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INTRODUCTION 

The concept of fuzzy sets was initiated by Zadeh [13], 
which gave a new aspect to research activity leading to the 
improvement of fuzzy systems. Afterward, several research-
ers contributed towards some basic significant results in 
fuzzy sets.

Kramosil and Michalek [11] introduced the concept of 
fuzzy metric spaces by generalizing the concepts of prob-
abilistic metric spaces to fuzzy metric spaces. George and 
Veeramani [15] derived a Hausdorff topology initiated by a 
fuzzy metric to modify the concept of fuzzy metric spaces. 
Later on, fixed point theory via a fuzzy metric has been 
enriched with several different generalizations. Garbiec 

[26] displayed the fuzzy version of the Banach contraction
principle in fuzzy metric spaces. For some necessary defi-
nitions, examples, and basic results, we refer to [13, 14] and
the references therein.

As we know, fixed point theory plays a crucial role in 
proving the existence of solutions of different mathemati-
cal models and has a wide range of applications in differ-
ent fields related to mathematics. This theory has intrigued 
many researchers. Recently, Harandi [17] initiated the con-
cept of metric-like spaces, which generalizes the notion 
of metric spaces in a nice way. Alghamdi et al. [2] used 
the concept metric-like spaces to introduce the notion 
of b-metric-like spaces. Since then, several authors have 
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worked on metric-like spaces and b-metric-like spaces. For 
more details, refer to [5-8]. In this sequel, Shukla and Abbas 
[2] generalized the concept of metric-like spaces and intro-
duced fuzzy metric-like spaces. Recently, Javed et al. [27] 
introduced the concept of fuzzy b-metric-like spaces and 
they proves several fixed point results. For more details on 
this topic, please see [1, 3, 4, 10, 11, 17, 20, 28-34]. Eshaghi 
Gordji et al. [21] introduced the concept of orthogonal sets. 
More details can be found in [22-25].

 In this article, we aim to generalize the concept of 
fuzzy b-metric-like spaces by introducing orthogonal fuzzy 
b-metric-like spaces. We also prove some related fixed 
point results in the setting of orthogonal fuzzy b-metric-like 
spaces. Moreover, we give examples and an application of 
fractional differential equations to support our obtained 
results that shows the superiority of present notions in the 
existing literature.

 First, we write some shortcut notations used through-
out this paper: CTM for continuous triangular norm, BML 
for b-metric-like, FML for fuzzy metric-like, FBM for fuzzy 
b-metric, FBML for fuzzy b-metric-like, and s.t. for such 
that.

Definition 1.1. [1] A binary operation ∗ : [0, 1] × 
[0, 1] → [0, 1] is called a CTM if it satisfies the following 
assertions: 
1. 𝑎 ∗ 𝑏 = 𝑏  ∗ 𝑎 , (∀) 𝑎 , 𝑏 ∈ [0, 1];
2. 𝑎 ∗ 1 = 𝑎 , (∀) 𝑎  ∈ [0, 1];
3. (𝑎 ∗ 𝑏 ) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐), (∀) 𝑎 , 𝑏 , 𝑐 ∈  [0, 1];
4. If 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑑, with 𝑎 , 𝑏 , 𝑐, 𝑑 ∈ [0, 1], then 𝑎 ∗ 𝑏 ≤  

𝑐 ∗ 𝑑.
Some fundamental examples of a t-norm are 𝑎 ∗ 𝑏 = 𝑎  ∙ 

𝑏 , 𝑎 ∗ 𝑏  = min {𝑎 , 𝑏 } and 𝑎 ∗ 𝑏 = max{𝑎 + 𝑏 − 1, 0} . 
Definition 1.2. [2] A BML on a set К ≠ ⏀ is a function 

𝜇: К × К → [0, + ∞) so that for all 𝑒, 𝑘, 𝑧 ∈ К and 𝑢 ≥ 1, it 
satisfies the following conditions:
1. If 𝜇(𝑒, 𝑘) = 0 ⇒ 𝑒 = 𝑘;
2. 𝜇(𝑒, 𝑘) = 𝜇(𝑘, 𝑒);
3. 𝜇(𝑒, 𝑘) ≤ 𝑢 [𝜇(𝑒, 𝑧) + 𝜇(𝑧, 𝑘)].

The pair (К, 𝜇) is called a BML space.
Example 1.1. [2] Let К = [0, ∞). Define 𝜇: К × К → [0, 

+ ∞) by

𝜇(𝑒, 𝑘) = (𝑒 + 𝑘)2.

Then (К, 𝜇) is called a BML space with 𝑢 = 2.
Example 1.2. [2] Let К = [0, ∞). Define 𝜇: К × К → [0, 

+ ∞) by

𝜇(𝑒, 𝑘) = (max {𝑒, 𝑘} )2.

