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Approximate solutions of the fractional harry DYM equation 

Sevil ÇULHA ÜNAL1 

 
ABSTRACT  

In this paper, the approximate solutions of the time fractional Harry Dym equation with fractional 
derivative in the Caputo sense are obtained by using the Residual power series method (RPSM). This equation is 
a significant dynamical equation that occurs in a variety of physical systems. The suggested method provides good 
accuracy for the approximate solution when compared numerically with the exact solution. The effectiveness of 
the proposed method is also illustrated with the aid of numerical results. These results indicate that the RPSM is a 
power, useful, and applicable for determining the solutions of the time Hary Dym equation. Some of these results 
are illustrated by 2D and 3D graphics. Besides, the proposed method can be applied to many different differential 
equations due to its ease of use and reliability. 

Keywords: Approximate solution; Fractional partial differential equation; Caputo derivative; Harry Dym 
equation; Residual power series method. 

INTRODUCTION  

The Harry Dym equation is in the form 

𝜕𝑢
𝜕𝑡 = 𝑢%

𝜕%𝑢
𝜕𝑥%  

was first studied by Kruskal and Moser and is referred to an unpublished work of Harry Dym. This equation is 
entirely integrable nonlinear evolution equation linked to the traditional string problems [1]. More detailed 
information about these problems can be seen in [2-5]. The Harry-Dym equation is also closely related to the 
Korteweg-de Vries equation [6]. In the literature, numerous methods have been utilized to solve this equation. The 
solution methods for the Harry Dym equation are moving frame [7], Adomian decomposition [8], He’s variational 
iteration [8], direct integration [8], power series [8], residual power series [8], Bäcklund transform [9], new 
iterative method [10], haar wavelet [11], homotopy perturbation [12], reconstruction of variational iteration [12], 
Darboux transformation [13], and nonlinear steepest decent [14]. 

Recently, it has become very popular for scientists to obtain solutions of the fractional differential 
equations. These equations are widely used to model problems in viscoelasticity, turbulence, electrical networks, 
nonlinear biological systems, control theory, thermodynamics, fluid dynamics, signal processing, and so on [15-
20]. The time fractional Harry Dym equation is one of the most important of them. So far, many researchers have 
used various analytical and numerical methods to obtain the time fractional Harry Dym equation. These methods 
are Adomian decomposition [21,22], homotopy perturbation Sumudu transform [22], Elzaki transform technique 
[23], Lie symmetry group analysis [24], similarity [25,26], homotopy analysis [27,28], Lie classical [29], 
homotopy perturbation [30], Mohand homotopy perturbation transform scheme [31], reduced differential 
transform [32], finite difference [33], q-homotopy analysis [34], and optimal system [35]. However, it is seen that 
the time fractional Harry Dym equation has not yet been solved with the RPSM. 

The RPSM, proposed by Abu Arqub in 2013, is an efficient approach to obtain the approximate solutions 
of the different differential equations. These solutions are gained without the need for linearization, discretization, 
or perturbation. The RPSM does not require comparing the coefficients of the corresponding terms and does not 
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need a recursion relation. By selecting an appropriate value for the initial guesses approximations, the proposed 
method can be also directly applied to the equations. Besides, with this method, high precision is achieved by 
utilizing less time and small calculations. Moreover, by minimizing the residual error, the suggested method 
provides an easy way to achieve the convergence of the series solution. Furthermore, the RPSM relies on 
derivation, which is more accurate and much easier than integration. This is the basis of most other solution 
methods. In addition to all these, the proposed method suggests obtaining infinite series solutions with iterated 
operations.  

