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ABSTRACT

This paper presents a finite element scheme for numerical solutions of the Gilson-Pickering 
(G-P) equation by using septic B-spline functions as approximate functions. Firstly we study 
optimal-order L²-error estimates for standard Galerkin semi-discrete approximation using 
smooth splines on a uniform mesh for periodic initial value problem of the G-P equation. 
A Von-Neumann stability analysis of the algorithm has been performed as well. Moreover, 
reliableness and practicalness of the presented method is demonstrated by analyzing behavior 
of single soliton. The L2 and L∞ error norms and two lowest invariants I1 and I2 of the equa-
tion have been computed to control proficiency and conservation properties of the suggested 
algorithm. Obtained numerical results have been illustrated with tables and graphics for easy 
visualization of properties of the problem modelled. Also the results indicate that our method 
is favorable.
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INTRODUCTION 

Almost all physical processes encountered in nature are 
defined by various types of non-linear partial differential 
equations (NLPDEs). Many mathematical models are used 
to represent physical flows in various disciplines such as 
wave propagation, shallow water waves, reaction - diffusion 
models, biomechanical waves etc. [1]. Understanding the 
structure of these NLPDEs and seeking their solutions is of 

prime importance for scientists, as their solutions illuminate 
the way to understand the behavior of systems and help pre-
dict the development of the process in nature. Thus, many 
mathematicians focus their attention on solving NLPDEs. 
However, usually it is difficult to find their solutions ana-
lytically and sometimes it is almost impossible. Therefore 
many researchers have been working on to find efficient 
and high accurate numerical algorithms to overcome such 
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problems [2]. In this study, the class of partial differential 
equations (PDEs) of third order, which are not completely 
linear, is taken into account. This class also includes differ-
ent examples that have appeared recently in the literature 
and have been given outstanding motion wave solutions. 
These solutions consist of the sum of the exponential sums; 
we observe that these bases are seen in the presence of a 
linear inequality that appears to be a factor in motion wave 
reduction. In recent studies, it is seen that much attention 
has been paid to the development of numerical schemes. In 
this context, Claire Gilson and Andrew Pickering named 
the Gilson - Pickering (G-P) equation in 1995 developed 
a model [3]. Since this model has wide applications, it has 
recently managed to attract the attention of the scientific 
world. The model we consider in the study is as follows [4]:

    (1) 

where ε, κ, α, β are nonzero real constants. This equa-
tion includes many other nonlinear models, such as: 

a. Fuchssteiner-Fokas-Camassa-Holm equation [5,6], 
with ε = 1, α = −3 and β = 2, which is a completely inte-
grable nonlinear partial differential equation that arises at 
different levels of approximation in shallow water theory;

b. Fornberg-Whitham equation [7,8] with ε = 1, α = −1,  
κ = 0.5 and β = 3, which was developed to analyze the qual-
itative characteristics of wave breakage and admits a wave 
of the highest height;

c. Rosenau-Hyman equation [9,10], with  ε = 0, α = 1, κ 
= 0 and β = 3, which arises in the study of the influence of 
nonlinear dispersion on the structure of patterns in liquid 
drops.

When we use a transformation ξ = x − ct, Eq. (1) which 
is a PDE, can be written as 

Thus we convert the equation to the above non-linear 
ordinary differential equation (ODE) and the ODE can be 
written as the following system of autonomous ODEs

  (2)

This system has two equilibrium points 

 as (0,0,0) always satisfies

The evolution of such u(ξ) is presented in Figure 1.
Because of the great importance of G-P equation in non-

linear equations, many analytical methods have been used 
such as, Bernoulli sub-equation function method [11], a 
knot meshless method [12], first integral method [7],  G'/G 

method [13]. Exact travelling wave solutions of the G-P 
equation are investigated in [14]. Applicability of the first 
integral method to the regularized Gilson-Pickering equa-
tion under a parameter condition has been studied in [15]. 
H. M. Baskonus has applied an analytical method based 
on Bernoulli differential equation to extract new complex 
soliton solutions to the Gilson - Pickering model [16]. The 
invariance and multiplier approach has been applied to 
recover a few of the conserved quantities of the equation by 
G. Ebadi et al. [10,17]. But unfortunately, there are very few 
literature for G-P equation that focus on numerical studies. 
T. Ak et al. have discussed the quasiperiodic and chaotic 
behaviors of the perturbed Gilson-Pickering equation by 
analyzing phase portrait analysis, time series analysis and 
Poincare section [18]. The existence of smooth and non-
smooth travelling wave solutions under different paramet-
ric conditions are well studied here as well.