Then (К, 𝜇) is a BML space with 𝑢 = 2.
Definition 1.3. [3] A 3-tuple (К, 𝛥,∗) is said to be an 

FML space if К ≠ ⏀ is a random set, ∗ is a CTM and 𝛥 is a 
fuzzy set on К × К × (0, ∞) meeting the points below for 
all 𝑒, 𝑘, 𝑧 ∈ К, 𝑟, 𝑠 > 0:

FL1) 𝛥(𝑒, 𝑘, 𝑟) > 0;
FL2) If 𝛥(𝑒, 𝑘, 𝑟) = 1, then 𝑒 = 𝑘;
FL3) 𝛥(𝑒, 𝑘, 𝑟) = 𝛥(𝑘, 𝑒, 𝑟);

FL4) 𝛥(𝑒, 𝑧, 𝑟 + 𝑠 ) ≥ 𝛥(𝑒, 𝑘, 𝑟) ∗ 𝛥(𝑘, 𝑧, 𝑠 );
FL5) 𝛥(𝑒, 𝑘, ∙ ): (0, ∞) → [0,1] is continuous. 
Example 1.3. [3] Let К = ℝ+ , 𝑝 ∈ ℝ+  and 𝑚 > 0. Define 

a t-norm by 𝑎 ∗ 𝑏 = 𝑎 𝑏 and the fuzzy set 𝛥 on К × К × (0, 
∞) by

Then (К, 𝛥,∗) is an FML space.
Definition 1.4. [14] A 3-tuple (К, 𝛥,∗) is said an FBM 

space if К is a random (non-empty) set, ∗ is a CTM and 𝛥 is 
a fuzzy set on К × К × (0, ∞) meeting the points below for 
all 𝑒, 𝑘, 𝑧 ∈ К, 𝑟, 𝑠 > 0 and a provided real number 𝑢 ≥ 1;

FB1) 𝛥(𝑒, 𝑘, 𝑟) > 0;
FB2) 𝛥(𝑒, 𝑘, 𝑟) = 1 iff 𝑒 = 𝑘;
FB3) 𝛥(𝑒, 𝑘, 𝑟) = 𝛥(𝑘, 𝑒, 𝑟);

FB4) 

FB5) 𝛥(𝑒, 𝑘, ∙ ): (0, ∞) → [0,1] is continuous.

Example 1.4. [5]  where 𝑝 > 1
is a real number. It is then simple to show that 𝛥 is an FBM 
with 𝑏 = 2𝑝 − 1.

Definition 1.5. [27] A 4-tuple (К, 𝛥,∗, 𝑢 ) is named as an 
FBML space if К ≠ ⏀ is a random set, ∗ is a CTM and 𝛥 is 
a fuzzy set on К × К × (0, ∞) meeting the following points 
below for all 𝑒, 𝑘, 𝑧 ∈ К, 𝑟, 𝑠 > 0:

B1) 𝛥(𝑒, 𝑘, 𝑟) > 0;
B2) If 𝛥(𝑒, 𝑘, 𝑟) = 1, then 𝑒 = 𝑘;
B3) 𝛥(𝑒, 𝑘, 𝑟) = 𝛥(𝑘, 𝑒, 𝑟);
B4) 𝛥(𝑒, 𝑧, 𝑢 (𝑟 + 𝑠 )) ≥ 𝛥(𝑒, 𝑘, 𝑟) ∗ 𝛥(𝑘, 𝑧, 𝑠 ), for 𝑢 ∈ ℕ;
B5) Ω(𝑒, 𝑘, ∙ ): (0, ∞) → [0,1] is continuous.
Example 1.5 [27] Take К = (0, ∞) . Given a t-norm as 

𝑎 ∗ 𝑏 = 𝑎 𝑏 , then 

is a FBML. But, it is not a FBM.
Lemma 1.1. [9] If for some 𝑣 ∈ (0,1) and 𝑒, 𝑘 ∈  К, 

 

then 𝑒 = 𝑘.
Definition 1.6. [21] Assume that К ≠ ⏀and ⊥∈  К × К 

is a binary relation. Suppose there exists 𝑒0 ∈  К such that 
𝑒0 ⊥ 𝑒 or 𝑒 ⊥ 𝑒0 for all 𝑒 ∈ К. Thus, we say that К is an 
orthogonal set (O-set). Further, we denote an orthogonal 
set by (К, ⊥). 