In the present paper, the RPSM is used to get the approximate solutions of the time fractional Harry Dym 
equation of the form 

𝐷(
)𝑢(𝑥, 𝑡) = 𝑢%(𝑥, 𝑡)𝑢---(𝑥, 𝑡),												0 < 𝛽 ≤ 1                                            (1) 

by the initial condition 

𝑢(𝑥, 0) = 44 − %
7
𝑥8

9
:                                                                     (2) 

where 𝐷(
)𝑢 is the Caputo fractional derivative of order 𝛽 with respect to the time variable 𝑡. When 𝛽 = 1,  Eq. (1) 

turns into the standard Harry Dym equation. The exact solution for the Harry Dym is 

𝑢(𝑥, 𝑡) = 44 − %
7
(𝑥 + 𝑡)8

9
:. 

The plan of this paper is as follows. In Section 2, the definitions and theorems of the Caputo derivative 
and the fractional power series are mentioned. In Section 3, the basic idea of the RPSM is expressed. In Section 4, 
the RPS solutions for the time fractional Harry Dym equation are obtained by suggested method. Besides, the 
efficiency and the reliability of this method are demonstrated by table and figures. In Section 5, the Conclusions 
are given. 

PRELIMINARIES 

There are numerous definitions of fractional operators, such as Grunwald-Letnikov, Caputo, Riemann-
Liouville, Hadamard, Wely, and Marchaud in the literature. In this part, Caputo’s definition is utilized since the 
derivative of a constant is zero and the initial conditions for the fractional differential equations with Caputo 
derivative take the familiar manner of integer order differential equations. The definition of Caputo derivative is 
defined as follows: 

Definition 1. [36] The time fractional derivative of 𝑢(𝑥, 𝑡) in Caputo form is described as 

𝐷(
)𝑢(𝑥, 𝑡) =

⎩
⎪
⎨

⎪
⎧ 1
Γ(𝑚− 𝛽)

B(𝑡 − 𝜏)DEFE)
𝜕D𝑢(𝑥, 𝜏)
𝜕𝜏D 𝑑𝜏,												𝑚 − 1 < 𝛽 < 𝑚

(

H
𝜕D𝑢(𝑥, 𝑡)
𝜕𝑡D ,																																																															𝑚 = 𝛽 ∈ ℕ.

 

The definition and theorems for the fractional power series are given below. Details of them can be found in [37]. 

Definition 2. [37] A power series expansion of the manner 

L 𝑐D(𝑡 − 𝑡H)D) =
N

DOH

𝑐H + 𝑐F(𝑡 − 𝑡H)) + 𝑐7(𝑡 − 𝑡H)7) +⋯ ,				0 ≤ 𝑚 − 1 < 𝛽 ≤ 𝑚,				𝑡 ≥ 𝑡H, 

is called the fractional power series about 𝑡H.  Here, 𝑡 is a variable and the 𝑐D’s are constants. 

Theorem 1. [37] Assume that 𝑔 is a fractional power series representation at 𝑡H of the manner 

𝑔(𝑡) = L 𝑐D(𝑡 − 𝑡H)D)
N

DOH

	,									0 ≤ 𝑚− 1 < 𝛽 ≤ 𝑚,					𝑡H ≤ 𝑡 < 𝑡H + 𝑅. 
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If 𝐷D)𝑔(𝑡) are continuous on (𝑡H, 𝑡H + 𝑅),		then coefficients 𝑐D are expressed as 

𝑐D =
𝐷D)𝑔(𝑡H)
Γ(𝑚𝛽 + 1) ,											𝑚 = 0,1,2,…, 

where 𝑅 is the radius of convergence and 𝐷D) = 𝐷).𝐷) …𝐷). 

Theorem 2. [37] Assume that 𝑢(𝑥, 𝑡) has a multiple fractional power series representation at 𝑡H of the manner 

𝑢(𝑥, 𝑡) = L 𝑔D(𝑥)(𝑡 − 𝑡H)D)	,								𝑥 ∈ 𝐼	,						0 ≤ 𝑚 − 1 < 𝛽 ≤ 𝑚	,
N

DOH

					𝑡H ≤ 𝑡 < 𝑡H + 𝑅. 

