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ABSTRACT

This paper concerns with  a Lyapunov-type inequality for the Riesz-Caputo fractional bound-
ary value problem with anti-periodic boundary conditions. As an application for the obtained 
inequality, a lower bound for the eigenvalues of anti-periodic fractional boundary problems of 
the Riesz-Caputo derivative has been  obtained.
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INTRODUCTION

Recently, many physical phenomena in applications 
and sciences can be modelled by fractional calculus. Some 
examples can be found in physics [1], bioengineering [2], 
engineering [3−6]. Additionally, anti-periodic fractional 
differential equations reflect the physical phenomena in 
the real-word applications and have been recently drawn 
to many researchers’ attention, see [7−9, 10] and the ref-
erences therein. Unlike the other fractional operators, the 
main feature of the Riesz fractional operator is that it uses 
both left and right fractional derivatives that hold non-lo-
cal memory effects. This property of the Riesz derivative is 
important in the mathematical modelling in physical pro-
cesses on a finite domain because the present states depend 

both on the past and future memory effects. However, the 
commonly used fractional derivatives are Riemann-Lioville 
and Caputo derivatives in the literature and these opera-
tors depend only on past or future information, so reflect 
only one-sided memory effect [5]. A variety of papers are 
devoted to numerical solutions of the fractional calculus, 
specifically in the anomalous diffusion that involves the 
Riesz derivate [11,12]. Recently, there are papers on exis-
tence of solutions and positive solutions in the sense of 
Riesz-Caputo derivative [13−16].

On the other hand, Lyapunov-type inequalities for frac-
tional boundary value problems have been investigated 
in many papers [17−20] and references therein. However, 
the obtained results have been proved in the sense of the 
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Riemann-Liouville and Caputo fractional derivatives. To 
the best of knowledge, there is no result on Lyapunov-type 
inequality for fractional boundary value problem (FBVP) 
of the Riesz-Caputo differential equation. To fill this gap, 
we derive a Lyapunov-type inequality for the following 
FBVP subject to anti-periodic boundary conditions

  (1)

 where  is the Riesz-Caputo derivative defined 
below and r ∈ C [a,b]. 

This paper is organized as follows. In Section 2, we col-
lect some definitions and related results. We present our 
main results and an example as an application of the main 
result in Section 3. Finally, we provide some conclusions 
and future directions in Section 4. 

PRELIMINARIES

We recall some definitions and  results   related prob-
lems considered in this paper.

Definition 2.1. [4] Let  v > 0. The left and right Riemann-
Liouville fractional integral of a function f ∈ C [a,b] of order v 
defined as, respectively

 

 

Definition 2.2. (Riesz Fractional İntegral) Let v > 0. The 
Riesz fractional integral of a function f ∈ C [a,b] of order v 
defined as

 

Note that the Riesz fractional integral operator can be 
written as

  (2)

Definition 2.3. [4] Let  v ∈ (n, n + 1], n ∈ ℕ. The left and 
right Caputo fractional derivative of a function f ∈ Cn+1 [a,b] 
of order v defined as, respectively

where Du  is the  ordinary derivative of a function u.

Definition 2.3. Let v ∈ (n, n + 1], n ∈ ℕ. The Riesz-
Caputo fractional derivative  of a function f ∈ Cn+1 [a,b] 
of order v defined as

In the case when v ∈ (1,2], we then have

 

Lemma 2.5. [15] If h ∈ C [a,b] then the following frac-
tional differential equation

 

has the solution u(η)

 

Remark 1. In [15], the authors defined the Riesz frac-
tional integral as

and the Riesz-Caputo fractional derivative of order v ∈ 
(1,2] as

  (5)

Therefore, they have proved that the following FBVP

 

has the solution u(η)

However, we will be consistent on the definitions and will 
continue to use Definition 2.2 for the Riesz-Caputo integral 
in this work.