Example 1.6.
i. Let К = [0, ∞) and define 𝑒 ⊥ 𝑘 if 𝑒𝑘 = min {𝑒, 𝑘} ,

then by putting 𝑒0 = 1, (К, ⊥) is an O-set.
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ii. Suppose 𝛥 is the set of scalar matrices of order 2 × 2 
with entries from natural numbers (i.e. ,  
for all 𝑎 ∈ 𝑁). Define the relation ⊥ by

𝐴 ⊥ 𝐵 if det(𝐴 ) ≤ det(𝐵 ).
Then by taking 𝐴 = 𝐼, (𝑄, ⊥) is an O-set.
Definition 1.7. [21] Suppose that (К, ⊥) is an O-set. A 

sequence {𝑒𝑛}  for all 𝑛 ∈ ℕ is called an O-sequence if (∀𝑛,
𝑒𝑛 ⊥ 𝑒𝑛+ 1) or (∀𝑛, 𝑒𝑛+ 1 ⊥ 𝑒𝑛).

Definition 1.8. [21] A metric space (К, 𝑑) is an orthog-
onal metric space if (К, ⊥) is an O-set. Further, 𝜁: К → К is 
⊥-continuous at 𝑒 ∈ К if for each O-sequence {𝑒𝑛}  for all 𝑛 ∈  
ℕ in К so that  then  
Furthermore, 𝜁 is ⊥-continuous if 𝜁 is ⊥-continuous at each 
𝑒 ∈ К. Also, 𝜁 is ⊥-preserving if 𝜁𝑒 ⊥ 𝜁𝑘, whence 𝑒 ⊥ 𝑘 . 
Finally, К is orthogonally complete (O-complete) if every 
Cauchy O-sequence is convergent.

RESULTS AND DISCUSSIONS

In this section, we introduce orthogonal BML spaces 
and orthogonal FBML spaces. We will prove some fixed 
point results in the class of orthogonal FBML spaces.

Definition 2.1. Let К ≠ ⏀ be an orthogonal set and 𝑢 ≥ 
1. A function 𝑑: К × К → ℝ+  is called orthogonal BML if it 
meets the below points: ∀ 𝑒, 𝑘, 𝑧 ∈ К,

OB1) If 𝑑(𝑒, 𝑘) = 0 ⇒ 𝑒 = 𝑘 such that 𝑒 ⊥ 𝑘 and 𝑘 ⊥ 𝑒;
OB2) 𝑑(𝑒, 𝑘) = 𝑑(𝑘, 𝑒) such that 𝑒 ⊥ 𝑘 and 𝑘 ⊥ 𝑒;
OB3) 𝑑(𝑒, 𝑘) ≤ 𝑢 [𝑑(𝑒, 𝑧) + 𝑑(𝑧, 𝑘)] such that 𝑒 ⊥ 𝑧, 𝑧

⊥ 𝑘 and 𝑒 ⊥ 𝑘.
Then the set К is named an orthogonal BML space and 

is denoted by (К, 𝑑, 𝑢 , ⊥).
Example 2.1. Let К = ℝ . The set К is orthogonal if 𝑒 ⊥

𝑘 iff e, k∈  {|𝑒|, |𝑘|} . Define 𝑑(𝑒, 𝑘) = (𝑒 + 𝑘)𝑝  for all 𝑒, 𝑘
∈  К, where 𝑝 belongs to the set of natural numbers. Clearly, 
𝑑 is an orthogonal BMLike space. But, it is not a metric-like 
space. It suffices to take 𝑒, 𝑘 ∈  ℝ−  and an odd 𝑝 , then clearly 
𝑑(𝑒, 𝑘) is not in ℝ+ .

Remark 2.1. Every BML space is an orthogonal BML 
space, but the converse is not true.

Definition 2.2. A 5-tuple (К, 𝛥,∗, 𝑢 , ⊥) is called an 
orthogonal FBML space if К ≠ ⏀ is a random orthogonal 
set (К, ⊥), ∗ is a CTM and 𝛥 is a fuzzy set on К × К × 
(0, ∞) meeting the following points below (for a given real 
number 𝑢 ≥ 1);

𝐵 ⊥L1) 𝛥(𝑒, 𝑘, 𝑟) > 0, ∀ 𝑒, 𝑘 ∈ К, 𝑟 > 0 such that 𝑒 ⊥ 𝑘
and 𝑘 ⊥ 𝑒;

𝐵 ⊥L2) 𝛥(𝑒, 𝑘, 𝑟) = 1 ⇒  𝑒 = 𝑘, ∀ 𝑒, 𝑘 ∈ К, 𝑟 > 0 such 
that 𝑒 ⊥ 𝑘 and 𝑘 ⊥ 𝑒;

𝐵 ⊥L3) 𝛥(𝑒, 𝑘, 𝑟) = 𝛥(𝑘, 𝑒, 𝑟), ∀ 𝑒, 𝑘 ∈ К, 𝑟 > 0 such that 
𝑒 ⊥ 𝑘 and 𝑘 ⊥ 𝑒;