If 𝐷(
D)𝑢(𝑥, 𝑡) are continuous on 𝐼 × (𝑡H, 𝑡H + 𝑅), then  𝑔D(𝑥) are expressed as 

𝑔D(𝑥) =
𝐷(
D)𝑢(𝑥, 𝑡H)
Γ(𝑚𝛽 + 1) 	,								𝑚 = 0,1,2,…. 

Here, 𝐷(
D) = XYZ

X(YZ =
XZ

X(Z
. X

Z

X(Z
… XZ

X(Z
	, and 𝑅 = min^∈_𝑅^  that 𝑅^ is radius of convergence of the fractional power 

series ∑ 𝑔D(𝑐)(𝑡 − 𝑡H)D)N
DOH . 

BASIC IDEA OF THE RPSM 

In this section, to demonstrate the basic idea of the RPSM, we examine a general nonlinear fractional 
differential equation by the initial condition of the manner 

𝐷(
)𝑢(𝑥, 𝑡) = 𝑁(𝑢) + 𝑅(𝑢),       0 < 𝛽 ≤ 1,     𝑡 > 0,                                         (3) 

𝑢(𝑥, 0) = 𝑔(𝑥), 

where 𝐷(
) represents the fractional derivative in the Caputo sense,  𝑁 is nonlinear differential operator and 𝑅 is 

linear differential operator. This method suggests the solution for Eq. (3) as a fractional power series for 𝑡 = 0. 
Assume the solution takes the following form: 

𝑢(𝑥, 𝑡) = L 𝑔D(𝑥)
𝑡D)

Γ(𝑚𝛽 + 1) 	,							𝑥 ∈ 𝐼,							0 < 𝛽 ≤ 1	,
N

DOH

								0 ≤ 𝑡 < 𝑅. 

The 𝑢c(𝑥, 𝑡) is also expressed as 

𝑢c(𝑥, 𝑡) = L 𝑔D(𝑥)
𝑡D)

Γ(𝑚𝛽 + 1) 	,							𝑥 ∈ 𝐼, 0 < 𝛽 ≤ 1	,
c

DOH

						0 ≤ 𝑡 < 𝑅.																											(4) 

Then, the 0-th RPS approximate solution of 𝑢(𝑥, 𝑡) is given as 

𝑢H = 𝑔H(𝑥) = 𝑢(𝑥, 0) = 𝑔(𝑥). 

Eq. (4) can be written as  

𝑢c(𝑥, 𝑡) = 𝑔(𝑥) + L 𝑔D(𝑥)
𝑡D)

Γ(𝑚𝛽 + 1) 	,			𝑥 ∈ 𝐼, 0 < 𝛽 ≤ 1,
c

DOF

		0 ≤ 𝑡 < 𝑅, 𝑙 = 1,2,…							(5) 

The residual function for Eq. (3) is expressed as 

𝑅𝑒𝑠h(𝑥, 𝑡) = 𝐷(
)𝑢(𝑥, 𝑡) − 𝑁(𝑢) − 𝑅(𝑢). 

Therefore, 𝑅𝑒𝑠h,c is stated as 

𝑅𝑒𝑠h,c(𝑥, 𝑡) = 𝐷(
)𝑢c(𝑥, 𝑡) − 𝑁(𝑢c) − 𝑅(𝑢c).                                                  (6) 
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Some significant relations of the suggested method are as follows and it can be seen in [38-42]. 

																																									𝑅𝑒𝑠h(𝑥, 𝑡) = 0, 

																																									lim
c→N

𝑅𝑒𝑠h,c(𝑥, 𝑡) = 𝑅𝑒𝑠h(𝑥, 𝑡) with 𝑡 ≥ 0 and 𝑥 ∈ 𝐼, 

𝐷(
D)𝑅𝑒𝑠h(𝑥, 0) = 𝐷(

D)𝑅𝑒𝑠h,c(𝑥, 0) = 0,										𝑚 = 0,1,… , 𝑙.																																	(7)  

