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ABSTRACT

In this paper, the exponential approximation is applied to solve high-order nonlinear differ-
ential equations. The main idea of this method is based on the matrix representations of the 
exponential functions and their derivatives by using collocation points. To indicate the use-
fulness of this method we employ it for some well-known high-order nonlinear equations 
like Riccati, Lane-Emden and so on. The numerical approximate solutions are compared with 
available(existing) exact(analytical) solutions and the comparisons are made with other meth-
ods to show the accuracy of the proposed method. For convergence and error analysis of the 
method, criteria for a number of basis sentences presented. The method has been reviewed by 
several examples to show its validity and reliability. The reported examples illustrate that the 
method is appropriately efficient and accurate.
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INTRODUCTION 

Differential equations have a remarkable role in several 
scientific and engineering phenomena that have always 
been considered in physical and technical applications 
and they are appeared in various areas such as mathemat-
ics, physics and engineering sciences ([1-4]). Among these 
equations, nonlinear differential equations are the most 
important. Many of these nonlinear ordinary differential 
equations have no exact(analytical) solution, which this 
is why so many researchers are interested in employing 
numerical methods, therefore, numerical approximation 

methods may be utilized to acquire approximate solu-
tions. Numerical methods for solving nonlinear differen-
tial equations, especially high-order nonlinear differential 
equations, have always been considered. For example, some 
methods like the Homotopy Analysis Method (HAM)
[5], the Adomian Decomposition Method (ADM)[6], 
the Homotopy Perturbation Method (HPM) ([7-12]), 
the Variational Iteration Method (VIM)[13], and so on, 
have been employed for solving some nonlinear differen-
tial equations. Most of the methods, which used to solve 
nonlinear differential equations, convert the equation to a 
system of nonlinear equations and then solve the system 
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theoretically or numerically. Also, the system of nonlinear 
equations can also be solved with software.

In recent years, Yüzbaşi et al. have applied the colloca-
tion method based on exponential approximation to solve 
some problems like pantograph equation, the linear neutral 
delay differential, Fredholm integro-differential difference 
equations and so on ([14-19]).

In this work, we will extend the exponential collocation 
method for approximating the solution of the high-order 
nonlinear differential equations in the general formulation 
as

  (1)

subject to initial and/or boundary conditions

  
(2)

where u(x) E Cm[a, b] is an unknown function 
and u(O)(x) denotes function u(x) itself, namely u(O)

(x) = u(x). Here, Qk,s, Pk,s  and h are known given func-
tions that are defined on the interval [a, b]. Also aik, bik, 
cik and ai are real or complex constants and c E [a, b]. 
We try to find the approximate solution of Equation (1) 
with condition (2) as series of exponential functions. 
Exponential functions or exponential polynomials are 
based on the linearly independent exponential basis set

  (3)

To begin with, we assume that the unique solution u(x) 
of equation (1) can be expressed as a exponential series of 
the form

  
(4)

then by truncation this power series after the (N + 1)
st term, their linear combination defined by the expansion

  
(5)

which, coefficients an are unknown and N is an arbi-
trary positive integer such that N ≥ m. Note that u(x) is the 
exact solution and uN(x) is the approximate solution of the 
problem.

The organization of this article is structured as follows: 
In Section 2, we express briefly required mathematical ele-
mentary and matrix relations for exponential functions 
of the method. In Section 3, we present the numerical 
implementation of matrix operation of method. Section 4 
involves the error analysis and method convergence. For 

this purpose, assuming the exact solution of equation (1) 
is analytic, an upper bound for the absolute error of the 
approximate solution is given in terms of the Taylor trunca-
tion error of the exact solution. Section 5 contains numer-
ical examples, where approximate solutions corresponding 
to various N values are obtained using the proposed method 
that numerical experiments are examined to illustrate effi-
ciency and accuracy of the method, and results are reported. 
Finally, last section consists of a brief conclusion.