𝐵 ⊥L4) 𝛥(𝑒, 𝑧, 𝑢 (𝑟 + 𝑠 )) ≥ 𝛥(𝑒, 𝑘, 𝑟) ∗ 𝛥(𝑘, 𝑧, 𝑠 ), ∀ 𝑒, 𝑘,
𝑧 ∈ К, 𝑟, 𝑠  > 0 such that 𝑒 ⊥ 𝑘, 𝑘 ⊥ 𝑧

and 𝑒 ⊥ 𝑧;
𝐵 ⊥L5) 𝛥(𝑒, 𝑘, ∙ ): (0, ∞) → [0,1] is continuous, ∀ 𝑒, 𝑘 ∈  

К such that 𝑒 ⊥ 𝑘 and 𝑘 ⊥ 𝑒.

Example 2.2. Let К = ℝ and define a t-norm as 𝑎 ∗ 𝑏 = 
𝑎 . 𝑏 . Given a binary relation ⊥ as: 𝑒 ⊥ 𝑘 iff 𝑒, 𝑘 ∈  {|𝑒|, |𝑘|} , 
then for all 𝑒, 𝑘 ∈  К, 𝑟 > 0 and 𝑝 belongs to odd positive 
integer,

is an orthogonal FBML. But, clearly it is not an FBML.
Proof. (𝐵 ⊥L1), (𝐵 ⊥L2), (𝐵 ⊥L3) and (𝐵 ⊥L5) are obvious. 

Here, we prove (𝐵 ⊥L4). For an arbitrary integer 𝑢 , we know 
that

Now, we shall show that (К, 𝛥,∗, 𝑢 ) is not an FBML 
space. For 𝑒, 𝑘 ∈  К, from (B4),

𝛥(𝑒, 𝑧, 𝑢 (𝑟 + 𝑠 )) ≥ 𝛥(𝑒, 𝑘, 𝑟) ∗ 𝛥(𝑘, 𝑧, 𝑠 ), ∀ 𝑒, 𝑘, 𝑧 ∈ К, 𝑟, 𝑠  > 0.

We have

In particular, assume that  and 𝑒
= 𝑘 = 𝑧 = − 1, then

which is a contradiction.
Example 2.3. Let К = ℝ and define a t-norm as 𝑎 ∗ 𝑏 = 

𝑎 𝑏 . Given the binary relation ⊥ as 𝑒 ⊥ 𝑘 iff 𝑒, 𝑘 ∈  {|𝑒|, |𝑘|} . 
Then for all 𝑒, 𝑘 ∈  К, 𝑟 > 0,

 belongs to odd positive integer),
is an orthogonal FBML. But, clearly it not an FBML.
Proof. (𝐵 ⊥L1), (𝐵 ⊥L3) and (𝐵 ⊥L5) are obvious. Here, 

we prove (𝐵 ⊥L2) and (𝐵 ⊥L4). We have

𝛥(𝑒, 𝑘, 𝑟) = 1
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Then 𝛥 is an orthogonal BML. This implies that 𝑒 = 𝑘.
Now, assume that 𝜇(𝑒, 𝑘) = (𝑒 + 𝑘)𝑝 . Then

 

Hence, (𝐵 ⊥L2) and (𝐵 ⊥L4) are satisfied and (К, 𝛥,∗, 𝑢 ,
⊥) is an orthogonal FBML space . Now, we prove that (К, 
𝛥,∗, 𝑢 ) is not an FBML space. From (B4),

𝛥(𝑒, 𝑧, 𝑢 (𝑟 + 𝑠 )) ≥ 𝛥(𝑒, 𝑘, 𝑟) ∗ 𝛥(𝑘, 𝑧, 𝑠 ), ∀ 𝑒, 𝑘, 𝑧 ∈ К, 𝑟, 𝑠  > 0.

We have

In particular, assume that  and 𝑒
= 𝑘 = 𝑧 = − 1. Then

This is wrong.
Remark 2.2. Every FBML space is an orthogonal FBML 

space, but the converse is not true.
Definition 2.3. A sequence {𝑒𝑛}  in an orthogonal FBML 

space (К, 𝛥,∗, 𝑢 , ⊥) is named to be convergent to 𝑒 ∈ К, if

Definition 2.4. A sequence {𝑒𝑛}  in an orthogonal FBML 
space (К, 𝛥,∗, 𝑢 , ⊥) is named to be Cauchy if

exists and is finite.
Definition 2.5. 𝜁: К → К is ⊥-continuous at 𝑒 ∈ К

in an orthogonal FBML space (К, 𝛥,∗, 𝑢 , ⊥) if for each 
O-sequence {𝑒𝑛}  for all 𝑛 ∈ ℕ in К,  exists 
and is finite for all 𝑟 > 0, then  exists and 
is finite for all  𝑟 > 0. Furthermore, 𝜁 is ⊥-continuous if 𝜁
is ⊥-continuous at each 𝑒 ∈ К. Also, 𝜁 is ⊥-preserving if 𝜁𝑒

⊥ 𝜁𝑘, whence 𝑒 ⊥ 𝑘 . Finally, К is orthogonally complete 
(O-complete) if every Cauchy O-sequence is convergent.