Substituting the 𝑢c(𝑥, 𝑡) in Eq. (6) and calculating the 𝐷(
(cEF)) of 𝑅𝑒𝑠h,c(𝑥, 𝑡) for 𝑙 = 1,2, ..., the suggested method 

is clearly expressed. Then, applying the relation (7), the following equation 

𝐷(
(cEF))𝑅𝑒𝑠h,c(𝑥, 0) = 0,         0 < 𝛽 ≤ 1,    0 ≤ 𝑡 < 𝑅,					𝑡 = 0,				𝑙 = 1,2,….			               (8) 

is solved to obtain the 𝑔D(𝑥) with 𝑚 = 1, 2, … , 𝑙 in Eq. (5). 

APPROXIMATE SOLUTIONS OF THE FRACTIONAL HARRY DYM EQUATION BY RPSM 

In this segment of the study, we utilize the RPSM to gain the RPS solutions for Eq. (1) by the initial 
condition (2). 

Let us consider the residual function for Eq. (1) as 

𝑅𝑒𝑠h(𝑥, 𝑡) = 𝐷(
)𝑢(𝑥, 𝑡) − 𝑢%(𝑥, 𝑡) X:

X-:
𝑢(𝑥, 𝑡). 

Therefore, 𝑅𝑒𝑠h,c(𝑥, 𝑡) is written as 

𝑅𝑒𝑠h,c(𝑥, 𝑡) = 𝐷(
)𝑢c(𝑥, 𝑡) − 𝑢c%(𝑥, 𝑡)

X:

X-:
𝑢c(𝑥, 𝑡).                                          (9) 

To determine the 𝑔F(𝑥), we write 𝑙 = 1 in Eq. (9) and we have 

𝑅𝑒𝑠h,F(𝑥, 𝑡) = 𝐷(
)𝑢F(𝑥, 𝑡) − 𝑢F%(𝑥, 𝑡)

𝜕%

𝜕𝑥% 𝑢F
(𝑥, 𝑡). 

From Eq. (5) for 𝑙 = 1, we get 

𝑢F(𝑥, 𝑡) = 𝑔(𝑥) + 𝑔F(𝑥)
𝑡)

Γ(𝛽 + 1). 

Hence, 

𝑅𝑒𝑠h,F(𝑥, 𝑡) = 𝑔F(𝑥) − l𝑔(𝑥) + 𝑔F(𝑥)
𝑡)

Γ(𝛽 + 1)m
%

l𝑔nnn(𝑥) + 𝑔Fnnn(𝑥)
𝑡)

Γ(𝛽 + 1)m. 

From Eq. (8), we find the 𝑅𝑒𝑠h,F(𝑥, 0) = 0, and therefore 

𝑔F(𝑥) = −
1

44 − 32𝑥8
F
%
. 

Thus, we get 

𝑢F(𝑥, 𝑡) = p4 −
3
2𝑥
q
7
%
−

1

44− 32𝑥8
F
%

𝑡)

Γ(𝛽 + 1). 

To determine 𝑔7(𝑥), we write 𝑙 = 2 in Eq. (9) and we have 

𝑅𝑒𝑠h,7(𝑥, 𝑡) = 𝐷(
)𝑢7(𝑥, 𝑡) − 𝑢7%(𝑥, 𝑡)

𝜕%

𝜕𝑥% 𝑢7
(𝑥, 𝑡). 

From Eq. (5) at 𝑙 = 2, we get 
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𝑢7(𝑥, 𝑡) = 𝑔(𝑥) + 𝑔F(𝑥)
𝑡)

Γ(𝛽 + 1) + 𝑔7
(𝑥)

𝑡7)

Γ(2𝛽 + 1). 