Theorem 2.6. [21] Let v ∈ (1,2] If there exists a non-
zero continuous solution of the following fractional boundary 
value problem

where r is a  continuous function, then
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  (6)

The inequality (6) is a generalization of the following cel-
ebrated Lyapunov inequlity.

Theorem 2.7. [22] Let r ∈ C [a,b] If there exists a non-
zero solution u of  the following boundary value problem

then

  (7)

RESULTS AND DISCUSSION

In this section, we provide a Lyapunov-type inequality 
for FBVP (1) similar to the one given by (6). To do this, we 
first convert FBVP (1) to the integral equation in the next 
lemma.

Lemma 3.1.  Let v ∈ (1,2] and r ∈ C [a,b], a < b, Then u 
is a solution of FBVP (1) if and only if, u is the solution of the 
following integral equation

  
(8)

where the Green’s function G(t, s) is given by

  
(9)

Proof. By the use of Lemma 2.5, we can rewrite the solu-
tion u of FBVP (1) as follows

This completes the proof.
Next, we find a bound for the Green’s function G(t, s) 

in (9).
Lemma 3.2. The Green functions G(t, s) given by (9) 

obeys the following bound:

Proof. We first prove the case when a ≤ s  ≤ t ≤ b. Let the 
function g(t, s) be defined by

For a fixed s ∈ [a,t] the second derivative of g(t, s) with 
respect to the first variable t reveals that

which implies that  is a decreasing function of t. 

Since  , we infer that  is positive 

for fixed s and  t ∈ [s,b]. This concludes that g(t, s) is an 
increasing function of t. Thus, we have that

Clearly, we have

  (10)

Obviously,  is a decreasing func-
tion of s. Thus,

Now, we have

  
(11)

and

Since v ∈ (1,2], it holds that 0 < v − 1 ≤ 3 − v, so from 
(10), we find

Therefore we obtain that

  (12)

Exactly the same argument shows that the function q(x, 
t) defined by
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has the following bound:

  (13)

Thus, we conclude from (12) and (13) that

 

which finishes the proof.
Now, we are ready to state and prove the main theorem 

of this paper.
Theorem 3.3. Let v ∈ (1,2] and r ∈ C [a,b] If there exists 

a non-zero solution of the following FBVP

then we have the following Lyapunov-type inequality

  (14)

Proof.  Let C [a, b] be the Banach space with maximum 
norm .

By Lemma 3.1, we infer that if u solves the FBVP, then it 
also solves the following integral equation

We then have

Nontrivialness of the solution u implies that r(μ) > 0 on 

some subinterval of [a, b]. Also, from Lemma 3.2, we get  

 on this subinterval. Now, taking the 
maximum norm of both sides and the above-mentioned 
arguments give that

or equivalently

which is the inequality in (14).

Remark 2. If we let v → 2, we get the classical Lyapunov 
inequality (7) subject to the anti-periodic boundary condition 
given in [7]( Corollary 2.5 for n=2) and [23].

As an application of the inequality (14), we find a bound 
on the eigenvalues of FBVP.

Example 1. Let v ∈ (1,2] If a non-zero solution of the 
following FBVP

then the eigenvalue λ ∈ ℝ must obey

Mughal, M.J., Saeed, R.; Naeem, M., Ahmed, M.A., 
Yasmien, A., Siddiqui, Q., Iqbal, M., (2013) Dye fixation 
and decolourization of vinyl sulphone reactive dyes by 
using dicyanidiamide fixer in the presence of ferric chlo-
ride, J. Saudi Chem. Soc., 17, 23–28.

Reife, A., Freeman, H.S., (1994) Environmental chemis-
try of dyes and pigments, Wiley, New York, p. 265.

CONCLUSION

In this paper, we consider a linear Riesz-Caputo frac-
tional boundary value problem with anti-periodic bound-
ary conditions. We firstly establish the Green’s function 
corresponding to the boundary value problem and then 
derive a Lyapunov-type inequality for the boundary value 
problems. Furthermore, we provide a lower bound for the 
eigenvalues of the FBVP associated with the non trvial 
solution.
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