩

√2
@ (2) 

 
Schematic circuit for the quantum search algorithm is depicted in Figure 1.  
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Figure 1. Schematic circuit for the quantum search algorithm. 

 
The schematic circuit shown in Figure 1 consists of n qubits prepared in the |0⟩ state and one oracle qubit 

prepared in the |1⟩ state. Both of these states pass through the Hadamard gate before a series of Grover iteration 
operators are applied. Then by measuring the first n-qubits the desired result can be obtained. In the following, we give 
a detailed description of the circuit by writing the state vectors at every step through the circuit. In the circuit, the first 
input is called the index register which consists of the state of n qubits all prepared in the |0⟩ state. The second input 
is called the oracle qubit prepared in the |1⟩ state.  Therefore |𝜓D⟩ can be written as in Equation (3). 

 

 |𝜓D⟩ = |0⨂(⟩|1⟩ (3) 

 
After the Hadamard transform on the index register and the Hadamard transform on the oracle qubit, we have 

|𝜓F⟩ as given in Equation (4). 
  

 |𝜓F⟩ =
1
√2(

G |𝑥⟩
B∈{D,F}L

?
|0⟩ − |1⟩

√2
@ (4) 

 
In |𝜓F⟩, the Hadamard transform puts the index register in a superposition of all values which is also called 

equal superposition state and the oracle qubit is in an evenly weighted superposition of 0 and 1. After that, the circuit 

consists of repeated application of the Grover iteration which is a quantum subroutine, and applied 𝒪(√2() times. 
Figure 2 shows the schematic diagram for the Grover iteration circuit. We can now follow what happens to the state 
vector from Figure 2. 

 
Figure 2. Schematic circuit for the Grover iteration, G. 

 
After the action of the oracle, the state vector takes the form given in Equation (5). 
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 |𝜓M⟩ =
1
√𝑁

G (−1)A(B)|𝑥⟩
B∈{D,F}L

?
|0⟩ − |1⟩

√2
@ (5) 

 
The action of the oracle is to change the phase of the solution state, which we can also call the marked state 

|𝑥∗⟩, and separate it from all other states. Thus, a unitary operator as given in Equation (6) can represent the oracle. 
 

 𝑈A = 𝐼 − 2|𝑥∗⟩⟨𝑥∗| (6) 
 
Thus, |𝜓M⟩ can also be written as in Equation (7). 

 |𝜓M⟩ = (𝐼 − 2|𝑥∗⟩⟨𝑥∗|)|𝑆⟩ ?
|0⟩ − |1⟩

√2
@ (7) 

 

where |𝑆⟩ = F
√ML

∑ |𝑥⟩B∈{D,F}L  called standard state.  

Since the oracle qubit remains (|0⟩ − |1⟩)/√2 throughout the calculations, it can be omitted from further 
calculations, therefore |𝜓M⟩ can simply be written as in Equation (8). 

 
 |𝜓M⟩ = (𝐼 − 2|𝑥∗⟩⟨𝑥∗|)|𝑆⟩ (8) 

 
After the action of the oracle, the marked state is separated but still, all states have equal amplitudes. Now as 

the amplitude of the marked state must be increased, while all other amplitudes have to be shrunk so that when 
measured, the probability of finding the marked state should be the highest. The action of amplitude change can be 
achieved through the three steps: Hadamard transform 𝐻⨂(, performing a conditional phase shift with every 
computational basis except |0⟩ receiving a phase shift of -1, and applying the Hadamard transform 𝐻⨂( again which 
can be represented by the operator as given in Equation (9) and shown in Figure 2. 

 
 𝐻⨂((2|0⨂(⟩⟨0⨂(| − 𝐼)𝐻⨂( = 2|𝑆⟩⟨𝑆| − 𝐼 = 𝑈U (9) 

 
Thus, the Grover iteration may be written as in Equation (10). 
 

 𝐺 = (2|𝑆⟩⟨𝑆| − 𝐼)(𝐼 − 2|𝑥∗⟩⟨𝑥∗|) (10) 

 
RESULTS AND DISCUSSION 
 
Analysis of Grover’s Search Algorithm 

The equal superposition state, |𝑆⟩ = F
√ML

∑ |𝑥⟩B∈{D,F}L , can be written as the sum of two orthogonal states as 

given in Equation (11) and shown geometrically in Figure 3. 
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Figure 3. Evolution of equal superposition state |𝑆⟩ in Grover’s method. 