 The finite element method is one of the most effective 
techniques used in the solution of PDEs. B-spline basis func-
tions have drawn attention in the theory of approximation, 
solution of boundary- value problems and PDEs by consid-
ering numerical properties. These functions are very use-
ful for numerical calculations. Collocation method based 
on the B-spline basis functions is very effective technique 
in point of it has a programmable computation approach 
and easy to apply. Thus require less computational efforts 
by comparison other existent methods [19]. As collocation 
points increase in the collocation method, the problem will 
be met at more points that force the approximate solution 
to approach the exact solution. In these days, among vari-
ous numerical methods [20-25], finite element method is 
also commonly applied to the problems for numerical solu-
tions [26-43].

 In this work, we present collocation method with sep-
tic B-splines for the numerical solution of the G-P equa-
tion. The paper has been designated as follows: In Section 
2, we analyze Galerkin semi-discrete approximation for 
the G-P equation. In Section 3, a short discussion of septic 
B-splines is given. The proposed higher order B-spline col-
location scheme has been implemented to the G-P model 
in Section 4. Section 5 shows the stability analysis of the 
numerical scheme and it is followed by Section 6 which 
contains numerical examples of the behavior of single soli-
ton. Finally, in Section 7, a brief conclusion about the pre-
sented method is given.

Galerkin Semi-Discrete Approximation for the G-P 
Equation

In this section, we analyze optimal-order L²-error for 
a standard spatial Galerkin semi-discrete approximation 
considering a uniform mesh and smooth splines for the fol-
lowing G-P equation with the initial and boundary values

   (3)
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  (4)

   (5)

where  u0(x) is a given L = (b − a) -periodic function 
smooth enough.

We next establish the notation to be used throughout 
the article. For integer m ≥ 0,   we denote Hm (Ω)the Sobolev 
space of order m on Ω,  the subspace of  Hm (Ω) 
consisting of L-periodic functions. We denote  Cm (Ω), m 
≥ 0, m-times continuously differentiable functions on Ω 
and  L-periodic such functions, (•,•) denoted the 

inner product of L2 (Ω) and the corresponding norm by 
 and  L∞ (Ω) norms are indicated by  and 

 , respectively.

Here N is integer and 

. For integer 

r ≥ 2, we denote the N-dimensional space of L-periodic 

smooth spline

Figure 1. Solutions of (2): Here figures on the left (a and c) show initial evolutions for a set of parameters and the figures 
on the right (b and d) show long ξ behaviour of the solutions for another set of parameters. Here in figures (a and b) we 
vary k and in figures (c, and d) we vary α to demonstrate the solutions behaviour for long ξ.
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where  denote set of polynomials of degree less 

or equal to  r − 1 on Ji. The following statement for  is well 
known [44,45]:

Theorem If v is L-periodic and , 
then there exists a  such that

  (6)

and

  (7)

Also, for all , the following inverse properties 
hold

  (8)

  (9)

where C is a generic positive constant independent of h, 

but may hold different real values at different occasions. In 

[46], Thomée et al. demonstrated that there occurs a basis 

 of  with , in fact if v is a smooth 

enough L-periodic function, the associated quasi-interpo-

lant  satisfies

  (10)

Using the approximations (6)-(10), it can be seen that 
following result also possesses for quasi-interpolant. For 

 and , we 
have [45]

  (11)

  (12)

  (13)

Noting that  and 
taking integration by parts, we describe standard Galerkin 
semi-discretization of G-P equation as follows. We seek 

, for r ≥ 3 satisfying for  the equations:

   (14)

  (15)

In the same approach as [45], applying an energy proce-
dure we demonstrate an optimal-order L2 estimate for the 
error of semi-discrete approximation described by the ini-
tial-value problem (14)-(15).