PRELIMINARIES AND MATRIX RELATIONS 

 In this section, we outline operational matrices of the 
exponential method we will use in order to solve equa-
tion. The method, was employed to obtain approximate 
solutions of high-order nonlinear differential equations. 
In the first step, we create the differentiation matrices that 
are the basic tools of the current approach. Differentiation 
matrices make this method more suitable for managing 
high-order differential equations. By constructing an oper-
ational matrix, it is easy to derive high-order derivatives 
of the unknown in terms of values at collocation points. 
Firstly, we inscribe the approximated solution uN(x) defined 
by linear combination (5) of equation (1) in the matrix 
form as,

  (6)

where

 

and

 

Taking advantage of the linearity of expansion , we can 
compute the derivative of u by differentiating the basic 
functions. The derivatives of u are obtained as follows

  
(7)

and for higher order derivatives of u we present a matrix 
form. Next, we explain how to create a differentiation 
matrix through the method, and we extract and create a 
matrix D so that the equations are in the collocation points. 
The derivative of the approximate solution can also be 
expressed as a product of matrices. Namely, E(x) has a rela-
tion with its first derivative Eı(x) that is demonstrated by

 

where the operational (differentiation) matrix D corre-
sponding to above relation is represented



Sigma J Eng Nat Sci, Vol. 41, No. 4, pp. 689−698, August, 2023 691

 

and that, after repeating the procedure k

  (8)

holds for any nonnegative integer k, that Do  is the 
identity matrix which its dimension is: (N + 1) x (N + 1). 
Note that

 

By using of the matrix relations (6) and (8), we can write 
matrix representation as

  (9)

After replacing the collocation points  in , we turn 
into the following system of matrix equations as

 

that, in the matrix form, we have

 

where

 

As the same way, by putting the collocation points into 
the ur(x)u(k)(x), and using the above relations, the following 
matrix representation is obtained as

so that

 

where

 

Implementation of Matrix Operation 
In this section, we explain how to employ the exponen-

tial collocation method for the problem . For this purpose, 
we use the following procedure. To acquire an exponential 
series solution of equation under the conditions, the opera-
tional matrix method is applied as follows. The foundation 
of this method is based on calculating the unknown coef-
ficients using the collocation points. In the first step, the 
collocation points are placed in (1) as

and afterwards the above system can be expressed in the 
following matrix form

 

where

 

and

 

After the substitution of the above relations, we obtain 
to the following matrix equation

 

such that

  (10)

Briefly, (10) can also be presented as follows

 

where

  
(11)

Here, (10) conforms to a nonlinear system of the (N + 
1) algebraic equations with the unknown coefficients an. 
Finally, in order to impose initial and/or boundary condi-
tions, we try to acquire a matrix presentation of the condi-
tions (2). By employing the relation(9) at points a, b and 
c, the matrix presentation of conditions that related to the 
coefficients matrix A becomes
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Error Analysis and Convergence
In this section, we investigate error analysis and conver-

gence of the method. We suppose that u(x) be an infinitely 
differentiable function on interval [a,b] and uN(x) be the 
approximated solution of u(x) at collocation points xi Here, 
we give an upper bound for the absolute error in terms of 
the Taylor truncation error of the exact solution.

A criteria for convergence:
If we consider an (N + 1)-term truncation approxima-

tion of exponential series, that is

 

we can investigate the error of the method from the 
residual function by employing (1) as follows:

  (12)

In order to discuss the convergency and error analysis of 
the main problem with the initial and the boundary condi-
tion let us introduce the following norm.

Definition. The least-square norm is defined by

  
(13)

where ω(x) as weight function is non-negative[20] .
Now compute the error

  
(14)

for the desired approximation. Since the series (5) con-
verges, we can specify the reliable N for an proper error, ε > 
0,  by employing the Cauchy condition

  (15)

that N, M ≥ N0 – 1, for some fixed integer number N0. 
In special case, let us consider h(x) = 0 and M = N – 1 for  
u(x) E Cm[0,1], then

 

that

 

and finally

 

which by ignoring the small term, we have the following 
criteria

 

It is a necessary criteria to stop the procedure of calcu-
lations. Obviously, If it increases the number of series sen-
tences, then the accuracy of the approximate solution will 
increase. In fact, this inequality offers a necessary criteria 
to stop calculations process when ε be an arbitrary Cauchy 
error and aN be the last coefficient.

Error bound for the solution
In this part, we relate the error bound for the approx-

imate solution uN(x) to the truncation error of the Taylor 
polynomial corresponding to the exact solution.

Theorem. Suppose u(x) and uN(x) denote the exact and 
the approximate solutions of problem , respectively. If  u(x) 
∈ CN+1[a,b], then

 

where  denotes the N-th degree Taylor polynomial 
of u around the point x = q ∈ [a,b]  and  expresses its 
remainder term.

Proof. See [21].
As a result, this theorem is very helpful to find an upper 

bound of the absolute error in terms of the Taylor trunca-
tion error of the exact solution. Notice that this is not an a 
priori error bound; it only serves as a means to compare the 
actual error to this Taylor truncation error.

