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Abstract 

The School Bus Routing Problem (SBRP) is a challenging optimization problem that has received 
increasing attention in recent years. The problem is composed of three sub-problems: facility location selection, 
assignment problem, and vehicle routing problem, which can be solved in a single stage or across multiple stages. 
In this study, we propose a novel two-stage approach to solve the SBRP that combines Fuzzy C Means (FCM) and 
K-means clustering algorithms with a Genetic Algorithm (GA). In the first stage, we used FCM and K-means to 
identify the optimal bus stop locations and assigned students to the nearest stop based on the distance metric. This 
two-stage approach reduces the search space and improves the efficiency of the GA in the second stage. In the 
second stage, we employed the GA to generate the optimal vehicle route that minimizes the total distance traveled 
by all vehicles.  We compared our results with those in the literature and found that the K Means-GA approach 
outperformed the previous results. However, the FCM-GA approach yielded significantly inferior results, 
indicating that the choice of clustering algorithm plays a crucial role in the performance of the overall system. Our 
study provides insights into the importance of selecting appropriate clustering algorithms for solving the SBRP 
and proposes a two-stage solution that can be easily implemented in real-world scenarios. Our approach reduces 
the computational time and provides an effective solution for reducing the total distance traveled by school buses. 
Keywords: LAR, SBRP, Genetic Algorithms, Fuzzy Clustering, K-means 
 

Introduction 
With urbanization, urban transportation has become a major concern for many large cities. However, 

public transit systems are often perceived as inefficient, leading people to rely on their own vehicles or taxis 
instead. In the context of school transportation, the inefficiency of school-provided transportation systems can 
result in an increase in private vehicle usage, which contributes to traffic congestion, air pollution, and 
environmental harm. Therefore, it is essential to develop efficient and cost-effective transportation systems for 
students that prioritize their comfort and safety while reducing the overall environmental impact. 

Several studies have addressed the school bus routing problem (SBRP) in recent years. These studies have 
proposed various mathematical models and metaheuristic algorithms to improve the efficiency of school 
transportation systems while balancing the service provider's costs and students' convenience. Some studies have 
considered factors such as students' travel patterns, class periods, and school bell times to optimize school bus 
routing. However, there is still room for improvement in terms of minimizing the walking distance of individuals 
and the total distance traveled by vehicles, especially in the context of the first cluster and second route approach. 
Miranda, de Camargo [1] have discussed SBRP by extending it with mixed loads. Oluwadare, Oguntuyi [2] 
proposed a Genetic Algorithm to solve the school bus route problem. Sun, Duan [3] addressed the school bus 
routing problem in a stochastic and time-dependent road environment.  

Mahmoudzadeh and Wang [4] tried to identify a feasible technique for scheduling the university shuttle 
fleet, considering students' travel patterns and class periods. The annual ridership data for 2018–2019 of the Texas 
A&M University (TAMU) shuttle system were utilized to detect unique weekday and weekend travel patterns. A 
clustering strategy was presented to create uniform departure times within the current schedules for on-campus 
and off-campus routes, considering the high student loads and graduate/undergraduate habits. [5] studied a case 
for the capacitated employee bus routing problem using data from a retail company. They constructed a 
mathematical model to minimize the total distance of bus routes. The number and location of bus stops was 
identified using k-means and fuzzy c-means clustering techniques. Then, due to the NP-Hard nature of the bus 
routing problem, simulated annealing (SA) and genetic algorithm (GA)-based solutions were presented. A hybrid 
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iterative local search (ILS) metaheuristic algorithm for SBRP with various planning scenarios, such as 
homogeneous or heterogeneous fleets, single load or mixed load modes of operation, is an attempt made in [6]. 
Pérez, Ansola [7] created a mathematical model based on literature and modified it such that metaheuristics could 
be used to solve it. 

Incorporating school bell times as decision variables rather than input data allowed them to extend the 
traditional school bus routing problem [8]. The authors used the Memetic algorithm to solve the proposed model 
and argue that changing school working hours (bell ringing times) is especially helpful in reducing transportation 
costs. Calvete, Galé [9] consider the SBRP if students are free to select the bus stop of their choice. It is created 
and presented to convert a two-stage optimization model to a single-level mixed integer linear programming 
(MILP) model. To address the issue, a straightforward and efficient metaheuristic algorithm has been created. 