 

 |𝑆⟩ =
√𝑁 − 1
√𝑁

|𝑋⟩ +
1
√𝑁

|𝑥∗⟩ (11) 

 
where N is the number of items which is 2n, and n is the number of qubits, |𝑋⟩ and |𝑥∗⟩ are computational basis and 
|𝑥∗⟩ is marked state and |𝑋⟩ represent all other unmarked states. The evolution of the state vector |𝑆⟩ is calculated by 
applying Grover’s operator G given in Equation (10). Here 𝑈A is called the phase operator which changes the phase of 

the marked state performed by the oracle and 𝑈U is called the diffuser which increases the amplitude of the marked 
state while shrinking the amplitudes of the unmarked states. Probabilities of finding marked and unmarked states are 
calculated by taking the mod-square of the amplitudes of |𝑥∗⟩ and |𝑋⟩ in Eq. (11), respectively. 

The number of iterations has to be known in advance so that when measured, the amplitude of the marked 
state is sufficiently big and can be distinguished from the unmarked states. As seen from Figure 3, at every iteration, 
the state vector |𝑆⟩ moves away from the state |𝑋⟩ and approaches |𝑥∗⟩  according to (2𝑚 + 1)𝜃, where m is the 
number of iterations. Eventually, the angle between |𝑆⟩ and |𝑋⟩ approaches 90 degrees as given in Equation (12). 

 

 (2𝑚 + 1)𝜃 =
𝜋
2 (12) 

 

𝑚 ≈ ]
^ √𝑁 −

F
M
, which is 𝒪√𝑁. 

We calculated the evolution of the state vector |𝑆⟩ as given in Equation (13). 
  

 |Φ`⟩ = 𝐺|Φ`aF⟩ (13) 
 

where 1 ≤ 𝑚 ≤ ]
^ √𝑁 and |ΦD⟩ = |𝑆⟩ = c

2
|𝑋⟩ + F

2
|𝑥∗⟩, 𝑎 = √𝑁 and 𝑏 = √𝑁 − 1 

Some of the calculated state vectors are given in Equations (14-16): 
 

 |ΦF⟩ =
𝑏
𝑎f
(2𝑏M − 2 − 𝑎M)|𝑋⟩ +

1
𝑎f (2𝑏

M − 2 + 𝑎M)|𝑥∗⟩ (14) 
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Letting (2𝑏M − 2 − 𝑎M) = 𝑐 and (2𝑏M − 2 + 𝑎M) = 𝑑, 

 |ΦM⟩ =
𝑏
𝑎i
(2𝑏M𝑐 − 2𝑑 − 𝑎M𝑐)|𝑋⟩ +

1
𝑎i (2𝑏

M𝑐 − 2𝑑 + 𝑎M𝑐)|𝑥∗⟩ (15) 

 
Again letting (2𝑏M𝑐 − 2𝑑 − 𝑎M𝑐) = 𝑒 and (2𝑏M𝑐 − 2𝑑 + 𝑎M𝑐) = 𝑓 
 

 |Φf⟩ =
𝑏
𝑎k
(2𝑏M𝑒 − 2𝑓 − 𝑎M𝑒)|𝑋⟩ +

1
𝑎k (2𝑏

M𝑒 − 2𝑓 + 𝑎M𝑓)|𝑥∗⟩ (16) 

 
Considering all these steps, the general formula that calculates each |ΦlmF⟩ vector iteratively is given in 

Equation (17). 
 

 |ΦlmF⟩ =
𝑏

𝑎(MlmF) 𝑐l|𝑋
⟩ +

1
𝑎(MlmF) 𝑑l|𝑥

∗⟩ (17) 

 
Here, 𝑐l  and  𝑑l  are the generalizations of all c and d values. 
 

 𝑐lmF = 2𝑏M𝑐l − 2𝑑l − 𝑎M𝑐l (18) 

 𝑑lmF ← 2𝑏M𝑐l − 2𝑑l − 𝑎M𝑑l	 (19) 
 
To calculate the amplitudes, a function suitable for the pseudo-code given in Algorithm-1 was created. 