Definition 2.6. An orthogonal FBML space (К, 𝛥,∗, 𝑢 ,
⊥) is said to be complete if every Cauchy sequence {𝑒𝑛}  in 
К, converges to some 𝑒 ∈ К such that

Definition 2.7. Let (К, 𝛥,∗, 𝑢 , ⊥) be an orthogonal 
FBML space. A map 𝜁: К → К is an orthogonal contraction 
if ∃ 𝑞 ∈ (0,1) such that for every 𝑟 > 0 and 𝑒, 𝑘 ∈  К with 𝑒
⊥ 𝑘, we have

  (1)

Theorem:2.1. Assume (К, 𝛥,∗, 𝑢 , ⊥) is an orthogonal 
complete FBML space such that

Let 𝜁: К → К be ⊥-continuous, ⊥-contraction and 
⊥-preserving. Then, 𝜁 has a unique fixed point 𝑒∗ ∈  К. 
Furthermore,

Proof: Since (К, 𝛥,∗, 𝑢 , ⊥) is an Orthogonal complete 
FBML space, there exists 𝑒0 ∈  К such that 

  (2)

That is, 𝑒0 ⊥ 𝜁𝑒0. Assume that

Since 𝜁 is ⊥-preserving, {𝑒𝑛}  is an O-sequence. Now, 
since 𝜁 is an ⊥-contraction, we can get

for all 𝑛 ∈ 𝑁 and 𝑟 > 0. Note that 𝛥 is b-nondecreasing 
on (0, ∞). Therefore, by applying the above expression, we 
can deduce

  
(3)

for all 𝑟 > 0. Thus, from (3), we have 

  
(4)
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Here,  𝑢 is  an arbitrary positive integer. We know that 
 ∀ 𝑒, 𝑘 ∈  К and 𝑟 > 0.Thus, from (4), 

we get

So, {𝑒𝑛}  is a Cauchy O-sequence. The hypothesis of 
O-completeness of the FBML space (К, 𝛥,∗, 𝑢 , ⊥) ensures 
that there exists 𝑒∗ ∈  К such that 𝛥(𝑒𝑛, 𝑒∗, 𝑟) → 1 as 𝑛 →
+ ∞, ∀ 𝑟 > 0. Now, since 𝜁 is an ⊥-continuous mapping, 
one writes 𝛥(𝑒𝑛+ 1, 𝜁𝑒∗, 𝑟) = 𝛥(𝜁𝑒𝑛, 𝜁𝑒∗, 𝑟) → 1 as 𝑛 →+ ∞. 
Now, we have

Taking limit as 𝑛 → + ∞, we get 𝛥(𝑒∗, 𝜁𝑒∗, 𝑟) = 1 ∗ 1 =
1, and hence 𝜁𝑒∗ = 𝑒∗. Therefore, 𝑒∗ is a fixed point of 𝜁 and 
𝛥(𝑒∗, 𝑒∗, 𝑟) = 1, ∀ 𝑟 > 0.

Now, we show the uniqueness of the fixed point of the 
mapping 𝜁. Assume that 𝑒∗ and 𝑘∗ are two fixed points of 𝜁
such that 𝑒∗ ≠ 𝑘∗. One writes

Since 𝜁 is ⊥-preserving, we get

for all 𝑛 ∈ 𝑁. So from (1), we can derive

 and

Consequently,

So, 𝑒∗ = 𝑘∗, hence 𝑒∗ is the unique fixed point.
Corollary 2.1. Let (К, 𝛥,∗, 𝑢 , ⊥) be an O-complete fuzzy 

b-metric space. Let 𝜁: К → К be an ⊥- contraction and ⊥-pre-
serving. Also, assume that if {𝑒𝑛}  is an O-sequence with 𝑒𝑛
→ 𝑒 ∈ К, then 𝑒 ⊥ 𝑒𝑛 for all 𝑛 ∈ ℕ. Then, 𝜁 has a unique fixed 
point 𝑒∗ ∈  К. Furthermore,  , 
for all 𝑒 ∈ К and 𝑟 > 0.

