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ABSTRACT

In this study, fundamental concepts of multiplicative analysis is given. Also, definitions of 
multiplicative Taylor series (MTS), multiplicative Taylor polynomials (MTP), and multiplica-
tive power series (MPS) are given. Solutions of higher-order multiplicative linear differential 
equations (MLDE) are investigated with the help of the MPS method. Applications of MPS 
method are done for first, second, and third-order multiplicative ordinary linear differential 
equations.
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INTRODUCTION

Geometric analysis, which is a non-Newtonian analysis, 
was first said by Dick Stanley as multiplicative analysis [1]. 
Addition and subtraction in classical analysis correspond to 
multiplication and division operations in geometric analy-
sis. This is why geometric analysis is called multiplicative 
analysis. In the following years, some studies on multipli-
cative analysis were carried out by Duff Campell [2]. In 
2008, Bashirov, Kurpinar and Özyapıcı, defined the basic 
concepts of multiplicative analysis and some applications 
were given in [3]. Misirli and Gurefe [4] developed the mul-
tiplicative Adams Bashforth-Moulton methods to obtain 
numerical solutions of multiplicative differential equations. 
Bashirov and Riza studied multiplicative differentiation for 
complex-valued functions [5]. Yalcin, Celik and Gokdogan 

defined the multiplicative Laplace transform and found the 
solution of some multiplicative linear differential equations 
using the multiplicative Laplace transform [6]. Bhat et al. 
defined the multiplicative Fourier transform and investi-
gated the solution of multiplicative differential equations 
with the help of the multiplicative Fourier transform [7]. 
Bhat et al. defined the multiplicative Sumudu transform 
and found the solution of some multiplicative differential 
equations using the multiplicative Sumudu transform [8]. 
Yalçın and Dedeturk presented a multiplicative differen-
tial transform method to find the numerical solution of 
first and second-order multiplicative ordinary differential 
equations [9]. Some studies presented in recent years have 
shown that multiplicative analysis is a different alternative 
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to classical analysis in some problems encountered in sci-
ence and engineering. For more details see [4, 6, 9-20].

Çakmak and Başar [21] defined the non-Newtonian 
real numbers, non-Newtonian integers, non-Newtonian 
absolute value, non-Newtonian distance. In this article, 
these definitions are adapted to multiplicative calculus 
which is also a non-Newtonian calculus (with the generator 
function α = exp(x)).

In this work, definitions of multiplicative Taylor series 
(MTS), multiplicative Taylor polynomials (MTP) and mul-
tiplicative power series (MPS) multiplicative power series 
method (MPSM) are given. The third-order multiplicative 
linear differential equation (MLDE) is solved via MPSM 
beside the solutions of first and second-order multiplica-
tive linear differential equations (MLDE). These studies are 
supported with numerical examples.

MATERIALS AND METHODS 

Multiplicative Analysis and Multiplicative Analytic 
Functions 

In this section, we will give some basic definitions 
and properties of the multiplicative analysis which can be 
found in [2, 5, 11, 14]. Readers can find some important 
operations, concepts and theorems that are used here from 
Bashirov, et al. [3, 11] and also from the article of Yalçın and 
Dedeturk [20].

Here after we will represent natural numbers start-
ing from zero with ℕ = {0,1,2,…}, positive real numbers 
with ℝ+ and negative real numbers with ℝ− . And also for 
Euclidean distance, we will use the notation d(x,y) = |y-x|.

Definition 1. The exponential numbers are defined as
i) ℝexp = {ex | x ∈ ℝ} is the set of exponential real 

numbers, 
ii) ℤexp = {ex | x ∈ ℤ} is the set of exponential integers, 
iii) ℝ+

exp = {ex | x ∈ ℝ+} is the set of exponential posi-
tive real numbers,

iv) ℝ−
exp = {ex | x ∈ ℝ−}is the set of exponential nega-

tive real numbers
Definition 2. Exponential arithmetic (geometric arith-

metic named by Çakar and Başar ) is the arithmetic whose 
domain is ℝexp and whose operations are defined as fol-
lows. For  x, y ∈ ℝexp

i) exp-addition: x ⊕ y = exp [lnx + lny] 
ii) exp-subtraction: x ⊖ y= exp [lnx - lny] 
iii) exp-multiplication: x ⊙ y = exp [lnx ⋅ lny]  
iv) exp-division: x ⊘ y = exp [lnx ÷ lny] 
Definition 3. The multiplicative absolute value of an 

exponential real number x in A ⊂ ℝexp is defined as

From the definition above we have

Lemma 1. For x ∈ ℝexp and n ∈ ℝ the following equality 
holds 

Proof. Let x ∈ ℝexp and n ∈ ℝ. Then we have

 