Theorem Let u(x,t) be sufficiently smooth solutions of 

(3)-(5) in , h sufficiently small and r ≥ 3. Then, 
 of the semidiscrete nonlinear problem (14)-(15) on 

[0, T]such that

  (16)

holds where C is a constant independent of h.

Septic B-Spline Approximation
In the present work, G-P equation is assumed with 

the boundary conditions u → 0 while x → ±∞, x and t 
which generally denote time and space, respectively. To 
obtain the solution on the interval [a,b] division a = x0 < 
x1 < ⋯ < xN-1 < xN = b of the space domain is imagined 
scattered uniformly with  for m 
= 1, (1), N. The set of seventh degree B-spline functions 

, at the knots xm 
can be written on problem domain [a,b] as [47]:

   (17)

where a = (x − xm−4)7, b = (x − xm−3)7, c = (x − xm−2)7, 
d = (x − xm−1)7, e = (xm+4 − x)7, f = (xm+3 − x)7, g = (xm+2 
− x)7, h = (xm+1 − x)7. B-spline functions have some confi-
dental features like smoothness, local support and ability of 
handling local phenomena, which make them appropriate 
to solve linear and nonlinear partial differential equations 
easily and sensitively. Using septic B-spline basis functions 
give rise to a global solution for which both the functions 
and up to their sixth order derivatives are continuous [48]. 
Collocation method has two excellent advantages: estab-
lishing method does not include integrations and resulting 
matrix system is banded with small band width. Therefore, 
B-splines when associate with the collocation ensures a 
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simple solution procedure of partial differential equations 
[49].

Approximate solution uN(x,t) for analytical solution 
u(x,t) is sought in the following equality,

  (18)

where σm(t) are time dependent unknown coefficients 
specified from the boundary conditions [50]. The septic 
B-spline functions are employed to overcome the higher 
order derivatives in the equation and when the bases are 
chosen at a high degree, generally better numerical results 
are obtained [51]. Since each septic B-spline covers eight 
consecutive elements, each finite element interval  
is covered with eight septic B-spline functions. In each ele-
ment, applying the transformation  
to the spesific region  is planned to more easily 
practicable region [0,1]. Thus, septic B-splines depending 
on variable ξ over the finite element [0,1] are defined as 
[52]:

   (19)

Using Eq. (18) and septic B-splines (19), nodal values 
of um and its derivatives are calculated in terms of element 
parameters σm in the following form

   (20)

Implementation of Collocation Method
First of all, using (18) and (20) in Eq. (3), the follow-

ing general form equation is reached for the linearization 
technique:

   (21)

where 

and

Let’s assume that  is linearly interpolated using the 
Crank-Nicolson finite difference approach and its time 
derivative  is separated by the forward finite difference 
formula:

  (22)

Hence, the above operations allows us to derive a recur-
sion relationship between  and  for as [53]:

    (23)

where

   (24)

If we take a look at the algebraic system (23) we obtained 
above, the number of linear equations are less than the 
number of unknown coefficients, that is, the system con-
tains of (N + 1) equation (N + 7) unknown time dependent 
parameters. The simplest way to find a unique solution is 
to remove six unknowns  
from the system. This procedure is applied using the bound-
ary conditions with the values of u and after eliminating 
unknowns, following matrix-vector system is obtained

  (25)

where . Now, initial parameters σ0 
are established using initial condition and derivatives at the 
boundaries;

Thus, initial vector d0 can be determined in the follow-
ing system of algebraic equations in matrix form:

 

where 
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and

Stability Analysis
It is not easy to undertake the stability analysis of non-

linear partial differential equations. Most researchers solve 
with the problem by linearizing the partial differential 
equation [54]. We follow the Von-Neumann analysis for the 
stability of the scheme. In a typical amplitude mode, we can 
define the growth factor ξ of the error as follows:

  (26)

where , h is element size and k is mode number. 
Putting the Fourier mode (26) into the iterative system (23), 
which give the growth factor:

  (27)

where 

    (28)

and 

  (29)

 is obtained when we take the modulus of Eq. (27). 
In this way, we demonstrate that scheme (23) is uncondi-
tionally stable under the present conditions.