 
Algorithm 1. Pseudo Code of Grover’s Search Algorithm 
Inputs : n – number of qubits 
   n_step – number of iterations   
Outputs : A[] – amplitudes of unmarked states  
 B[] – amplitudes of marked state 
Begin 

Set 𝑁 ←	2(  , % number of search space  

Set 𝑎 ←	√𝑁  

Set 𝑏 ←	√𝑁 − 1 
Set 𝑐D ← 1 
Set 𝑑D ← 1 
Set 𝑖 ← 0 
while 𝑖	 < 	𝑛_𝑠𝑡𝑒𝑝 do 

 Al ←
c.3x

2(yxz{)
 

 Bl ←
}x

2(yxz{)
 

 |ΦlmF⟩ ← Al|𝑋⟩ + Bl|𝑥∗⟩  
 𝑐lmF ← 2𝑏M𝑐l − 2𝑑l − 𝑎M𝑐l 
 𝑑lmF ← 2𝑏M𝑐l − 2𝑑l − 𝑎M𝑑l 
 𝑖 ← 𝑖 + 1 

 end while 
End 

 
Depending on the number of qubits, a maximum number of 10000 iterations were analyzed and the amplitudes 

(and probabilities) were calculated and shown in Figure (a-f) 4 for n=5, 10, 15, 20, 25, and 27 qubits.  For n=2 qubit 
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state (N=22=4 search space), only one iteration is required to find the marked state with probability one (not shown in 
Figure 4).  

 

 
(a) 

 
(b) 
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(c) 

 
(d) 
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(f) 

 
Figure 4. Probabilities finding the marked state and unmarked states 

 

As the number of qubits increases, the number of iterations also increases smoothly according to ~]
^ √𝑁. 

Figure 4 shows that as the number of iterations increases, while the probability of finding the marked state increases, 
the probability of finding the unmarked states decreases. The number of iterations required to find the marked state 
with sufficiently high probability for n=5, 10, 15, 20, 15, and 27 qubits is 4, 25, 142, 804, 4549, and 9099 respectively 
as shown in Table 1.  
 
The Analysis of Proposed Method 
 

The equal superposition state can be given in Equation (20). 
 

 |𝑆⟩ =
𝑏
𝑎 |𝑋

⟩ +
1
𝑎 |𝑥

∗⟩ (20) 

 

where, 𝑎 = √𝑁 and 𝑏 = √𝑁 − 1 
The phase-changing operator is the same as in the case of Grover’s method and given as 𝑈A = 𝐼 − 2|𝑥∗⟩⟨𝑥∗|. 

In the proposed method, as different from Grover’s method, the diffuser operator changes in every iteration, which is 
given in Equation (21).  

 𝑈U� = 2|Φ`⟩⟨Φ`| − 𝐼 (21) 
 
where |Φ`⟩ is the new state vector after 𝐺` = 𝑈U�𝑈U operator acts, where 1 ≤ 𝑚 ≤ 𝒪(ln(𝑁)). After each 

Grover operator, the change in the state vectors is shown in Figure 5.  
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Figure 5. Evolution of equal superposition state |𝑆⟩ in proposed method 

 
Note that the main difference between Grover’s method and the proposed method is that the diffuser operator 

changes at every iteration.  In Grover’s method, the diffuser operator is    2|𝑆⟩⟨𝑆| − 𝐼 and stays unchanged throughout 
the search process. In the proposed method, however it consists of the final state vector at the end of each iteration and 
the unit operator. Some of the state vectors after the action of Grover’s operator are given in Equations (22-24). 

 |ΦF⟩ =
𝑏
𝑎f
(2𝑏M − 2 − 𝑎M)|𝑋⟩ +

1
𝑎f (2𝑏

M − 2 + 𝑎M)|𝑥∗⟩ (22) 

 
Letting (2𝑏M − 2 − 𝑎M) = 𝑐F and (2𝑏M − 2 + 𝑎M) = 𝑑F, 
 

 |ΦM⟩ =
𝑏𝑐
𝑎�
(2𝑏M𝑐FM − 2𝑑FM − 𝑎�)|𝑋⟩ +

1
𝑎� (2𝑏

M𝑐FM − 2𝑑FM + 𝑎�)|𝑥∗⟩ (23) 

 
Again letting (2𝑏M𝑐FM − 2𝑑FM − 𝑎�) = 𝑐M and (2𝑏M𝑐FM − 2𝑑FM + 𝑎�) = 𝑑M 
 

|Φf⟩ =
𝑏𝑐F𝑐M
𝑎Mk

(2𝑏M𝑐FM𝑐MM − 2𝑑FM𝑑MM − 𝑎F�)|𝑋⟩ +
1
𝑎Mk (2𝑏

M𝑐FM𝑐MM − 2𝑑FM𝑑MM + 𝑎F�)|𝑥∗⟩ (24) 

 
The general formula that calculates each |ΦlmF⟩ vector iteratively is given in Equation (25). 
 

|ΦlmF⟩ =
𝑏

𝑎flmF
��𝑐�

l

��F

��𝑇lmF − 𝑎M.f
x� |𝑋⟩ +

1
𝑎flmF

�𝑇lmF + 𝑎M.f
x� |𝑥∗⟩ (25) 