Pérez, Sánchez-Ansola [10] introduced a novel method for reducing execution time, which is one of the 
factors considered while solving a problem using SBRP. Hou, Liu [11] proposed a local search-based metaheuristic 
algorithm framework for SBRP based on the analysis of SBRP problem models. The proposed framework provides 
metaheuristic development for the Capacitated Vehicle Routing Problem by reducing or modifying the constraints 
of SBRP. Experimental results of several examples show that the metaheuristic algorithm based on the proposed 
approach can be implemented quickly and applied to different SBRP applications.  

Feng, Zhang [12] proposed two strategies (mixed-load and single-load) for the mixed-load school bus 
routing problem (SBRP) to improve student commuting efficiency while reducing operational costs. A bi-level 
programming model was constructed to maximize school accessibility and minimize the number of school buses. 
The entropy-based weight method was used to evaluate the strategies, and case studies were conducted using 
school bus data in Dalian, China. [13] addressed SBRP with student input in bus stop selection. A bilevel 
optimization model with multiple followers was proposed and transformed into a single-level mixed integer linear 
programming model. A metaheuristic algorithm was developed to solve the problem, which involved solving four 
MILP problems to obtain upper bounds. Computational experiments using benchmark instances showed the 
algorithm was effective in terms of solution quality and required computing time.  

In this study, the School Bus Routing Problem (SBRP) was addressed in a two-stage approach. Initially, 
the Fuzzy C Means (FCM) method was utilized to identify the optimal locations for bus stops. Subsequently, 
students were assigned to the nearest bus stop. Alongside FCM, the K-means algorithm was also employed to 
pinpoint the optimal bus stop locations. In the second stage, the Genetic Algorithm (GA) was employed to generate 
the most efficient vehicle route with the goal of minimizing the total distance traveled by all vehicles. 

The remainder of this paper is organized as follows: In the second section, the literature review is 
presented. In the third section, the proposed approaches are introduced. The fourth part shows experimental results 
to compare the performances of the proposed approaches. Finally, the discussion and conclusions are presented. 
Material and Methods 

This section presents the materials and methods used in this study to solve the SBRP problem. The first 
part introduces the K Means algorithm used to identify the bus stop locations, while the second part explains the 
Fuzzy C-means (FCM) algorithm used as an alternative method. Additionally, the Genetic Algorithm (GA) is 
described to be utilized in the second stage. 
 
K-Means Algorithm 

The K-means method is an iterative technique that attempts to divide the dataset into K unique, non-
overlapping subgroups (clusters), where each data point belongs to only one group. It attempts to make intra-
cluster data points as comparable as feasible while maintaining clusters as distinct as possible. It allocates data 
points to a cluster such that the sum of the squared distance between the data points and the cluster's centroid (the 
arithmetic mean of all data points belonging to that cluster) is the smallest possible value. Data points within the 
same cluster are more homogenous (similar) the less variance there is within clusters. The implementation of the 
K-means algorithm is as follows ([14]: 

Step 1: Indicate the number of cluster K. 
Step 2: Initialize centroids by first shuffling the dataset and then picking K data points at random without 

replacement for use as centroids. 
Step 3: Repeat iterating until the centroids do not change. Thus, the assignment of data points to clusters 

remains unchanged. 
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Fuzzy C Means (FCM) 
The fuzzy C-Means method is a variant of the K-Means algorithm that employs fuzzy logic and seeks to 

find the least value of the objective function. It is possible for a data sample to belong to more than one cluster at 
the same time in FCM. Similarity is indicated by the membership value. In FCM, a membership value and a data 
sample are assigned based on cluster center and similarity ([15]. Membership values range from 0 to 1, and the 
higher the similarity, the higher the membership value. Steps of the Fuzzy C-Means algorithm are given in 
Equations 1-3 ([15].  
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where  𝑦) is the mean for that points over cluster i, ‖𝑥" − 𝑦#‖$ is a squared inner product distance norm, 
and 𝑚"#

!  represents the fuzzy partitions, where 𝑚"# denotes the membership degree that the ith data point belongs 
to the kth cluster and 𝜇 is a scalar for controlling the fuzziness of the resulting clusters. Besides, x represents the 
geographical X and Y coordinates. 