Illustrative Examples
In this section, we apply the method explained in 

Section 2 to several high-order nonlinear equations and 
compare the resulting approximate solutions with some 
other methods present in the literature. All the calculations 
have been performed using MAPLE. We solve four exam-
ples by using the method, and report the numerical results 
along with comparison with other methods. The absolute 
error

 

has been used to show that this method is efficient and 
reasonably accurate.

Example 1. As a first example, consider the Riccati dif-
ferential equation ([23]-[24]) as
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with initial condition u(0) = 1, which the exact solution 
of this problem is

 

For implementation of the method, from for m = 1, n = 
1 the coefficients are

 

and

 

Table.1 compares the absolute errors of the solu-
tions obtained by the present method, the Bessel 
Polynomials Method [22] , the Taylor Method [23] and 
the Decomposition [24] Method for N = 3. It can be con-
cluded that for each choice of the parameter , the present 
method outperforms the aforementioned ones for most, 
if not all, of the sample points taken from [0,1]. The val-
ues in the table also imply that the absolute error func-
tions resulting from the present method is more evenly 
distributed over the interval [0,1] compared to the other 
methods. This procedure has also been carried out for the 
values N = 3 and N = 10. The obtained bounds are shown 
in Table 2 together with the maximum actual errors corre-
sponding to these N values. Furthermore, the last column 
indicates that increasing N decreases the absolute error by 
a significant amount. The data in the table can be seen in 
a visual setting in Figure.1. This figure shows the graph 
of absolute error function with N = 3 (top left), graph of 
numerical and exact solution with N = 3 (top right), graph 
of absolute error function with N = 10 (bottom left) and 
graph of numerical and the exact solution with N = 10 
(bottom right).

Example 2. As a high-order complex problem, examine 
following fifth-order nonlinear ODE([25]-[26])

 

with the boundary conditions

 

so that, the exact solution of this nonlinear differential 
equation is exponential function as u(x) = ex.

For implementation of the method, from for m = 5, n = 
1 the coefficients are

 

and other coefficients are zero. The behavior of abso-
lute error is reported in Table.3 and compared by Shifted 
Chebyshev Polynomial Method (SCPM) and Chebyshev 
collocation matrix method (CCMM) at same conditions 
with N = 6. Figure 2 shows graphs of absolute error func-
tion(left) and graph of numerical and the exact solution 
(right) with N = 6.

Example 3. For third example, consider the Lane-
Emden equation([29]-[30]) as follows

 

Table 1. Comparison of the absolute errors of present method and other methods for Example 1.

x Present Method
N=3

Bessel P.M. [22] 
N=3

Taylor M. [23] 
N=5

Decomposition M. [24] 
N=4

0 0 0 0 0
0.20 2.2564 × 10-3 4.9431 × 10-3 1.5238 × 10-4 5.8137 × 10-3

0.40 3.1385 × 10-3 4.3154 × 10-3 1.1431 × 10-2 8.1660 × 10-2

0.60 2.1748 × 10-3 1.3279 × 10-3 1.2118 × 10-1 3.7369 × 10-1

0.80 9.5098 × 10-4 3.2640 × 10-3 6.1674 × 10-1 1.0891 × 1000

1 3.8725 × 10-4 3.9361 × 10-2 2.1293 × 1000 2.4876 × 1000

Table 2. The absolute error of the solution for Example 1 
with N = 3 and = 10.

x N=3 N=10
0 0 0
0.10 9.3727 × 10-4 9.5461 × 10-8

0.20 2.2564 × 10-3 7.0035 × 10-8

0.30 3.0230 × 10-3 5.4983 × 10-8

0.40 3.1385 × 10-3 4.5255 × 10-8

0.50 2.7799 × 10-3 3.6935 × 10-8

0.60 2.1748 × 10-3 3.0999 × 10-8

0.70 1.5184 × 10-3 2.6045 × 10-8

0.80 9.5098 × 10-4 2.2166 × 10-8

0.90 5.5932 × 10-4 1.9100 × 10-8

1.00 3.8725 × 10-4 1.5947 × 10-8
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Table 3. The comparison the absolute error of the solution with other methods for Example 2