Definition 4. The multiplicative distance between two 
exponential real numbers x and y is defined by

which is equal to

Definition 5. Let A ⊂ ℝ,  f: A → ℝexp be a function and 
a ∈ A. The multiplicative limit of f at the element a ∈ Ais, if 
it exists, the unique number L ∈ ℝexp if and only if for every 
number ε > 1 there exists a number δ = δ(ε) > 0  such that 
d*(f(x), L) < ε whenever 0 < d(x,a) < δ. And it is represented 
by

Definition 6. Let A ⊂ ℝ, f: A → ℝexp be a function and 
a ∈ A. The function f is said to be multiplicative continuous 
at the point a ∈ A if and only if

Definition 7. Let A ⊂ ℝ,  f: A → ℝexp be a function. The 
multiplicative derivative of the function f is given by:

Assuming that f is a positive function and using proper-
ties of the classical derivative, the multiplicative derivative 
can be written as

Definition 8. If the multiplicative derivative f* as a 
function also has a multiplicative derivative, then the multi-
plicative derivative of f* is called the second-order multipli-
cative derivative of f and it is represented by f**. Similarly, 
we can define nth order multiplicative derivative of f with 
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the notation f*(n). With n times repetition of the multipli-
cative differentiation operation, a positive f function has an 
nth order multiplicative derivative at the point x which is 
defined as

Theorem 2. If a positive function f is differentiable with 
the multiplicative derivative at the point x, then it is differen-
tiable in the classical sense and the relation between these two 
derivatives can be shown as

Theorem 3. (Multiplicative Mean Value Theorem) If the 
function f is continuous on [a,b] and is multiplicatively differ-
entiable on (a,b), then there exist a < c < b such that

Definition 9. Let {ck}k∈ℕ be a positive series such that ck 
> 0, ∀k ∈ ℕ. The infinite product

is called a multiplicative power series centered at the point 
x = x0

Lemma 4. Let the multiplicative power series

is given, where {ck}k∈ℕ is a positive series such that ck > 0, ∀k 
∈ ℕ. Then the multiplicative power series is convergent if the 
power series

is convergent.
Proof. Suppose

is convergent then

is convergent, too. The last expression is equal to

which is the given multiplicative power series. Thus, we 
have shown the convergence.

Definition 10. [3] Let f(x) be a positive function that has 
multiplicative derivatives of any order on the open interval 
(a,b) and let x0 ∈ (a,b). Then the multiplicative series 

  
(1)

is called the multiplicative Taylor series of  f(x) at x = x0
Definition 11. Let  f(x) be a positive function that has 

multiplicative derivatives up to order  m on the open inter-
val (a,b) and let x0 ∈ (a,b). Then the product

is called the m-th degree multiplicative Taylor polynomial 
of  f(x) at x = x0

Theorem 5. [3] Let x0 ∈ (a,b) and f:(a,b) → ℝ+ be m + 
1 times multiplicative differentiable function on the open 
interval (a,b) and f*(m)(x) is multiplicative continuous on 
the closed interval [a,b]. Then ∀x ∈ (a,b) there exists some 

such that

  
(2)

   
The last term on the right side of equality 

is called the multiplicative truncation error of the multipli-
cative Taylor polynomial which is m-th degree approxima-
tion to the multiplicative Taylor series given in (1).

Theorem 6. Let x0 ∈ (a,b) and f:(a,b) → ℝ+ be m + 1 
times multiplicative differentiable function on the open 
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interval (a,b) and f*(m)(x) is multiplicative continuous on 
the closed interval [a,b]. An upper bound for error which is 
obtained by truncating the Taylor series expansion given in 
(1) by its (m + 1) th term is given by

where . 
Thus  f(x)is bounded between

Proof. Let f has the Taylor series expansion given in (1), 
then we have

for some 

From here we can write

Taking the multiplicative absolute value of both sides we 
have

where

Thus the following inequality is valid:

So, we get

Definition 12. [20] Let x0 ∈ (a,b), N(x0) ⊂ (a,b) be a 
neighborhood of x0 and  f(x) be a positive function defined 
on (a,b). In this case,  f(x) is said to be multiplicative-ana-
lytic at x0 if  f(x) can be expressed as a multiplicative series 
of natural powers of (x − x0) for all x ∈ N(x0). In other words, 
f(x) can be expressed as follows:

  (3)

Also note that, there exists δ > 0 such that this series is 
convergent for all t satisfying |x − x0| < δ and divergent for 
|x − x0| > δ. δ is the radius of convergence of the series.