Hence,  

𝑅𝑒𝑠h,7(𝑥, 𝑡) = 𝑔F(𝑥) + 𝑔7(𝑥)
𝑡)

Γ(𝛽 + 1)

− l𝑔(𝑥) + 𝑔F(𝑥)
𝑡)

Γ(𝛽 + 1)+𝑔7
(𝑥)

𝑡7)

Γ(2𝛽 + 1)m
%

l𝑔nnn(𝑥) + 𝑔Fnnn(𝑥)
𝑡)

Γ(𝛽 + 1)

+ 𝑔7nnn(𝑥)
𝑡7)

Γ(2𝛽 + 1)m. 

From Eq. (8), we find 𝐷(
)𝑅𝑒𝑠h,7(𝑥, 0) = 0, and therefore 

𝑔7(𝑥) = −
1

244 − 32𝑥8
r
%
. 

Thus,  

𝑢7(𝑥, 𝑡) = p4 −
3
2𝑥
q
7
%
−

1

44 − 32𝑥8
F
%

𝑡)

Γ(𝛽 + 1) −
1

2 44− 32𝑥8
r
%

𝑡7)

Γ(2𝛽 + 1). 

To determine 𝑔%(𝑥), we write 𝑙 = 3 in Eq. (9) and we get 

𝑅𝑒𝑠h,%(𝑥, 𝑡) = 𝐷(
)𝑢%(𝑥, 𝑡) − 𝑢%%(𝑥, 𝑡)

𝜕%

𝜕𝑥% 𝑢%
(𝑥, 𝑡). 

From Eq. (5) at 𝑙 = 3, we have 

𝑢%(𝑥, 𝑡) = 𝑔(𝑥) + 𝑔F(𝑥)
𝑡)

Γ(𝛽 + 1) + 𝑔7
(𝑥)

𝑡7)

Γ(2𝛽 + 1) + 𝑔%
(𝑥)

𝑡%)

Γ(3𝛽 + 1). 

Thus, 

𝑅𝑒𝑠h,%(𝑥, 𝑡) = 𝑔F(𝑥) + 𝑔7(𝑥)
𝑡)

Γ(𝛽 + 1) + 𝑔%
(𝑥)

𝑡7)

Γ(2𝛽 + 1)

− l𝑔(𝑥) + 𝑔F(𝑥)
𝑡)

Γ(𝛽 + 1)+𝑔7
(𝑥)

𝑡7)

Γ(2𝛽 + 1) + 𝑔%
(𝑥)

𝑡%)

Γ(3𝛽 + 1)m
%

l𝑔′′n(𝑥)

+ 𝑔Fnnn(𝑥)
𝑡)

Γ(𝛽 + 1) + 𝑔7
nnn(𝑥)

𝑡7)

Γ(2𝛽 + 1) + 𝑔%
nnn(𝑥)

𝑡%)

Γ(3𝛽 + 1)m. 

From Eq. (8), we gain 𝐷(
7)𝑅𝑒𝑠h,%(𝑥, 0) = 0, and therefore 

𝑔%(𝑥) = −
1

44 − 32𝑥8
t
%
. 

Hence,  

𝑢%(𝑥, 𝑡) = p4 −
3
2𝑥
q
7
%
−

1

44− 32𝑥8
F
%

𝑡)

Γ(𝛽 + 1) −
1

2 44 − 32𝑥8
r
%

𝑡7)

Γ(2𝛽 + 1) −
1

44 − 32𝑥8
t
%

𝑡%)

Γ(3𝛽 + 1). 

Using the same operation for 𝑙 = 4, we get 

𝑔r(𝑥) = −
7

244 − 32𝑥8
FH
%
, 
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𝑢r(𝑥, 𝑡) = p4 −
3
2𝑥
q
7
%
−

1

44 − 32𝑥8
F
%

𝑡)

Γ(𝛽 + 1) −
1

2 44 − 32𝑥8
r
%

𝑡7)

Γ(2𝛽 + 1) −
1

44− 32𝑥8
t
%

𝑡%)

Γ(3𝛽 + 1)

−
7

2 44 − 32𝑥8
FH
%

𝑡r)

Γ(4𝛽 + 1). 