xi Present Method
N=6

Shifted Chebyshev(SCPM)[25]
N=6

Chebyshev M.(CCMM)[25]
N=6

0.00 0 0 0
0.10 1.5980 × 10-8 4.5 × 10-8 8.0 × 10-8

0.20 8.8263 × 10-8 2.3 × 10-7 4.0 × 10-7

0.30 1.9951 × 10-7 4.1 × 10-7 1.0 × 10-6

0.40 3.0443 × 10-7 2.4 × 10-7 2.0 × 10-6

0.50 3.6247 × 10-7 4.9 × 10-7 3.0 × 10-6

0.60 3.5266 × 10-7 1.6 × 10-6 4.0 × 10-6

0.70 2.7780 × 10-7 2.7 × 10-6 4.0 × 10-6

0.80 1.6295 × 10-7 2.7 × 10-6 3.0 × 10-6

0.90 5.1427 × 10-8 1.3 × 10-6 1.0 × 10-6

1.00 0 0 2.0 × 10-2

Figure 1. Graph of absolute error function with N = 3(a), graph of numerical and exact solution with N = 3(b), graph of 
absolute error function with N = 10(c) and graph of numerical and exact solution with N = 10(d) for Example 1.
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with initial conditions

 

In special case, for g(x,u) = un(x) and h(x) = 0, 
this equation is the standard Lane-Emden equation. 
In this example, let n = 5, α = 2 and h(x) = 0 then

 

with initial conditions

 

The exact solution of this problem is well-known as 

For implementation of the method, from for m = 2, n = 
4 the coefficients are

 

and other coefficients are zero. The mentioned proce-
dure has also been carried out for the values N = 5 and N 
= 10. The obtained bounds are shown in Table 4 together 
with the maximum actual errors corresponding to these N 
values. Figure 3 shows the absolute error function with N = 
5 (top left), graph of numerical and the exact solution with 
N = 5 (top right), graph of absolute error function with N = 
10 (bottom left) and comparison of numerical and the exact 
solution with N = 10 (bottom right).

Example 4. As another example, consider a nonlinear 
third-order differential equation([29]-[30]) as follows

 

with conditions

 

which its exact(analytical) solution is u(x) = e-x. 
For implementation of the method, from for m = 1, n = 1 
the coefficients are

 

and the rest of the coefficients are zero. For this exam-
ple, when we assume the following approximation

Figure 2. Graph of absolute error function(left) and graph of numerical and exact solution(right) with N = 6 for Example 2.

Table 4. The absolute error obtained by the Method for Ex-
ample 3

xi N=5 N=10
0.00 0 0
0.10 6.0264 × 10-4 1.7758 × 10-5

0.20 1.5729 × 10-3 2.4552 × 10-5

0.30 2.3039 × 10-3 2.5351 × 10-5

0.40 2.6684 × 10-3 2.4950 × 10-5

0.50 2.7316 × 10-3 2.3806 × 10-5

0.60 2.6093 × 10-3 2.2199 × 10-5

0.70 2.4046 × 10-3 2.0302 × 10-5

0.80 2.1854 × 10-3 1.8219 × 10-5

0.90 1.9816 × 10-3 1.6059 × 10-5

1.00 1.7908 × 10-3 1.3868 × 10-5
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implementing the present method for any N yields the 
solution u(x) = e-x, that is the exact solution of the problem. 
In fact, for any choice of N we get as a result of the algo-
rithm, which means any N yields the exact solution. This 
is not a surprise since the scheme described in Section 2 
makes it clear that the unknown coefficients of the approx-
imate solution uN(x) obtained as a result are equal to the 
actual coefficients of the exact solution and we reach to 
exact solution means

 

because its exact solution u(x) = e-x belongs to the basis 
set B = {1, e-x, e-2x, …}

CONCLUSION

 In this paper exponential approximation has been 
employed to solve high-order nonlinear differential equa-
tions. The method based on exponential functions and col-
location method as operational matrix. As observed, there 
is no concern about approximating higher-order deriva-
tives of the unknowns. Also, to demonstrate the accuracy 
and efficiency of the method, four examples with different 
order and complexity have been examined. Through the 
examples provided, we realize that the obtained numer-
ical results are in good contract with the exact analytical 
solutions. As a result of comparisons with other methods, 

Figure 3. Graph of absolute error function with N = 5(a), graph of numerical and exact solution with N = 5(b), graph of 
absolute error function with N = 10(c) and graph of numerical and exact solution with N = 10(d) for Example 3.
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it has been observed that the method presented gives good 
results. In addition, it is realized that errors decrease when 
N values increase. As shown in the results obtained from 
computations, we conclude that implementation of this 
method will be very easy with less computational costs for 
similar problems.
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