Proof: We can similarly derive as in the proof of 
Theorem 2.1 that {𝑒𝑛}  is a Cauchy sequence and converges 
to 𝑒∗ ∈  К. Hence, 𝑒∗ ⊥ 𝑒𝑛 for all 𝑛 ∈ ℕ. From (1), we can get

and

Thus,

Taking limit as 𝑛 → + ∞, we get 𝛥(𝑒∗, 𝜁𝑒∗, 𝑟) = 1 ∗ 1
= 1, and hence 𝜁𝑒∗ = 𝑒∗. The rest of proof is similarly as in 
Theorem 2.1.

Example 2.4. Let К = [− 2, 2] and define a binary rela-
tion ⊥ by 

Define 𝛥 by

Take the t-norm:  𝑎 ∗ 𝑏 = 𝑎 . 𝑏 . Then 𝛥 is an orthogonal 
complete FBML space, but it is not a FBML space.  Also, 
observe that  ∀ 𝑒, 𝑘 ∈  К.

Define 𝜁: К → К by

Then, it satisfies the following:

We have 𝑒 ⊥ 𝑘 ⟺ 𝑒, 𝑘 ∈ {|𝑒|, |𝑘|} . This implies that 
𝜁(𝑒), 𝜁(𝑘) ∈ {|𝜁(𝑒)|, |𝜁(𝑘)|} . Hence 𝜁 is ⊥-preserving. Let 
{𝑒𝑛}  be an arbitrary o-sequence in К that {𝑒𝑛}  converges to 
𝑒 ∈ К. We have

as {𝑒𝑛}  converges to 𝑒. We can easily see that if 
 exists and is finite, then  

exists and is finite for all 𝑒 ∈ К and 𝑟 > 0. Hence, 𝜁  is 
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orthogonally continuous. But,  𝜁 is not continuous. For this,  
take 𝑒𝑛, 𝑒 ∈ [− 2, 0], so

𝐴 𝑠 𝑒𝑛 → 𝑒 as 𝑛 → ∞ and taking 𝑒 = − 2, we have 
 which is wrong. We have 4 cases 

for 

Case 1) If 𝑒 ∈ [− 2, 0] and 𝑘 ∈ (0, 2]. Then  
. We have

Case 2) If 𝑒, 𝑘 ∈  [− 2, 0], then  We 
have

Case 3) If 𝑒, 𝑘 ∈  (0, 2], then 𝜁𝑒 = 0 and 𝜁𝑘 = 0. We have

Case 4) If 𝑒 ∈ (0, 2] and 𝑘 ∈ [− 2, 0], then 𝜁𝑒 = 0 and 
 Here, 

From all 4 cases, we obtain that

Hence, 𝜁 is an orthogonal contraction. But, 𝜁 is not a 
contraction. Indeed, taking 𝑒 = − 2 and 𝑘 = 1, one gets

This is wrong.
All the conditions of Theorem 2.1 are satisfied and 𝜁 has 

a unique fixed point, which is 0.
Theorem 2.2. Assume that (К, 𝛥,∗, 𝑢 , ⊥) is an orthogo-

nal complete FBML space such that

 

Let 𝜁: К → К be an ⊥-continuous, ⊥-contraction and 
⊥-preserving. Suppose that there exist  and  𝑟 >
0 such that

ffor all 𝑒, 𝑘 ∈  К, 𝑟 > 0. Then 𝜁 has a unique fixed point 
𝑒∗ ∈  К.

Proof. Since (К, 𝛥,∗, 𝑢 , ⊥) is an orthogonal complete 
FBML space, there exists 𝑒0 ∈  К such that 

  (2)

Thus, 𝑒0 ⊥ 𝜁𝑒0. Consider, 

Since 𝜁 is ⊥-preserving, {𝑒𝑛}  is an O-sequence. Note 
that 𝛥 is b-nondecreasing on (0, ∞), so 

Two cases occur:
Case 1. If 𝛥(𝑒𝑛+ 1, 𝑒𝑛, 𝑟) ≥ 𝛥(𝜁𝑒𝑛, 𝑒𝑛, 𝑟), then

𝛥(𝑒𝑛+ 1, 𝑒𝑛, 𝑟) ≥ 𝛥(𝑒𝑛+ 1, 𝑒𝑛, 𝑞 𝑟) ≥  𝛥(𝜁𝑒𝑛, 𝑒𝑛, 𝑟) = 𝛥(𝑒𝑛+ 1, 𝑒𝑛, 𝑟).

Then by Lemma 1.1, we get 𝑒𝑛 = 𝑒𝑛+ 1 for all 𝑛 ∈ ℕ and 
𝑟 > 0.