Step 1: Assign membership matrix 𝑀(+) = [𝑚"#]. 
Step 2: Compute cluster centers using Equation 2.  
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Step 3: Arrange membership values using Equation 3. 
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Step 4: If the differences in total costs estimated by consecutive membership matrices are less than the 
stopping criteria, the algorithm terminates. 

In those equations, k and N represent the number of clusters and students, respectively.  𝑥" means the 
coordinates of the student 𝑖, and 𝑦# means the coordinates of the cluster 𝑘. 
 
Genetic Algorithm (GA)   

Genetic algorithms are stochastic algorithms whose search techniques are based on biological genetics 
and natural evolution concepts. Holland first presented the fundamental ideas of genetic algorithms in 1975. 
Individuals in a population are represented as chromosomes in this methodology, and a sequence of genetic 
operations is performed. It is widely acknowledged that the possible solution to each problem is an individual who 
may be represented using a set of parameters. Every cell in nature contains chromosomes that make up the DNA 
of that cell. Chromosomes contain the genes that regulate a living organism's character differentiation. An 
individual or chromosome is the potential solution to a problem in a genetic algorithm. The population is made up 
of individuals. Population, on the other hand, refers to the sum of the genetic algorithm's solutions. Mating, 
mutation, and reproduction are all genetic processes that are employed in genetic algorithms. Genetic algorithms 
offer an ideal setting for tackling large-scale optimization challenges. Although it belongs to the class of 
probabilistic algorithms, it differs from random number generation methods. Genetic operators, such as mutation, 
can readily escape local optimal points in genetic algorithms ([16]. The details of the method are not provided in 
this paper because it is a well-known universal algorithm. 
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A typical GA focuses on two things: fitness function and solutions. Constraints cannot be defined as in 
linear programming ([17]. As a result, the solution space and fitness function must be suitably adjusted. The 
pseudocode of GA to solve the proposed SBRP is presented in Table 1.  
Table 1. Pseudo code of the applied metaheuristic algorithm for proposed SBRP 

Stage 0: 
Obtain student’s coordinates 𝑃" 
𝐶𝑎𝑝: capacity of the vehicle 

Stage 1: 
Find the cluster center with FCM 

Assign to 𝐶/ and 𝐶0 
Stage 2: 

𝑥123456 ← 𝑟𝑎𝑛𝑑𝑜𝑚(0,10) ∗ 𝑛 
Generate 𝑥123456 by GA  

Stage 3: 
Calculate distance between the 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒# =	 {𝑃" , 𝐶"} 

( 𝑤𝑎𝑙𝑘𝑖𝑛𝑔	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑠𝑡𝑢𝑑𝑒𝑛𝑡
67485-7

+(𝑡𝑜𝑡𝑎𝑙	𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	
29(

 

 

 

Cluster-First Route-Second Approach for School Bus Routing Problem 

 Mathematical Model for multi-vehicle SBRP  
The aim of the mathematical model is to design a system that will minimize the walking distance of each 

student to the assigned stops and minimize the total distance traveled by the vehicles. The mathematical model of 
the proposed SBRP problem is a bi-objective mixed integer location routing model. Even the single-objective 
location routing problem is an NP-hard problem because it combines the two problems, which are the facility 
location and vehicle routing problem and the location routing problem ([10]. Because the bi-objective position 
routing issue is more complicated, it is also NP-hard. The representation of the model, its parameters, and the 
decision variables are presented below. 

 
Model A: 
 

Table 2. Symbols used in the mathematical model 

Indices 

𝑚 indices of the student (m= 1,2,…M) 

𝑖, 𝑗 indices of the stops (i=1,2,3…𝐶") 

v vehicle 

Parameters 

𝐶" 𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡ℎ𝑒	𝑠𝑡𝑜𝑝 

𝑃:/ 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒	𝑣𝑎𝑙𝑢𝑒	𝑜𝑓	𝑡ℎ𝑒	𝑚7;	𝑠𝑡𝑢𝑑𝑒𝑛𝑡	𝑜𝑛	𝑡ℎ𝑒	𝑥 − 𝑎𝑥𝑖𝑠 