 
Here 𝑇lmF represents a common operation and is specified in Equation (26). 
 

 |TlmF⟩ = 2𝑏M�𝑐�M
l

��F

− 2�𝑑�M
l

��F

 (26) 

 
Similarly, ci and di are generalized values of all c and d and can be formulated as 
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 𝑐lmF ← 2𝑏M𝑐lM − 2𝑑lM − 𝑎M.f
x
 (27) 

 𝑑lmF ← 2𝑏M𝑐lM − 2𝑑lM + 𝑎M.f
x	 (28) 

 
To calculate the amplitude in the standard state of the proposed method, a piece of code is written as in 

Algorithm 2. 
As a characteristic future of Grover’s search algorithm, the number of iterations has to be known prior to the 

calculations. The complexity of the proposed method is analyzed as follows. As seen in Figure 5, in every iteration, 
the state vector approaches the marked state according to Equation (29). 

 

 3`𝜃 ≈
𝜋
2 (29) 

 
where m is the estimated number of iterations and given in Equations (30, 31). 
 

 𝑚 ≈
ln �𝜋2� +

1
2 ln	(𝑁)

𝑙𝑛3  (30) 

 𝑚 = 𝒪(𝑙𝑛𝑁)	 (31) 

 
As seen, an exponential speed-up is achieved in the proposed method. At every iteration, the amplitudes (and 

hence the probabilities) of unmarked and marked states were calculated. The calculations were performed for n=5, 10, 
15, 20, 25, 30, 35, 40, 45 and 50 qubits. The results are shown in Figure 6 (a-j).  
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Algorithm 2. Pseudo Code of Proposed Method 
Inputs : n – number of qubits 
   n_step – number of iterations   
Outputs : A[] – amplitudes of unmarked states  
 B[] – amplitudes of marked state 
Begin 

𝑁 ←	2(  , % number of search space  

Set 𝑎 ← 	√𝑁  

Set 𝑏 ←	√𝑁 − 1 
Set 𝑐D ← 1 
Set 𝑑D ← 1 
Set 𝑖 ← 0 
while 𝑖	 < 	𝑛_𝑠𝑡𝑒𝑝 do 
 Set 𝑝𝑟𝑜𝑑_𝑐� ← 1,   % 𝑝𝑟𝑜𝑑_𝑐�	𝑖𝑠	∏ 𝑐�l

��F  

 Set 𝑝𝑟𝑜𝑑_𝑐�M ← 1,   % 𝑝𝑟𝑜𝑑_𝑐�M𝑖𝑠	∏ 𝑐�Ml
��F  

 Set 𝑝𝑟𝑜𝑑_𝑑�M ← 1,   % 𝑝𝑟𝑜𝑑_𝑑�M		𝑖𝑠 ∏ 𝑑�Ml
��F  

 Set 𝑗 ← 0 
 while 𝑗 ≤ 𝑖 do 

 𝑝𝑟𝑜𝑑_𝑐� ← 𝑝𝑟𝑜𝑑_𝑐� ∗ 𝑐�  
 𝑝𝑟𝑜𝑑_𝑐�M ← 	𝑝𝑟𝑜𝑑_𝑐�M ∗ 𝑐�  

 𝑝𝑟𝑜𝑑_𝑑�M ← 	𝑝𝑟𝑜𝑑_𝑑�M ∗ 𝑑� ∗ 	𝑑�	 
 𝑗 ← 𝑗 + 1 

 end while 
TlmF ← 2𝑏M𝑝𝑟𝑜𝑑_𝑐�M − 2𝑝𝑟𝑜𝑑_𝑑�M 

Al ←
𝑏. 𝑝𝑟𝑜𝑑_𝑐�
𝑎flmF

�TlmF − 𝑎M.f
x� 

Bl ←
1

𝑎flmF
�TlmF + 𝑎M.f

x� 

|ΦlmF⟩ ← Al|𝑋⟩ + Bl|𝑥∗⟩  
𝑐lmF ← 2𝑏M𝑐lM − 2𝑑lM − 𝑎M.f

x
 

𝑑lmF ← 2𝑏M𝑐lM − 2𝑑lM + 𝑎M.f
x
 

𝑖 ← 𝑖 + 1 
 end while 
End 
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(j) 
 

Figure 6. Probabilities of finding the marked and unmarked states. 
 
As for the case of n=2, only one iteration is required to find the marked state with probability one (not shown 

in Figure 6). The calculations showed that for n= 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 qubits, the number of iterations 
required to find the marked state with relatively higher probability as compared to the unmarked states are 2, 5, 5, 7, 
8, 10, 11, 13, 16, and 16, respectively as shown in Table 1.  