Case 2. If 𝛥(𝑒𝑛+ 1, 𝑒𝑛, 𝑟) ≥ 𝛥(𝜁𝑒𝑛− 1, 𝑒𝑛− 1, 𝑟), then

𝛥(𝑒𝑛+1, 𝑒𝑛, 𝑟) ≥ 𝛥(𝑒𝑛+1, 𝑒𝑛, 𝑞 𝑟) ≥ 𝛥(𝜁𝑒𝑛−1, 𝑒𝑛−1, 𝑟) ≥ 𝛥(𝑒𝑛, 𝑒𝑛−1, 𝑟)

for all 𝑛 ∈ ℕ and 𝑟 > 0. Then by Theorem 2.1, {𝑒𝑛}  is a 
Cauchy orthogonal sequence. By completeness of (К, 𝛥,∗,
𝑢 , ⊥), there exists 𝑒∗ ∈  К such that

We know that 𝜁 is an ⊥-continuous mapping, then

Now, we prove that 𝑒∗ is a fixed point for 𝜁. Let 𝑟1 ∈  (𝑞 𝑢 ,
1) and 𝑟2 = 1 −  𝑟1. Then

Taking 𝑛 → ∞, we get
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Here,  and from Lemma 1.1, we have 𝜁𝑒∗ 
= 𝑒∗ .

Let 𝑒∗ and 𝑘∗ be two different fixed points of 𝜁. We have

𝑒0 ⊥ 𝑒∗ and 𝑒0 ⊥ 𝑘∗.

Since, 𝜁 is ⊥-preserving, we can write
𝜁𝑛𝑒0 ⊥ 𝜁𝑛𝑒∗ and 𝜁𝑛𝑒0 ⊥ 𝜁𝑛𝑘∗ for all 𝑛 ∈ ℕ.
We have

and

Hence, 

  for all 𝑟 > 0. That is, 𝑒∗ = 𝑘∗.

Corollary 2.2. Let (К, 𝛥,∗, 𝑢 , ⊥) be an orthogonal com-
plete fuzzy b-metric space and 𝜁: К → К

be an ⊥-continuous and ⊥-preserving mapping. Assume 
that there exist  and 𝑟 > 0 such that

Then 𝜁 has s a unique fixed point.
Proof. We can easily prove this result by the help of 

Theorem 2.1 and Theorem 2.2.
Example 2.5. Let К = [− 2, 2] and define a binary rela-

tion ⊥ by
𝑒 ⊥ 𝑘 ⟺ 𝑒, 𝑘 ∈  {|𝑒|, |𝑘|}.

Define 𝛥 by

Consider the t-norm:  𝑎 ∗ 𝑏 = 𝑎 . 𝑏 , then 𝛥 is an orthog-
onal complete FBML, but it is not an FBML. Observe that

 ∀ 𝑒, 𝑘 ∈  К.

Define 𝜁: К → К by

Then, it satisfies the following:

We have 𝑒 ⊥ 𝑘 ⟺ 𝑒, 𝑘 ∈ {|𝑒|, |𝑘|} . This implies that 
𝜁(𝑒), 𝜁(𝑘) ∈ {|𝜁(𝑒)|, |𝜁(𝑘)|} . Hence, 𝜁 is ⊥-preserving. Let 
{𝑒𝑛}  be an arbitrary o-sequence in К so that {𝑒𝑛}  converges 
to 𝑒 ∈ К. We have

We can easily see that if  exists and is 
finite,  also exists and is finite for all 𝑒 ∈ К
and 𝑟 > 0.  Hence,  𝜁 is orthogonal continuous. But, 𝜁 is not 
continuous. For this, take . Here, 

𝐴 𝑠 𝑒𝑛 → 𝑒 as 𝑛 → ∞ and taking 𝑒 = − 2 and , we 

have   which is wrong. Also, all 

above cases satisfy the orthogonal contraction:

𝛥(𝜁𝑒, 𝜁𝑘, 𝑞 𝑟) ≥ min {𝛥(𝜁𝑒, 𝑒, 𝑟), 𝛥(𝜁𝑘, 𝑘, 𝑟)} .

But, it is not a contraction. Assume min {𝛥(𝜁𝑒, 𝑒, 𝑟), 
𝛥(𝜁𝑘, 𝑘, 𝑟)}  = 𝛥(𝜁𝑒, 𝑒, 𝑟), then for 𝑒 = 𝑘 = − 2, we have

This is wrong. Hence, all the conditions of Theorem 2.2 
are satisfied and 0 is the unique fixed point of 𝜁.