NUMERICAL APPLICATIONS AND RESULTS

In this section, in order to demonstrate the performance 
of our algorithm, some numerical examples are considered. 
Two sets of parameters have been used and discussed for 
numerical simulations of the motion of a single solitary 
wave with precise solutions. The performance of the pro-
posed method will be checked with the L2 and L∞ error 
norms given as [55]

   (30)

   (31)

G-P equation has only two invariants given by [56]

  (32)

Dispersion of a single solitary wave
The G-P equation has an exact solution of the form [57]

  (33)

where  and . Note that,  ε, κ, c 
and β are arbitrary real numbers. We will consider the G-P 
equation with the boundary-initial conditions which are

  (34)

where u → 0 as x → ±∞

Case 1 
For the first numerical calculation, we choose the 

quantities ε = 1, κ = −0.5, α = −3,  β = −1.5, c = 0.5, Δt = 
0.01 and h = 0.1 over the interval x ∈ [−10,10]. Numerical 
values of the invariants and error norms have been pre-
sented at some predefined times up to t = 1 in Table 1. It is 
observed from the table that the errors are noticeably small 
and invariants of solutions are almost unchanged as time 
grows. Numerical solution of single solitary wave is plotted 
at some fixed times from t = 0 to t = 1 in Figure 2. Curves 
are indistinguishable when numerical solution of a single 
wave with amplitude=-0.75 using presented algorithm is 
drawn in the same graphic at time t = 1. The continuous 
solution profile shown in the picture is found to be associ-
ated with the dispersing wave component of the solution in 
the figure. Also, distribution of error at time t = 1 has been 
depicted graphically in Figure 3.

Table 1. Here we present invariants which are conserved 
quantities and the relevant error norms for Case I.

t I1 I2 L2 L
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Case 2 
For the second numerical calculation, we consider the 

G-P equation with the parameters ε = 1, h = 0.1, κ = 1, α = 
−4,  β = −1, c = 0.5 and Δt = 0.01, to analyze the error norms 
and the quantities of the invariants for different space and 
time steps. In this case, single soliton has amplitude=0.83. 
Values of the invariants and error norms are presented in 
Table 2. Thus, we can see the effects of the amount of sort-
ing points on the numerical method more easily. The values 
of invariants and errors hardly change as time progresses. 
It is observed from the Table 2 that our method is credible 

and efficient. In Figure 4, propagation of single solitary 
wave is displayed. Further, Figure 4 shows that the method 
we use in our article performs the propagation motion of a 
single solitary wave to the desired extent, moves at a con-
stant speed, and maintains its shape and amplitude for a 
forward time as expected. Distribution of specific errors at 
time t = 1 are graphed in Figure 5.

Figure 2. Behavior of single soliton for Case 1.

Figure 3. Error distributions for the parameters of Table 1 
at t = 1.

Table 2. Invariant quantities and relevant error norms for 
Case 2.

t I1 I2 L2 L
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CONCLUSION 

In this paper, a finite element collocation scheme 
based on septic B-spline has been employed to investi-
gate the propagation of non-linear dispersive solitary wave 
solutions of the G-P model. At first, we study Galerkin 
semi-discrete approximation for the equation. We have 
shown that our linearized scheme is unconditionally stable. 
In order to make numerical experiments, the algorithm has 
been studied together with the single solitary wave motion 
considering known analytical solution. The performance 
and validness of numerical algorithm has been measured 
by computing both L2, L∞ error norms and I1, I2 invariants. 
The results of the examples verify that our error norms are 
satisfactorily small. We conclude that the numerical scheme 
proposed here to approximate the solutions of G-P model is 
powerful, efficient and high accurate technique for solving 

a wide class of non-linear evolutional partial differential 
equations that arise in various scientific and engineering 
research. Moreover, the present approach of this study can 
be applied to other nonlinear evolution equations arising in 
different fields of nonlinear science.
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