In Table 1, the 𝑢r(𝑥, 𝑡) solution is gained for 𝛽 = 0.25, 𝛽 = 0.50, 𝛽 = 0.75, and 𝛽 = 1 with the different 
values of  𝑡 and 𝑥. Besides, the exact solution is compared with the 𝑢r(𝑥, 𝑡) solution for 𝛽 = 1 in this table. From 
Table 1, it can be seen that the absolute error gets smaller as the value of 𝑡 decreases. 

Table 1. Comparing the 𝑢r(𝑥, 𝑡) solution and the exact solution with the different values of 𝑡 and 𝑥. 

  𝛽 = 0.25 𝛽 = 0.50 𝛽 = 0.75 𝛽 = 1 

𝑥 𝑡 𝑢r(𝑥, 𝑡) 𝑢r(𝑥, 𝑡) 𝑢r(𝑥, 𝑡) 𝑢r(𝑥, 𝑡) Exact 
solution 

Absolute error 

-10 

0.2 
0.4 
0.6 
0.8 
1 

6.83852 
6.78388 
6.74698 
6.71828 
6.69446 

6.92921 
6.84877 
6.78650 
6.73363 
6.68676 

6.99774 
6.91334 
6.83880 
6.76987 
6.70475 

7.04522 
6.96966 
6.89370 
6.81731 
6.7405 

7.04522 
6.96966 
6.89370 
6.81731 
6.7405 

1.35745x10EFH 
4.39464x10Eu 
3.37672x10Ev 
1.44003x10Et 
4.44810x10Et 

-5 

0.2 
0.4 
0.6 
0.8 
1 

4.75697 
4.69016 
4.64474 
4.60926 
4.57968 

4.86719 
4.77026 
4.69472 
4.63019 
4.57266 

4.94936 
4.84856 
4.75904 
4.67584 
4.59684 

5.00586 
4.91607 
4.82544 
4.73396 
4.64159 

5.00586 
4.91607 
4.82544 
4.73396 
4.64159 

1.20481x10Eu 
3.93112x10Ev 
3.04515x10Et 
1.30959x10Ew 
4.08059x10Ew 

0 

0.2 
0.4 
0.6 
0.8 
1 

1.99562 
1.87560 
1.78945 
1.71927 
1.65869 

2.18286 
2.02852 
1.90202 
1.78884 
1.68342 

2.30909 
2.15777 
2.01889 
1.88536 
1.75398 

2.39222 
2.26110 
2.12609 
1.98673 
1.84251 

2.39222 
2.26110 
2.12605 
1.98658 
1.84202 

1.21435x10Et 
4.12452x10Ew 
3.33870x10Ex 
1.50729x10Er 
4.95747x10Er 

5 

0.2 
0.4 
0.6 
0.8 
1 

2.75042 
2.82387 
2.87013 
2.90395 
2.93043 

2.62131 
2.74355 
2.83355 
2.90641 
2.96788 

2.51370 
2.64987 
2.76562 
2.86895 
2.96320 

2.43513 
2.56166 
2.68511 
2.80569 
2.92353 

2.43513 
2.56167 
2.68515 
2.80586 
2.92402 

1.92919x10Et 
5.83621x10Ew 
4.20345x10Ex 
1.68489x10Er 
4.90352x10Er 

10 

0.2 
0.4 
0.6 
0.8 
1 

5.26849 
5.32758 
5.36687 
5.39709 
5.42196 

5.16913 
5.25941 
5.32792 
5.38516 
5.43522 

5.09107 
5.18845 
5.27289 
5.34972 
5.42122 

5.03561 
5.12435 
5.21232 
5.29956 
5.38608 

5.03561 
5.12435 
5.21232 
5.29956 
5.38609 

1.40554x10Eu 
4.41275x10Ev 
3.28892x10Et 
1.36081x10Ew 
4.07902x10Ew 

 

For 0 ≤ 𝑡 ≤ 1 and −30 ≤ 𝑥 ≤ 0 at 𝛽 = 1, the comparison of the 𝑢r(𝑥, 𝑡) and the exact solution is 
illustrated in Figure 1. When equal parameters are used, it is seen that the 𝑢r(𝑥, 𝑡) solution has nearly the same 
shape as the exact solution in this figure. 
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Figure 1. The plot of the 𝑢r(𝑥, 𝑡) and exact solution. 