Lemma 7. The multiplicative derivative of the multiplica-
tive power series defined in (3) is 

Definition 13. Let the function P: ℕ × ℕ → ℕ be defined 
by

Lemma 8. Suppose function  f(x) has multiplicative 
power series expansion as . Then  f(x) 
has multiplicative derivatives as multiplicative power series 
shown below. 

Definition 14. [20] Let x0 ∈ (a,b) and the functions 
ak(x) be analytic at x0 for k ∈ ℕ. In this case, the point x0 
∈ (a,b) is said to be a multiplicative-ordinary point of the 
equation     
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  (4)

If a point x0 ∈ (a,b)is not a multiplicative-ordinary 
point, then it is said to be multiplicative singular point.

With the theorem below, the existence of a multiplica-
tive power series solution of a multiplication second-order 
multiplicative homogeneous linear differential equation at 
a multiplicative-ordinary point is guaranteed.

Theorem 9. [20] Let a1(x), a0(x) be analytic functions at 
x0, in other words, they can be expanded as classical Taylor 
series at a neighborhood B(x0, δ) of x0:

where δ > 0 is the minimum of the radii of convergence of 
these series, and let x0 be a multiplicative-ordinary point of 
the equation

Then, there exists a solution to the equation above as multi-
plicative power series

in the same neighborhood B(x0, δ) of x0.
Suppose the multiplicative non-homogeneous linear 

differential equation

is given. If yp is a particular solution of this non-homoge-
neous equation and yh is the solution of the corresponding 
homogeneous equation given in (4), then we can write the 
general solution y as the multiplication of these two solu-
tions, namely

Multiplicative Power Series Method for Higher Order 
Multiplicative Linear Differential Equations

Theorem 10. Let x = 0 be a multiplicative ordinary point 
of the m-th order multiplicative differential equation

and let

are power series of exponents aj(x), respectively. And also 
suppose that

is the multiplicative power series of f(x). Then the multiplica-
tive power series solution

has bases Yn, n ≥ 0 which can be calculated by the recurrence 
relations

  
(5)

for n ≥ 0 where Yk, 0 ≤ k ≤ m − 1 are given constants.
Proof. We can write the given equation in a more com-

pact form as

Using power series expansion of the functions we have

Changing the order of the products in the set parentheses, 
we get

Using the equality

  
(6)

in the last equation (6) we have



Sigma J Eng Nat Sci, Vol. 41, No. 4, pp. 837−847, August, 2023842

Subsequently, we change the order of the products with 
indices J and k to write

Afterward, if we shift the index of the product with index 
k we have

Now, changing the order of the products with indices n and 
k we get

  
(7)

For getting harmony with the index of the first product on 
the left side, we use the index n instead of k in the first of 
the products which are in the set parentheses. And also, we 
use the index k instead of n in the second of the products 
which are in the set parentheses Thus, the equation (7) can 
be rewritten as

We can multiply the two products on the left with the same 
index n to get

Finally, we equate the terms of the products of the opposite 
sides and get the recurrence relation

This ends the proof. 
The recurrence relations in (5) for  n ≥ 0 can also be 

expressed as

Solution of First-Order Multiplicative Linear Differential 
Equations Via MPSM

Corollary 11. Let x = 0 be the multiplicative ordinary 
point of the first order multiplicative linear differential equa-
tion  and let 

be the power series of a(x) and f(x), respectively. Then the 
multiplicative power series solution

have bases Yn, n ≥ 0 which can be calculated by the recurrence 
relations

  
(8)

where Y0 is a given constant.
The bases Yk of the above corollary can be calculated 

from the following recurrence relations.