𝑃:0 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒	𝑣𝑎𝑙𝑢𝑒	𝑜𝑓	𝑡ℎ𝑒	𝑚7;	𝑠𝑡𝑢𝑑𝑒𝑛𝑡	𝑜𝑛	𝑡ℎ𝑒	𝑦 − 𝑎𝑥𝑖𝑠 

𝑊 𝑡ℎ𝑒	𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦	𝑜𝑓	𝑡ℎ𝑒	𝑣𝑒ℎ𝑖𝑐𝑙𝑒 

Models Variables 

𝑍"1 {𝑖𝑓	𝑡ℎ𝑒	𝑣𝑒ℎ𝑖𝑐𝑙𝑒	𝑣	𝑣𝑖𝑠𝑖𝑡𝑠	𝑡𝑜	𝑖7;	𝑠𝑡𝑜𝑝, 1		𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 0 

𝑌": {𝑖𝑓	𝑚7;	𝑠𝑡𝑢𝑑𝑒𝑛𝑡	𝑎𝑠𝑠𝑖𝑔𝑛𝑠	𝑡𝑜	𝑖7;	𝑠𝑡𝑜𝑝, 1		𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 0 

𝑑′": 𝑡ℎ𝑒	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	𝑖7;	𝑠𝑡𝑜𝑝	𝑎𝑛𝑑	𝑚7;	𝑠𝑡𝑢𝑑𝑒𝑛𝑡 
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𝑑′′") 𝑡ℎ𝑒	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	𝑖7;	𝑠𝑡𝑜𝑝	𝑎𝑛𝑑	𝑗7;	𝑠𝑡𝑜𝑝 

Decision Variables 

𝐶"/ 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒	𝑣𝑎𝑙𝑢𝑒	𝑜𝑓	𝑡ℎ𝑒		𝑖7;	𝑠𝑡𝑜𝑝	𝑜𝑛	𝑡ℎ𝑒	𝑥 − 𝑎𝑥𝑖𝑠 

𝐶"0 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒	𝑣𝑎𝑙𝑢𝑒	𝑜𝑓	𝑡ℎ𝑒		𝑖7;	𝑠𝑡𝑜𝑝	𝑜𝑛	𝑡ℎ𝑒	𝑦 − 𝑎𝑥𝑖𝑠 

𝑥")1 {𝑖𝑓	𝑡ℎ𝑒	𝑣𝑒ℎ𝑖𝑐𝑙𝑒	𝑣	𝑡𝑟𝑎𝑣𝑒𝑙𝑠	𝑓𝑟𝑜𝑚	𝑖7;	𝑠𝑡𝑜𝑝	𝑡𝑜	𝑗7;	𝑠𝑡𝑜𝑝, 1		𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 0 

 

Model: 

𝑧		 = ∑ ∑ 𝑑′": ∗ 𝑌":": +∑ ∑ ∑ 𝑑′′") ∗ 𝑥")11)"                                                                                   (4) 

𝑑′": = |𝑃:/ − 𝐶"/| + W𝑃:0 − 𝐶"0W ∀	𝑚, 𝑖                                                           (5) 

(𝑌":
"

= 1 																∀	𝑚                                                             (6) 

𝑑′′") = YZ𝐶"/ − 𝐶)/[
$ + Z𝐶"0 − 𝐶)0[

$
 																∀	𝑖, 𝑗                                                            (7) 

((𝑥")1
1"

= 1 																			∀	𝑗                                                            (8) 

((𝑥")1
1)

= 1 																			∀𝑖                                                             (9) 

( 𝑥")1

<#

"&+,)&+

\(𝑌":
:

] = 𝑊 																		∀	𝑣                                                            (10) 

(𝑥")1
"

= 𝑍)1 														∀	𝑗, 𝑣                                                            (11) 

(𝑥")1
)

= 𝑍"1 													∀	𝑖, 𝑣                                                            (12) 

(𝑥")1
"

=(𝑥);1
;

 													∀	𝑖, 𝑣                                                            (13) 

(𝑥+"1
"

=(𝑥)+1
)

= 1 																	∀	𝑣                                                           (14) 