 
Table 1. Comparison of the number of iterations and elapsed times for Grover’s and proposed method. 
 

  Number of Iterations and Elapsed Time   

Number of 
 qubits (n) 

Number of 
search space 

(N) 

Iteration Number  
(Grover's 
Method) 

Elapsed Time  
(Grover's 
Method) 

Iteration Number  
(Proposed Method) 

Elapsed Time  
(Proposed Method) 

1 2 1 0.2 s 1 0.04 s 
5 32 4 0.8 s 2 0.07 s 
10 1024 25 5 s 5 0.18 s 
15 32768 142 28.4 s 5 0.18 s 
20 1048576 804 160.8 s 7 0.24 s 
25 33554432 4549 909.8 s 8 0.29 s 
27 134217728 9099 1819.8 s 9 0.32 s 
30 1073741824 25736 5547.2 s 10 0.35 s 
35 34359738368 -  11 0.40 s 
40 1.09951E+12 -  13 0.46 s 
45 3.51844E+13 -  16 0.56 s 
50 1.1259E+15 -   16 0.56 s 

      
When compared to Grover’s method, in some cases, the probability of finding the marked state is relatively 

low in the proposed method. For example, for the cases n=20, 35 and 45 qubits, the probabilities of finding the marked 
states are about 0.7. For all other cases, the probabilities are about 0.9, which is sufficiently high. 

The implementation of the methods mentioned in this study was carried out on a PC with an i5-8400 processor 
and 8 GB memory with Windows 10 operating system. MATLAB [33] was preferred as the software development 
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environment. HPF Toolbox [34] is used to solve the large number of problems encountered due to the high number of 
exponential and multiplication operations during coding. 

As it is clearly seen in Eq. (27-28), c and d values are calculated iteratively and each value takes the value 

calculated in the previous iteration as a multiplier. However, the 𝑎fx value is calculated at each stage. Here i denotes 

the iteration number. Therefore, as the iteration number increases, the value of 𝑎fxgrows very quickly. Since the 
classical computer architecture does not allow the calculation of such large numbers, the HPF [34] library was used. 
With this library, instead of allocating a standard 16-digit memory for a variable, higher numbers of digits can be used. 
We preferred variable lengths of 10-200-500-1000 and 2000 digits for the very large numbers that emerged in this 
study. Although the use of more digits allows much larger numbers to be calculated, we had to terminate it at some 
point because the calculation time was prolonged. The average of the times required to calculate all other values in an 
iteration is given in the last column of the table. It is clearly seen in the table that the calculated values and times grow 
exponentially. However, especially after the 32nd iteration (usually around the 40th iteration), a buffer overflow occurs 
in the calculated values for all qubits. When all these situations are evaluated, libraries are needed in which much larger 
numbers can be used in order to reach 1000 iterations in total. The proposed approach was coded with the MATLAB 
program, and a more efficient library than HPF was not found. In this regard, it is planned to examine the libraries 
used for finding large prime numbers and to develop the developed approach with these libraries. 

 
CONCLUSIONS 
 

To our knowledge, there is no quantitative analysis of Grover’s iterative search algorithm. In the current paper, 
we showed how the amplitudes and hence the probabilities of finding a single marked state and unmarked states evolve 
at each iteration for various qubit states. We also discussed the potential improvement of Grover’s quantum search 
algorithm. The study performed in the current study can be summarized in two steps: First, we analyzed the quantitative 
analysis of Grover’s search algorithm by calculating the amplitudes and hence the probabilities of finding the marked 
and unmarked states for various qubit states from n=5 to n=27 qubits. The calculations showed that while the 
probabilities of the marked states increase smoothly with increasing the number of iterations, the probabilities of 
unmarked states decrease smoothly with increasing the number of iterations. Second, we proposed an improved version 
of Grover’s search algorithm. The calculations showed that a great speed-up is achieved after improvement is made to 
Grover’s search algorithm. For example, suppose a marked element is desired to be found in N=106 elements. Grover 

search algorithm can find that element in √10� = 10f = 1000 iterations. However, after the improvement one can 
find the same element in only ln	(10�) ≈ 14 iterations which is a great speed up in the search algorithm.  However, in 
the proposed method, for some cases, the probability of finding the marked state does not smoothly increase, and for 
some cases, the probability of finding the marked state is not high enough. That would limit the use of our proposed 
method in real applications. 
 
Dataset Availability Statement 

The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request. 
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