APPLICATION

Within this part, we apply Theorem 2.1 to investigate 
the existence and uniqueness of a solution of a nonlinear 
fractional differential equation (see [18]) given by

  (3)

with boundary conditions

𝑒(0) = 0, 𝑒′(0) = 𝐼𝑒(𝑡) 𝑡 ∈ (0,1),
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where  is the Caputo fractional derivative of order 𝛼 
defined by

and 𝑓: [0,1] × ℝ → ℝ+  is a continuous function. 
Let К = 𝐶([0,1], ℝ) be en dowed with the supremum

 

The Riemann-Liouville fractional integral of order 𝛼  
(see [19]) is given by

 

Theorem 3.1. Assume that
i. 𝑓: [0,1] × ℝ → ℝ+  is a continuous function,
ii. 𝑒(𝑡): [0,1] → ℝ is continuous,
So that 

|𝑓(𝑡, 𝑒) + 𝑓(𝑡, 𝑘)| ≤ 𝐿|𝑒 +  𝑘|

for all 𝑡 ∈ [0,1] and for all 𝑒, 𝑘 ∈  К such that 𝑒(𝑡) +  𝑘(𝑡)
≥  0. 𝐿 is a constant with 𝐿Л < 1 where

Then the differential equation (3) has a unique solution.
Proof. We take the following orthogonal relation on К: 

𝑒 ⊥ 𝑘 iff 𝑒(𝑡) +  𝑘(𝑡) ≥ 0 for all 𝑡 ∈ [0,1]

Also, we take 

For all 𝑒, 𝑘 ∈  К,  we consider   

(К, 𝛥,∗, 𝑢 , ⊥) is a complete orthogonal fuzzy BML space. 
Observe that it is not a fuzzy BML space. We define a map-
ping 𝜁: К → К by

for all 𝑡 ∈ [0,1]. Note that the equation (3.1) has a solu-
tion 𝑒 ∈ К iff 𝑒(𝑡) = 𝜁𝑒(𝑡) for all 𝑡 ∈ [0,1]. To check the 
existence of a fixed point of 𝜁, we are going to show that 𝜁 is 
⊥-preserving, ⊥-contraction and ⊥-continuous.

For all 𝑡 ∈ [0,1], 𝑒(𝑡) ⊥ 𝑘(𝑡) means that 𝑒(𝑡) +  𝑘(𝑡) ≥ 
0. 𝐶learly, from (4), we have 𝜁𝑒(𝑡) + 𝜁𝑘(𝑡) ≥ 0. It implies 
that 𝜁𝑒(𝑡) ⊥ 𝜁𝑘(𝑡). Hence, 𝜁 is ⊥-preserving. For all 𝑡 ∈ 
[0,1] and 𝑒(𝑡) ⊥ 𝑘(𝑡), we get

  (5)

Also, 

From the fact that 𝑒(𝑡) +  𝑘(𝑡) ≥ 0 , we can take 𝑒(𝑡) +  
𝑘(𝑡) = |𝑒(𝑡) + 𝑘(𝑡)|, since 𝜁 is ⊥-preserving, which means 
that 𝜁𝑒(𝑡) + 𝜁𝑘(𝑡) = |𝜁𝑒(𝑡) + 𝜁𝑘(𝑡)|. We have

From the fact 𝐿Л < 1 and (5), we get
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It implies that 𝜁 is an ⊥-contraction.
Suppose that {𝑒𝑛}  is an O-sequence in К such that {𝑒𝑛}  

converges to 𝑒 ∈ К. Because 𝜁 is ⊥-preserving, {𝜁𝑒𝑛}  is an 
O-sequence for each 𝑛 ∈ ℕ. Also, because 𝜁 is an ⊥-contrac-
tion, we have

𝛥(𝜁𝑒𝑛(𝑡), 𝜁𝑒(𝑡), 𝑞 𝑟) ≥  𝛥(𝑒𝑛(𝑡), 𝑒(𝑡), 𝑟).

As  exists and is finite for all 𝑟 > 0.
it is clear that  exists and is finite.

Hence, 𝜁 is ⊥-continuous. Thus, all the conditions of 
Theorem 2.1 are satisfied, and so 𝑒(𝑡) is the unique fixed 
point of 𝜁.

CONCLUSION

In this manuscript, we introduced the notion of orthog-
onal fuzzy b-metric like spaces as a combination of orthog-
onal sets and fuzzy b-metric like spaces. This new setting 
has many applications and opens the door to extend and 
generalize some known related fixed point results in (fuzzy) 
b-metric like spaces. At the end, we solve a fractional differ-
ential equation and we gave some concrete examples illus-
trating the new concepts. This work can be extend in the 
structure of orthogonal control fuzzy metric-like spaces, 
Intutionistic fuzzy b-metric-like spaces, neutrosophic met-
ric-like spaces etc.
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