Equation 4 expresses the objective function. It minimizes the walking distance of students and the total 
distance traveled by vehicles. Equation 5 and Equation 7 calculate the walking distance of students and the distance 
between cluster centers, respectively. Equation 6 checks that each student is assigned to only one cluster. Equations 
8–9 state that only one vehicle should be assigned between any two points. Equation 10 verifies that the number 
of students served by the vehicle along the entire route of each vehicle does not exceed the vehicle's capacity. 
Equations 11–12 state that a bus arriving at a bus stop also leaves the station and stops only on its route. Equation 
11 ensures that the flow of each vehicle is maintained. Equation 14 states that each bus departs from school and 
returns to school. Equations 15–16 are MTZ equations. 
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Miller-Tucker-Zemlin (MTZ) formulation uses an extra positive variable called as 𝑝". 𝑝" takes a value for 
each node except the school. If a vehicle is traveling from node 𝑖 to node 𝑗, 𝑝) must be greater than 𝑝". The value 
of 𝑝" 	grows with each subsequent call point. 
 

𝑝" − 𝑝) − 𝑛 ∗(𝑥")1

>

1

	≤ 𝑛 − 1 

 

2 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛	                                                  (15) 

0 ≤ 𝑢" ≤ 𝑛 − 1 
 

 

2 ≤ 𝑖 ≤ 𝑛                                                           (16) 

 

The process of selecting bus stops and generating bus routes is frequently referred to as a location-routing 
problem (LRP), which is an example of an NP-hard problem. An NP-hard problem is one for which there are no 
known polynomial-time algorithms that can provide an optimal solution for every instance of the problem. In such 
situations, dividing the problem into parts helps facilitate its resolution. 

The foundational "divide and conquer" approach served as the primary inspiration for the creation of this 
heuristic, which was built on that method. An assignment model is first solved to establish a cluster of pickup 
locations for each vehicle using the cluster-first and route-second approaches. Subsequently, the traveling 
salesman problem (TSP) is addressed for all clusters. Finally, a route is generated using the TSP solutions.  
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Figure 1. Sample cluster centers for n=10 

 

 
Figure 2. Sample cluster centers for n=40 

The results obtained from the fuzzy C-means algorithm under different conditions are presented in Figures 
1 and 2. Figure 1 depicts the cluster centers obtained for a scenario involving 10 bus stops, whereas Figure 2 
presents the cluster centers for a scenario with n = 40 bus stops. It is common practice to locate bus stops in parts 
of a community that have a high concentration of student inhabitants. The decision variables 𝐶"/ and 𝐶"0 in Model 
A may be derived from the outputs that are provided by the FCM. The last variable that must be determined is the 
one that is referred to as 𝑋")1.  
Route Generation 

The most expedient route is determined with the help of GA. An initial solution is chosen at random by 
the genetic algorithm. The resolution that was randomly given is called an initial chromosome. If we assume that 
the value of each gene (𝑟") falls somewhere between 0 and 1, then the composition of a chromosome with 5 stops 
is as follows: 

𝑋")1 = (𝑟', 𝑟$, … , 𝑟?) 

Each gene value is sorted from lowest to highest, and the final order of the rankings is kept. This rank 
indicates the order in which the bus stops are located along the route. When the number of students on the bus that 
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is making the stops exceeds the capacity of the vehicle, another bus is brought into service. There is a limit of one 
stop per bus when overbooking is permitted. 
Table 3. Route Generetion by GA 

1. Generate the initial solution 
2. Assign the vehicles to each bus stop 
3. Compute the objective function  

3.1.   Modify the solution by genetic operators 
3.2. Compute the objective function 

4. Kept the best solution 
The calculations are done based on the premise that the school serves as both the beginning and the finish 

point for the vehicle routes. The fundamental procedures that GA employs to determine the most efficient route 
are summarized in Table 3. 
Experimental Results and Discussion 

The dataset originally consisted of 112 cases, all of which were taken from [18]. Sample sizes vary 
anywhere from 5 stops and 25 students to 80 stops and 800 students. In addition, the dataset took into consideration 
a maximum of four different maximum walking distances. Since the maximum walking distance was not included 
as a parameter in this study, there were no experiments conducted to investigate the effects of varying the 
maximum walking distance. As a result, the experiments were only conducted in a total of 28 instances. The 
instances have a standard fleet of buses that can accommodate 25 or 50 students. 