From these equations the bases Y1, Y2, Y3 can be given in 
terms of Y0 and Fk, k ≥ 0 as follows
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We see that the bases Y1, Y2, ... of the solution are formed 
with the product of two parts. The ones which are the prod-
uct of Fk’s take a role in forming a particular solution to 
the non-homogeneous equation, namely yp. The other parts 
with the Y0 for the solution of the corresponding homoge-
neous equation, namely yh. So the third-order approximate 
solution, ỹ can be written as the product of an approxima-
tion of the particular solution to the non-homogeneous 
equation, namely ỹp and an approximation of the solution 
of the corresponding homogeneous equation, namely ỹh:

Example 1. Suppose the first-order multiplicative linear 
differential equation 

  (9)

is given. We want to find the fourth-order approximate 
solution of this equation by the multiplicative power series 
method.

Solution 1. Here a(x) = 4x + 6 which is the power of y, 
has the Taylor series expansion below

So, we see that the coefficients of the Taylor series are

And the right-hand side function  has 
the multiplicative Taylor series expansion

Thus, we show that the bases of the multiplicative Taylor 
series are

is to be found. From the recurrence relations in (8), we can 
calculate Yk for k = 1,2,3,4 as below.

and

and

And we get an approximate solution written below

In this approximate solution

are approximations of particular and homogeneous solu-
tions, respectively. Moreover, if we write ỹp, the approxima-
tion of a particular solution, instead of y in the equation (9) 
we get
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which is an approximation of the right-hand side function 
of equation (9). Also if we write ỹh, the approximation of 
the homogeneous solution, instead of y in the equation (9) 
we get

 

Solution of 2nd Order Multiplicative Linear Differential 
Equations Via MPSM 

Corollary 12. Let x = 0 be a multiplicative ordinary point 
of the second-order multiplicative differential equation

  (10)

and let

are power series of a0(x) and a1(x), respectively. And also 
suppose that 

is the multiplicative power series of  f(x). Then the multiplica-
tive power series solution

have bases  Yn, n ≥ 0 which can be calculated by the recur-
rence relations 

  
(11)

where Y0, Y1 are given constants.
Example 2. Suppose second order multiplicative non-ho-

mogeneous linear differential equation below and the initial 
values

are given. We want to solve this Cauchy problem with the 
multiplicative power series method.

Solution 2. x = 0 is a multiplicative ordinary point of 
this equation, since we can expand a0(x) = x, a1(x) = 2  as 
power series centered at x = 0 and also we can expand 

as multiplicative power series like below

Let

be the power series solution of y(x). We find Y0 and Y1 as 
below

We will use the relation in equation (11) to find Y2, Y3 ... 
and so on.

i) For n = 0, we get

ii) Taking n = 1, we have
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iii) For n = 2, Y4 is calculated as

iv) Letting n = 3, we find

For n ≥ 4, we have

v) For n = 4

vi) For n = 5

Continuing this process, we get

Thus, we have

Using these bases, we write the solution as below

Solution of 3rd Order Multiplicative Linear 
Differential Equations Via MPSM

Corollary 13. Let x = 0 be a multiplicative ordinary point 
of the third-order multiplicative differential equation

and let

 

are power series of exponents aj(x), respectively. And also 
suppose that

is the multiplicative power series of  f(x). Then the multiplica-
tive power series solution

has bases Yn, n ≥ 0 which can be calculated by the recurrence 
relations

  
(12)

for n ≥ 0where Yk, 0 ≤ k ≤ 2 are given constants.
Example 3. Suppose the third-order multiplicative 

non-homogeneous linear differential equation below and the 
initial values

 are given. We want to solve this Cauchy problem with the 
multiplicative power series method.

Solution 3. x = 0 is a multiplicative ordinary point of 
this equation, since we can expand a0(x) = 2, a1(x) = 3, 
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a2(x) = 5   as power series centered at x = 0 and also we can 
expand f(x) = e8x+10  as multiplicative power series like below

Let  
be the power series solution of y(x). We find Y0 ,Y1 and Y2 
as below

We will use the relation

to find Yn+3 for n ≥ 0.
i) For n = 0, we get

ii) Taking n = 1, we have

iii)

CONCLUSION

In this paper, the definitions of the multiplicative Taylor 
series, m-th degree multiplicative Taylor polynomial, trun-
cation error of the multiplicative Taylor series of a positive 
function are defined. Also, an upper bound for this trunca-
tion error is calculated. Consequently, we used the multipli-
cative Taylor series method (MTSM) to find the numerical 
solution of higher-order multiplicative linear differential 

equations (MLDE). Solutions of first, second and third-or-
der multiplicative linear differential equations (MLDE) are 
given by MPSM. Then, the applicability of this method is 
supported by numerical examples.
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