In Figure 2, the geometrical behavior of the 𝑢r(𝑥, 𝑡) with 3D plot for 0 ≤ 𝑡 ≤ 5, 0 ≤ 𝑥 ≤ 1, and the 
different values of 𝛽 is illustrated by suggested method. Besides, the same solution with 2D plot for 𝑡 = 5 and 
−10 ≤ 𝑥 ≤ 10 is demonstrated in Figure 3. The solution at 𝛽 = 0.25 is showed with the blue line, the solution at 
𝛽 = 0.50 is showed with the orange line, the solution at 𝛽 = 0.75 is showed with the green line, and the solution 
at 𝛽 = 1 is showed with the red line in this figure. All plots in figures are illustrated by the aid of Mathematica 
11.3. 

 
(a)                                                                                     (b) 

 

                       (c)                                                                                (d) 

 
Figure 2. 3D plot of the 𝑢r(𝑥, 𝑡): (a) 𝑢r(𝑥, 𝑡) for 𝛽 = 0.25, (b) 𝑢r(𝑥, 𝑡) for 𝛽 = 0.50, (c) 𝑢r(𝑥, 𝑡) for 𝛽 = 0.75, 
(d) 𝑢r(𝑥, 𝑡) for 𝛽 = 1. 
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Figure 3. 2D plot of the 𝑢r(𝑥, 5) for the different values of 𝛽. 

For 𝛽 = 1, the third order term solution 𝑢%(𝑥, 𝑡) of the RPSM, homotopy perturbation Sumudu transform 
method (HPSTM) [22], Adomian decomposition method (ADM) [22], and exact solution are compared in Table 
2. It is observed from this table that the RPSM solution performed a high accuracy agreement with the ADM and 
HPSM solution. It is also seen that the accuracy increases as the order of the solution increases. 

Table 2. Comparison of HPSTM, ADM, RPSM, and exact solution for 𝛽 = 1. 

𝑥 𝑡 RPSM HPSTM [22] ADM [22] 
Exact 

Solution 

0 1 1.843946953 1.843946953 1.843946953 1.842015749 

0.2 1 1.694117376 1.694117377 1.694117377 1.691538112 

0.4 1 1.5337581542 1.537581542 1.537581542 1.534036644 

0.6 1 1.373028020 1.373028020 1.373028020 1.367980757 

0.8 1 1.198654865 1.198654865 1.198654865 1.91138425 

1 1 1.011880652 1.011880649 1.011880649 1.000000000 

 

CONCLUSIONS 

In this study, the RPSM was utilized for obtaining the approximate solutions of Eq. (1). These solutions 
were illustrated by numerically and graphically for the different values of 𝛽, 𝑡 and 𝑥. By comparing the 
approximate solution and the exact solution, the accuracy and efficiency of the suggested method were 
demonstrated. When equal parameters were selected, it was observed that the approximate solution had almost the 
same shape as the exact solution. The proposed method was compared numerically with the HPSTM and the ADM 
by table. . It was seen from this table that the RPSM made a good agreement with this methods. It is seen from the 
approximate solutions that only a few iterates were used by the proposed method. With these iterates, an infinite 
series solutions can be found. The accuracy of the RPSM increases as the order of these solutions increases. 
Besides, this method does not need a lot of time and computer memory. The RPSM indicates strong performance 
with less computation than other methods in the literature. Moreover, the RPSM does not require transformation, 
linearization, discretization, or perturbation. Furthermore, the suggested method can be used to get approximate 
solutions of different kinds of fractional partial differential equations.  
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