The parameter values of the employed metaheuristic algorithm are shown in Table 4. The maximum value 
of the decision variable is set to 1 in GA, while the minimum value is set to 0. 

Table 4. Parameters of GA 

Parameters Values 
Max_num_iteration 1500 

Population_size 100 
Mutation_rate 0.1 

Elit_ratio 0.01 
Crossover_rate 0.5 
Parents_portion 0.3 
Crossover_type uniform 

Variable_bounds (0,1) 
Table 5 contains the results for the problem instances. The number of stops is indicated in the stop column. 

The Student column specifies the number of students served, while the CAP column indicates the bus capacity. 
The students are transported by a homogeneous fleet of vehicles of identical capacity. Total walking distance is 
shown by the total walking column, while total driving distance is indicated by the total driving distance.   

The Total driving* columns are vital to compare former_best and new_best value. As an example, the 
best value is found as 241.68 for Instance 09, which is found in this work; also, this value is obtained as 286.68 in 
[18] as seen in Table 5. It suggests that the proposed approach improves performance by 15.7%. 

The purpose of this research was not only to lower the total distance traveled by vehicles but also the total 
distance traveled by pedestrians. When the first phase of the clustering procedure is complete, it is verified that 
the students' stopping locations are placed at the geographically closest points to them. This reduces the amount 
of walking distance these students must travel. In addition, the predefined bus stop locations were used to find the 
optimal routes. 
Table 5. Results for FCM-GA 

    FCM & GA  
ID #Stop #Student CAP Total walking Total driving* Former_Best 
1 5 25 25 159.26 266.26 141.01 
2 5 25 50 151.88 250.60 161.62 
9 5 50 25 254.00 241.68 286.68 
10 5 50 50 254.00 229.09 197.20 
17 5 100 25 724.46 253.40 360.35 
18 5 100 50 600.96 256.95 304.23 
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25 10 50 25 318.48 251.60 282.12 
26 10 50 50 181.51 300.15 244.54 
33 10 100 25 464.19 482.80 403.18 
34 10 100 50 319.94 286.28 296.53 
41 10 200 25 970.05 468.94 735.27 
42 10 200 50 983.11 367.40 512.16 
49 20 100 25 354.82 478.61 520.24 
50 20 100 50 338.29 409.17 420.64 
57 20 200 25 409.17 647.29 903.84 
58 20 200 50 734.19 489.53 485.65 
65 20 400 25 1937.84 738.64 1323.35 
66 20 400 50 1937.84 594.74 733.54 
73 40 200 25 538.39 794.48 831.94 
74 40 200 50 631.57 771.73 593.35 
81 40 400 25 1292.30 1185.69 1407.05 
82 40 400 50 1333.54 829.79 858.80 
89 40 800 25 2607.60 1584.66 2900.14 
90 40 800 50 2736.71 1054.22 1345.70 
97 80 400 25 1196.71 2571.42 1546.23 
98 80 400 50 1038.53 2052.97 1048.56 
105 80 800 25 2139.61 2734.03 2527.96 
106 80 800 50 2405.05 2376.25 1530.58 

 

Table 5 displays the results of the suggested approach, indicating that favorable performance was 
achieved in 17 out of the 28 analyses. It is noteworthy that the "driving" column is of particular significance for 
the purpose of comparison, while the "walking" column represents an additional accomplishment that we aim to 
achieve. This is because students are required to walk less concurrently, which has had a notable impact on the 
identification of bus stop locations. Consequently, the search for the shortest driving distance is complicated by 
the need to consider the walking distance factor. Despite the multiplicity of focus points, the suggested approach 
still yielded better results in more than half of the instances. 

Table 6 demonstrates the results of the K-means and GA methodology, indicating that this strategy 
outperformed the suggested approach in 19 of the 28 evaluations. However, it is important to note that as the 
sample size grows, the two-stage strategy's performance has shown signs of deterioration. 
 

 

Table 6. Results for K means-GA 

K-means & GA 
ID #STOP #STUDENT CAP Total walking Total driving* Former_Best 
1 5 25 25 137.57 146.05 141.01 
2 5 25 50 276.78 157.07 161.62 
9 5 50 25 542.70 227.65 286.68 
10 5 50 50 387.76 182.66 197.20 
17 5 100 25 1096.30 262.52 360.35 
18 5 100 50 534.27 253.06 304.23 
25 10 50 25 421.21 225.63 282.12 
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26 10 50 50 301.48 281.13 244.54 
33 10 100 25 429.43 280.73 403.18 
34 10 100 50 433.37 271.95 296.53 
41 10 200 25 1278.26 422.71 735.27 
42 10 200 50 1570.33 375.02 512.16 
49 20 100 25 415.70 463.32 520.24 
50 20 100 50 434.92 417.95 420.64 
57 20 200 25 1266.32 625.01 903.84 
58 20 200 50 740.33 473.40 485.65 
65 20 400 25 1829.96 740.13 1323.35 
66 20 400 50 1723.89 499.52 733.54 
73 40 200 25 853.92 906.26 831.94 
74 40 200 50 600.75 702.89 593.35 
81 40 400 25 1198.97 1084.13 1407.05 
82 40 400 50 1463.16 926.50 858.80 
89 40 800 25 3065.63 1612.96 2900.14 
90 40 800 50 2810.92 1183.00 1345.70 
97 80 400 25 1197.36 2485.06 1546.23 
98 80 400 50 1059.77 2440.06 1048.56 
105 80 800 25 2244.93 2876.94 2527.96 
106 80 800 50 2488.89 2360.54 1530.58 

 

 

Figure 3. Comparison of the total walking distances 

This study aimed to compare the FCM and K-means clustering algorithms, as depicted in Figure 3. The 
graph illustrates the results obtained from each algorithm, and a detailed analysis of the graph revealed that the K-
means approach demonstrated superior efficiency in reducing the walking distance for students. 

Furthermore, Table 7 provides a comprehensive statistical summary of the proposed approaches. The K-
Means-GA approach yielded the best mean value of 817.28, surpassing the previous results reported in the 
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literature which stood at 817.945. However, given that the mean alone may not suffice for comparison purposes, 
the median value was also considered. Remarkably, the K-Means-GA approach also resulted in the smallest 
median value. 

In summary, the findings of this study provide evidence that the K-means clustering algorithm, 
particularly the K-Means-GA approach, is a promising method for optimizing bus stop locations and reducing 
walking distances for students. 
Table 7. Statistical summary of the proposed approaches 

 FCM-GA K-Means-GA Former_Best 

Mean 820.2983 817.2809 817.945 
Median 486.1672 468.3602 556.795 

Min 229.0923 146.0465 141.01 
Max 2734.026 2876.941 2900.14 

 
Discussion and Conclusion 

This paper presents a two-stage approach to the school bus routing problem, with the aim of reducing 
both the total distance traveled by vehicles and students. The first stage involves selecting suitable bus stops using 
the FCM and K-Means algorithms, while the second stage uses GA to plan bus routes. The dataset utilized in this 
study was obtained from an easily accessible source. The application process was conducted in a total of 28 distinct 
instances, wherein both the Fuzzy C Means and the GA implementations were employed to attain optimal 
outcomes. Analysis of the experimental results revealed that the proposed approach yielded significant advantages 
overall. 

The proposed approach offers decision makers possible solutions and trade-offs between the objectives. 
The study shows that the proposed approach offers significant benefits, including a considerable reduction in 
solution time. However, there are some limitations, such as the lack of coordination across phases' objective 
functions. 

A brief summary of the fundamental points outlined in this study is presented below.: 
• The proposed two-stage approach reduces solution time and enables modifications at any stage. 
• Overbooking is a common occurrence in real-life scenarios, but it is rarely discussed in the SBRP 

literature. 
• The unchangeable rule that prohibits exceeding the maximum capacity of a vehicle's seating 

capacity has been loosened in this study. 
• The first bus stop locations are uncertain, and there is no available sequence of potential bus 

stops. 
In future studies, it may be beneficial to investigate a method that integrates both objective functions into 

a single phase, potentially enhancing the efficiency and effectiveness of the solution. However, it is important to 
note that the utilization of a goal programming approach in a one-step process may result in an increased level of 
complexity in the problem formulation and solution procedure. Thus, the aim of any such approach should be to 
provide reasonable and convincing results in a practical and feasible manner.  
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